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Abstract

4D datasets, such as time-varying datasets, usually come on
4D Cartesian Cubic (CC) grids. In this paper, we explore the use of
4D Body Centered Cubic (BCC) grids to provide a more efficient
sampling lattice. We use this lattice in conjunction with a point-
based renderer that further reduces the data into an RLE-encoded
list of relevant points. We achieve compression ranging from 50 to
80% in our experiments. Our 4D visualization approach follows
the hyperslice paradigm: the user first specifies a 4D slice to
extract a 3D volume, which is then viewed using a regular point-
based full volume renderer. The slicing of a 4D BCC volume yields
a 3D BCC volume, which theoretically has 70% of the datapoints
of an equivalent CC volume. We reach compressions close to this in
practice. The visual quality of the rendered BCC volume is virtu-
ally identical with that obtained from the equivalent CC volume, at
70-80% of the CC grid rendering time. Finally, we also describe a
3.5D visualization approach that uses motion blur to indicate the
transition of objects along the dimension orthogonal to the
extracted hyperslice in one still image. Our approach uses inter-
leaved rendering of a motion volume and the current iso-surface
volume to add the motion blurring effect with proper occlusion and
depth relationships.

1 Introduction

In recent years, volume rendering has become quite popular in
a variety of domains, such as science, medicine, engineering, busi-
ness, and entertainment. A growing number of applications exist
that involve four dimensions and higher, for example, MRI and 3D
Ultrasound motion studies in cardiology, time-varying datasets in
computational fluid dynamics, 4D shapes in solid models [31], and
n-manifolds in mathematics [10][11][12]. Currently, volume ren-
dering follows along six broad paradigms: raycasting [18][39],
splatting [42], shear-warp [17], cell-projection [22][35], texture-
mapping hardware-assisted [4][8][30], and custom hardware-
accelerated [23][29]. Some of these have been extended into 4D
and higher. In order to classify these extended algorithms, one may
distinguish them by their intended purpose. While some algorithms

were specifically developed for time-varying datasets and typically
exploit time-coherency for compression and acceleration
[1][9][19][32][33][36][41], other methods have been designed for
general n-D viewing [2][3][10][11][12][13][40] and require a more
universal data decomposition.

In n-D viewing, the direct projection from n-D to 2D (for
n>3) is challenging. One major issue is that there are an infinite
number of orderings to determine occlusion (for n=3 there are just
two, the view from the front and the view from the back). In order
to simplify the user interface and to eliminate the amount of occlu-
sion explorations a user has to do, Bajaj et. al. [2] perform the n-D
volume renderings as an X-ray projection, where ordering is irrele-
vant. The authors demonstrate that, despite the lack of depth cues,
much useful topological information of the n-D space can be
revealed in this way.

On the other end of the spectrum are algorithms [3] (and the
earlier [40]) that first calculate an n-D hyper-surface (a tetrahedral
grid in 4D) for a specific iso-value, which can then be interactively
sliced along any arbitrary hyperplane to generate an opaque 3D
polygonal surface for hardware-accelerated view-dependent dis-
play. This approach is quite attractive as long as the iso-value is
kept constant. However, if the iso-value is modified, a new iso-tet-
rahedralization must be generated which can take on the order of
tens of minutes [3]. Our method also uses the hyper-slice
approach., however, in contrast to [3][40] we skip the intermediate
meshing step and instead retain the original volume representation
throughout the process. While this currently only allows rendering
times in the range of seconds, this (lower) framerate is relatively
insensitive to transfer function modifications, and, in addition, also
provides full volume renderings with semitransparent object fea-
tures.

Since 4D datasets can become quite large, a variety of meth-
ods to compress 4D volumes have been proposed in recent years.
Researchers have used wavelets [9], DCT-encoding [19], RLE-
encoding [1], and images [32][33]. All are lossy to a certain
degree, depending on a set tolerance. An alternative compression
strategy is the use of more efficient sampling grids. A good candi-
date is the so-called Body-Centered Cartesian (BCC) grid which
was recently employed for 3D volume rendering in [38]. The BCC
lattice can save almost 30% of the samples, without loss of signal
fidelity, under certain conditions. BCC grids are particularly attrac-
tive for point-based volume rendering methods, such as splatting,
since there the rendering time is directly proportional to the num-
ber of points. But, on the other hand, the BCC grid has also been
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useful in speeding up the shear-warp algorithm [37] and computed
tomography [21][27].

The BCC grid is a generalization of the hexagonal grid, and
all of these lattices are members of the grid family [6], which
generalize into very high dimensions and whose duals are the Dn
grids. An important corollary from the theory of lattices and sphere
packings [6] is that the data reduction rate of the grids grows
with the number of dimensions n, and that this data reduction is in
fact optimal. The projected sample reduction for is already
50%, and it is the goal of this paper to explore the prospects and
potential of this theoretical finding for 4D volume rendering, in
conjunction with a high-quality point-based rendering approach.

Our paper is structured as follows. First, in Section 2, we dis-
cuss related work, and in Section 3 we present the theoretical back-
ground relevant to our work. In Section 4 we describe the details of
our 4D splatting approach, both for cartesian grids and grids.
In that section, we also describe our 3.5D motion blur extension.
Then, in Section 5, we describe our implementation, and Section 6
provides images and run times obtained with our implementation.
Section 7 concludes with final remarks and future perspectives.

2 Related Work

Early work on 4D rendering includes a paper by Ke and Pan-
duranga [13] who used the hyperslice approach to provide views
onto the on-the-fly computed 4D Mandelbrot set. Another early
work is a paper by Rossignac [31], who gave a more theoretical
treatment of the options available for the rendering of 4D hyper-
solids generated, for example, by time-animated or colliding 3D
solids. Hanson and co-authors [10][11][12] wrote a series of
papers that use 4D lighting in conjunction with a technique that
augments 4D objects with renderable primitives to enable direct
4D renderings. The images they provide in [12] are somewhat rem-
iniscent to objects rendered with motion blur. Bajaj et al. [2] use
octree-based splatting, accelerated by texture-mapping hardware,
to produce 2D X-ray views of n-D objects. They also present a
scalable interactive user interface that allows the user to change the
viewpoint into n-D space by stretching and rotating a system of n
axis vectors. The 4D isosurface algorithms proposed by Weigle
and Banks [40] and Bhaniramka, Wenger, and Crawfis [3] both use
a Marching Cubes-type approach and generalize it into n-D.

Methods that focus more on the rendering of the time-variant
aspects of 3D datasets have stressed the issue of compression and
time-coherence to facilitate interactive rendering speeds. Shen and
Johnson [33] use difference encoding of time-variant volumes to
reduce storage and rendering time. Westermann [41] uses a wave-
let decomposition to generate a multi-scale representation of the
volume. Shen, Chiang, and Ma [32] propose the Time-Space Parti-
tioning (TSP) tree, which allows the renderer to cache and re-use
partial (node) images of volume portions static over a time interval.
It also enables the renderer to use data from subvolumes at differ-
ent spatial and temporal resolutions. Anagnostou [1] extend the
RLE data encoding of the shear-warp algorithm [17] into 4D,
inserting a new run block into the datastructure whenever a change
is detected over time. They then composite the rendered run block
with partial rays of temporally-unchanged volume portions. Sutton
and Hansen [36] expand the Branch-On-Need Octree (BONO)
approach of Wilhelms and Van Gelder [43] to time-variant data to
enable fast out-of-core rendering of time-variant isosurfaces. Lum,
Ma, and Clyne [19] recently advocated an algorithm that DCT-
compresses time-runs of voxels into single scalars that are stored in
a texture map. These texture maps, one per volume slice, are
loaded into a texture-map accelerated graphics board. Then, during
time-animated rendering, the texture maps are indexed by a time-
varying color palette that relates the scalars in the texture map to
the current color of the voxel they represent. Although the DCT

affords only a lossy compression, their rendering results are quite
good and can be produced interactively. Another compression-
based algorithm was proposed by Guthe and Straßer [9], who use a
lossy mpeg-like approach to encode the time-variant data. The data
are then decompressed on-the-fly for display with texture mapping
hardware.

The research most related to our 4D work is the 3D approach
by Theußl, Möller, and Gröller [38], who introduced BCC grids to
the visualization community. Rendering was achieved by ways of a
pre-classifying splat renderer with per-splat compositing. Pre-
shaded splatting requires an estimate of the gradient at each voxel
position, and they use central differences for this purpose. This,
however, is complicated by the fact that a voxel’s nearest BCC grid
neighbor along an axis is away, which is a greater distance
than in the equivalent Cubic Cartesian (CC) grid. To use a closer
distance, they compare this gradient estimation method with one
that interpolates a point on each cell face and uses interpolated
point pairs on opposing cell faces to estimate the gradient. These
points are now closer together, i.e., , than on the equivalent
CC grid. Nevertheless, there are only slightly noticeable differ-
ences in image quality for the three schemes. Our splatting algo-
rithm (described in [28]), in contrast, avoids these issues altogether
since it defers classification, gradient estimation, and shading until
the volume has been sliced and interpolated into image-aligned
sheets. Hence the gradient estimation scheme is identical for both
BCC and CC grid rendering. Our image-aligned sheet-buffered
approach also provides images with less blur and popping and
sparkling artifacts, however, at the expense of higher rendering
time [25][26].

3 Theoretical Background

According to the theory on lattices and sphere packings [6],
the Dn grids provide the closest lattice packings of hyper-spheres
in 2D to 5D (others are known for higher dimensions). This is a
fact that can be exploited for packing the frequency spectra of a
discretized spherically-bandlimited function in an optimal way in
the frequency domain (see Fig. 1 for a 2D example). Fourier analy-
sis tells us that this closest packing in the frequency domain gives
rise to the sparsest distribution of sample points in the spatial
domain [7], without reducing the frequency content that the signal
would have if sampled into the tightest cubic cartesian (CC) grid.
Thus the compression is lossless (under the condition of spherical
bandlimitness).

The Dn lattice can be constructed by this generator matrix:

(1)
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Figure 1: The cartesian grid (left) vs. the hexagonal grid (right)
as two possible frequency domain lattices. The latter provides
the tightest packing of a discrete 2D signal’s circularly-bounded
frequency spectrum. (Here, the dark, red circle contains the main
spectrum, while the others contain the replicas or aliases.)
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For n=3 this gives rise to the so-called face-centered cubic (FCC)
lattice, shown in Fig. 2b. If the sampling distance in the cartesian
grid is T, then the Nyquist frequency of the cartesian grid is
ωNyquist=1/T. Thus, if we want to pack the frequency spectra con-
forming to this ωNyquist tightly, but without overlap, into the FCC
lattice, we must scale the generator matrix by a factor of

. The generator matrix U for this scaled Dn lattice is then
given by:

(2)

To find the sampling matrix V in the spatial domain that gives
rise to the lattice generated by U in the frequency domain, one can
perform a Fourier transform and finds the following relationship:

, where I is the identity matrix [7]. V is then given by
. This results in the dual of the Dn lattice, termed

lattice [6]. The resulting V is not very intuitive, but we can obtain a
better one by a suitable rotation of V. We use the one given by Con-
way and Sloane [6]:

(3)

Including the scaling factor of (2) we get:

(4)

For the 3D case, this yields the sampling pattern for the BCC lat-
tice shown in Fig. 2c. It consists of two interleaved CC lattices,
each with spacing and offset by a factor of in all three
axis directions. Thus the BCC lattice has 1/2 of the CC lattice sam-
ples (shown in Fig. 2a) within each slice, but more slices are
required. This amounts to an overall savings of samples of
(1- /2)·100% = 29.3%, which one may translate into an equiva-
lent reduction in storage and rendering time.

In 4D we also get an interleaved embedding of two CC grids,
but this time the interleaving is controlled by the fourth dimension.
Both offset and grid spacing is again and , respec-
tively. This is illustrated in Fig. 2d, where we have untangled the
grid along the fourth dimension and arranged the 3D subgrids side
by side, with the fourth dimension axis aligned with the axis of the
first dimension. In general, the lattice is always constructed by tak-

ing the n-1 base lattice and offsetting and interleaving it for the n-
th dimension.

The compression of the lattice can be informally calcu-
lated as follows. We now have less samples per CC, but
we have a smaller sampling distance along the fourth
dimension, which is equivalent to having more samples along
the fourth axis. This means that the total amount of savings is

. Thus, by sampling a time-varying dataset (or
any other 4D dataset) into the D4 lattice we can get away with 50%
of the samples without impairing the frequency content. For 5D,
the number of samples reduces even further to 35%.

It should be noted, however, that lossless compression is only
warranted if the sampled signal has a (hyper-) spherically bandlim-
ited frequency spectrum. If a signal already sampled into a CC grid
is resampled into a Dn grid, then it must be bandlimited into a
hyper-spherical spectrum at that time, else aliasing will occur. If
the signal has already been bandlimited to such a spectrum before,
then the compression is lossless, else it is lossy. For example, a CT
reconstruction performed with a Gaussian kernel will be spheri-
cally bandlimited, but a reconstruction that employs a trilinear ker-
nel will be not. Although this sounds restrictive in theory, our
experiments have indicated that this plays a very small role in prac-
tice. Furthermore, if the visualization process uses a Gaussian or
any other radially symmetric kernel (as splatting does), then the
data would be filtered into a spherically spectrum anyhow before it
reaches the screen.

We have used the Marschner-Lobb function (MLF) [20] to
verify these theoretical foundations in practice. We first sampled
the MLF into a 403 CC grid and rendered it (see Fig. 3a). At that
sampling rate, 99.8% of the MLF’s frequency content falls below
the cartesian Nyquist limit. A significant portion of the spectrum is
close to that boundary, which makes it a very demanding test func-
tion for filters. We found, however, that this frequency boundary is
slightly non-spherical which causes significant aliasing when the
MLF is rendered from the equivalent BCC grid (see Fig. 3b). In
order to constrain the MLF’s frequency spectrum into a spherical
function, while preserving the sharp fall-off at the (now spherical)
Nyquist boundaries, we lowpassed the MLF with a spherical filter
of 10 times the MLF’s bandwidth. We then sampled this modified
MLF both into a 403 CC grid and into the equivalent BCC grid,
generated by (4). The resulting renderings are shown in Fig. 3c and
Fig. 3d, respectively. We make two observations: (i) The CC ren-
derings from the original spectrum and the spherical one are very
similar which indicates that the spectrum was only slightly modi-
fied (there is no apparent blurring); and (ii) the renderings of the
modified MLF from the CC and the BCC grids are very similar
which confirms the theory that CC and BCC grid renderings of the
same function will lead to very similar results, especially if an ana-
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Figure 2: Various grid cells, drawn in relative proportions. We assume that the sampling interval in the CC grid is T=1. (a) Cubic car-
tesian (CC) for cartesian grids (all other grid cells shown are for grids that can hold the same spherically bandlimited, signal content);
(b) Face-centered cubic (FCC) for D3; (c) Body-centered (BCC) cell for ; (d) 4D BCC for . Here, for illustrative purposes, we
have pulled apart the 4D BCC along the t-axis, giving rise to two CC cells, offset by along all 4 axes. Note that we chose the
labeling xyzt for illustrative purposes. The order generalizes to any arbitrary 4D coordinate labeling.
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lytic function is available that can directly be sampled into the
BCC grid.

4 Splatting in 4D

For the purpose of this discussion, a 4D volumetric dataset is
conceived of as a sampled representation of a 4D continuous signal
f(x,y,z,t), defined within the hypervolume for which (0≤x<nx,
0≤y<ny, 0≤z<nz). We visualize the dataset in a two-step process.
First, the user interpolates an arbitrary hyperplane given by the
equation:

(5)

with (a,b,c,d) being the normal vector of the plane and e the dis-
tance from the origin. The result is list of 3D voxels, for which
shading, visibility-ordering and depth-compositing will have to be
performed each time a new 3D viewpoint and transfer function is
specified by the user. We use the image-aligned sheet-buffered
splatting method described in [28] for the 3D rendering.

The extraction of a hyperslice can be done in two ways. The
first method uses the fact that a sliced 4D Gaussian is a 3D Gauss-
ian, weighted by a factor exp(-a·d2), where d is the distance of the
4D point from the hyperslice and a determines the kernel’s spread.
All voxels for which |d| ≤ kernel halfwidth will be extracted from
the 4D volume and included in the list used for 3D rendering.

The other method does not extract voxels from the 4D grid,
but interpolates a 3D volume by ways of a 4D filter with bandwidth
(ωx,ωy,ωz,ωt). This allows the extraction of volumes at any resolu-
tion, at any hyperplane orientation, and into any grid, such as a 4D
CC into a 3D BCC lattice or a 4D BCC into a 3D BCC lattice. The
4D-to-2D projection filter is then a 4D filter h4D aligned with the
axes of the 4D data, that is convolved with the 3D Gaussian h3D
used for splatting, aligned with the axes of the extracted volume:

(6)

where R is the orientation matrix of the hyperslice and (xv,yv,zv) is
the coordinate system of the extracted volume. We can do this via a
3D splatting table if the kernel is rotationally symmetric. In that
case, the march through the table is defined by the orientation of
the hyperplane. We only splat those points that are within half the
kernel width of the hyperslice and we omit points with densities
outside the interesting range.

Note that if we interpolate the 3D volume at the same (or
lesser) resolution than the 4D volume, which is probably the most
reasonable, then the list of voxels of the second method is bound to
be much smaller than the list of voxels for the first method. While
for the first method, the number of extracted voxels is proportional
to the product of kernel width w and the volume resolution, it is

only proportional to the volume resolution in the second method.
This will increase the 3D rendering time for the first method by a
factor of w. On the other hand, the interpolation cost is proportional
to w4, while the extraction cost is only proportional to w.

For the general 4D slicing, we chose the second method for
our work since we wanted to minimize the number of 3D voxels
for rendering. But there are a few special cases that allow the more
efficient extraction method to be applied, without increasing the
number of voxels in the list. These special cases arise when the
hyperplane is aligned with 3 of the 4 hyper-volume axes, i.e., 3 of
the 4 coefficients (a,b,c,d) in (6) are zero. Fortunately, these are
likely to be the most popular rendering modes – they slice the vol-
ume along x, y, z, or t. A further condition is that the projected 4D
grid must coincide with the desired 3D grid. This results in the
class of volumes that have the same resolution and the same orien-
tation than the projected 4D volume. However, this is not really a
restriction since we can do the resampling and rotations later, by
ways of the viewing matrix during the 3D volume rendering.

This restricted rendering mode has certain implications for
different grid types, which we shall explain in the following.

4.1 Axis-aligned 4D splatting for CC grids

In this special case we can efficiently collapse pairs of
extracted voxels into a single voxel: Two 3D volumes that are
immediate neighbors of the hyperslice can be simply combined by
linear weighting along the projection direction. We can use a linear
filter, which has a box shape in the frequency domain, since the
cartesian grid does not impose any radial bandlimitness conditions.
The complexity for this projection is N, the number of voxels in the
3D volume.

4.2 Axis-aligned 4D splatting for BCC grids

The situation for the grid is more complex. Here we need
a radially symmetric filter, such as a Gaussian, for 4D interpola-
tion, since we need to preserve the spherical bandlimitness of the
4D signal. The Gaussian is a non grid-interpolating filter, which
means that, even if the projected 4D grid coincides with the desired
3D grid, not only samples along the fourth dimension will affect an
interpolated grid point, but also the entire 4D neighborhood that
falls into the Gaussian extent of the kernel placed at the grid point.
So it seems that we are still stuck with the problems of the general
configuration. However, the fact that the grid distances within the
nested CC cells are relatively wide helps us here. Fig. 4 serves as
an illustration, where we use t as the fourth dimension, without
loss in generality. There we see a 4D BCC grid (2 nested CC grids)
pulled apart along t. The vertical dashed line indicates the time
slice at t=t1 that we would like to interpolate. We realize that the
projection of a 4D BCC grid is a 3D BCC grid, and since we

Figure 3: Rendering of the Marschner-Lobb test function on different grids: (a) 403 CC grid, non-spherical frequency spectrum; (b)
BCC grid equivalent to the 403 CC grid, non-spherical frequency spectrum; (c) 403 CC grid, constrained to a spherical frequency spec-
trum; (d) BCC grid equivalent to the 403 CC grid, constrained to a spherical frequency spectrum.
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project the 4D grid such that it coincides with the desired 3D grid,
we will retain the two nested (x,y,z) spatial CC grids and just inter-
polate the new grid values. It would save interpolation time if we
could just use the original, unfiltered, grid values and only interpo-
late (weigh) them over time, i.e., just use a 1D Gaussian along the
time axis (like we did for the axis-aligned CC case). To see if this
is feasible and to estimate how much error we would commit, con-
sider voxel A in Fig. 4. The 4D Gaussian will overlap voxels C and
D in the same time instance, and voxel B in the next time instance
(as well as others). But realize that both B and C (and D) are a dis-
tance of 1.42 away. A relatively narrow Gaussian for interpolation,
which still has good frequency behavior, is given by:

(7)

For r=1.4 (points B and C) this Gaussian has decreased to less than
2% of the maximum value. If we are willing to commit this error
then the interpolation time would be almost twice as fast as for the
Cartesian grid, given that we have to interpolate half the number of
voxels. If we are not willing to commit this error, then we will need
to use 8 B-voxels and 6 C-voxels for interpolation (the weights are
constant and don’t have to computed) per grid point. However, our
experiments have shown that the results obtained with the approxi-
mate method are just as good as those with the accurate method,
and therefore all results reported here use the approximate method.

The interpolation yields a list of voxels for the resulting BCC
grid. While the 4D BCC grid has only 50% of the voxels in the 4D
CC, the extracted 3D BCC has 30% of the 3D CC voxels. This is
the case because we have 2 lists of voxels
each, which amounts to a saving of 29.3%. This was to be expected
for the 3D BCC grid.

4.3 Motion blur effects

Although the hyper-slice approach no longer provides full 4D
views, we have sought to include at least some visual information
about the 4D characteristics of the data within the periphery of the
hyperslice. For this purpose, we have added the capability to render
these evolving features as semitransparent motion trails, inked in a
distinct color. This is alternative to the use of 3D vectors or glyphs,
but does not require any motion analysis.

Since we chose a 4D viewing paradigm that only shows the
user a shaded 3D slice of the 4D space at a time, and not a 4D X-
ray projection of all data onto a 2D plane, we investigated alterna-
tive ways to convey a better understanding of the 4D processes in
one image. We picked an approach that could be classified as 3.5D
and involves adding a motion trail to the features present in a cer-

tain hyperslice. For the following discussion suppose that we
would like to create a motion blurring along the time axis t, with-
out loss in generality. What we would like to achieve is the depic-
tion of a sharp isosurface at t=t1, merged with the blurry trail that
this iso-surface left during the time interval [t1, t1-∆t]. Further, we
would like to show these two features with different colors to
clearly distinguish them. Basically, this is a composite of two ren-
derings: a post-classified rendering of the iso-surface at t1, and a
pre-classified rendering of the 4D volume within [t1, t1-∆t]. Our
first attempt passed all (interpolated) voxels at t1 and only the vox-
els with values > isovalue for the motion-blurred time interval.
Then we set the alpha transfer function to opaque for values greater
than the isovalue and to semitransparent for lower values. The
problem with this approach is that the lower densities and the
Gaussian fall-off of the voxels at t1 are confounded with the lower
densities of the motion-blurred features.

A more conclusive display can be created by decoupling the
transfer functions of the motion-blurred object and the iso-surfaced
one at t1. There are two solutions to achieve this. The first post-
blends two separate images, one taken of the hyperslice at t1 and
one taken of the lowpassed hyperslice of width ∆t (see Fig. 5). The
problem with this post-process approach is that occlusions are not
properly handled, and therefore depth relationships involving the
motion path are not clearly conveyed. A better solution is to treat
the two volume objects, the one at t1 and the lowpassed one, as two
gases that share a common environment, with different color and
opacity mappings of their densities. Different strategies for the
intermixing of two volumes are also discussed in [5]. We choose
the opacity transfer functions like before: an iso-threshold for the
hyperslice at t1 and a flat semitransparent mapping for the motion-
blurred hyperslices. In order to preserve occlusions, rendering of
the slices must occur simultaneously. For this purpose, we render
their densities into two separate sheet-buffers, coloring and classi-
fying them using their individual transfer function. Then we com-
posite the two sheet-buffers into a common compositing buffer
using the following equations:

(8)

where c1, c2, α1, α2 are the colors and opacities of the two objects,
and cf and αf are the color and opacity of the composited object.
We weigh each contribution by a factor of 1/2 to avoid color and
opacity values > 1.0.

5 Implementation

In our implementation, the 4D volume is represented by a
pointer-indexed RLE list. RLE lists have become popular for vol-
ume rendering in the shear-warp algorithm [17] and have also
recently been used for splatting [14]. The hyperslicing interpolates
a 3D volume in the manner described in Section 4 and encodes the
3D volume into another RLE list that is subsequently used for ren-
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dering. As mentioned before, if an axis-aligned slicing is per-
formed, then the hyperslice interpolation reduces to a simple
weighted sum of voxels. The (3D) RLE list is traversed every time
the transfer function or 3D viewing parameters are changed, and
the voxels are tossed into an array of buckets to provide the depth
ordering for rendering. The RLE facilitates differential arithmetic
to perform the image-space transformation, requiring less than two
vector adds and mults per voxel on average. After the bucket-toss-
ing, we use the image-aligned sheet-buffered splatting algorithm
described in [28] to render the 3D volume. Only a modification of
the 4D viewing parameters triggers a new hyperslice interpolation.
We also have implemented direct slicing where the construction of
the (3D) RLE list is bypassed and the extracted 4D voxels are
directly tossed into the bucket array.

The modification of the 3D splatter to render BCC grids is
straightforward. The only adjustment that is necessary takes place
at the onset of the bucket-tossing stage of the algorithm. The trans-
formation matrix that transform the points into image space must
be pre-multiplied by the following matrix:

(9)

where a is set to  when z is odd and to 1 otherwise.

6 Results

We now present experimental results that we have produced
with our software. All images were rendered in a pure-software
implementation on a Pentium 4, 2Ghz machine with 512 MB of
RAM. We first tested the 3D BCC volume rendering with the fol-
lowing datasets: UNC Head, Visible Human Foot, and Engine.
Since these datasets are only available on CC grids, we resampled
the data with a cubic spline filter into the corresponding BCC
grids.

Table 1 compares the speedups that are due to the BCC grid.

2 0 0 a

0 2 0 a

0 0 2 a

0 0 0 0

1 2⁄

Table 1: Comparison of the efficiency of the BCC grid versus
the CC grid. The size column lists the number of points needed
on both grids to store the equivalent dataset. The third column
lists the number of points that effectively made it into the ren-
dering pipeline (the relevant voxels). The Time column lists
the time needed to render one frame at the resolution of the
dataset. All timings are listed in seconds.

Dataset Size Eff. points Time

Head CC 1283 (2.1 M) 492 K 1.26

Head BCC 912 x 181 (1.5 M) 345 K 0.98

Foot CC 1283 (2.1 M) 208 K 1.26

Foot BCC 912 x 181 (1.5 M) 148 K 0.91

Engine CC 2563 (16.7 M) 1565 K 2.46

Engine BCC 1822 x 366 (12 M) 1248 K 1.92

Figure 6: Renderings on the CC (top row) and the BCC grids (bottom row): From left to right: engine dataset, visible human foot, UNC
head.
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Similar to [38], we were also able to achieve speedups (over the
CC grid) of around 25% at almost no difference in visual quality.
On the front page we show (in the right-most two images) the fuel
injection and the neghip datasets rendered on BCC grids, and
Fig. 6 shows side-by-side comparisons of the Engine, the Visible
Human Foot, and the UNC head. It should be noted that the resam-
pling of the data into the BCC grid adds a certain amount of
smoothing, which, for example, can be observed in the teeth sec-
tion of the skull. The missing detail is about 1-2 voxels wide. The
smoothing requires the transfer function to be shifted towards
lower densities in order to obtain similar results.

For the 4D measurements we have used the following
datasets: Vortex, Jet Shockwave, and Turbulent Jet. Again, the 4D
BCC volumes are resampled versions of the corresponding carte-
sian volumes. On the front page, we show images of the Vortex
dataset, rendered from the 4D CC grid (left) and from the 4D BCC
grid (right). There is very little difference between the two images.
Fig. 7 shows images of the turbulent jet dataset obtained by slicing
the data volume at a (non-grid) time step, both for the 4D CC (top)
and 4D BCC (bottom) grids. The images on the right in the same
figure show two slice-over-time projections along the z and the x-
axis, respectively. These views demonstrate an alternative way to
visualize change over time for specific parts of the volume, and
identify specific motion patterns. There is only little difference in
the visual quality for the two different grids, mostly related to the
slight smoothing due to the BCC grid resampling. Finally, Fig. 8
shows images of the jet shockwave dataset. On the left we show the
4D CC grid rendering, and on the right we show the 4D BCC grid
rendering. Again, there is only little difference between the two.

Table 3 lists the statistics we have obtained. We first observe
that the total size of the 4D datasets shrinks by 50% when resam-
pled into the 4D BCC grid. Since point-based rendering does not
make use of spatial coherency, we may extract and store only a list

of relevant points (those points with values above “air” and noise)
from the 4D dataset. Compression ratios ranging between 25% to
95% can be obtained that way for the tested datasets. The point list
is RLE encoded to spare us from the need to store the (x,y,z,t)
coordinate for each point. The RLE encoding typically requires up
to 1.5 bytes per point on average, but we also need a few index
tables to navigate the RLE list. We notice that the BCC-related
compression of the point list of the Turbulent dataset is much less
than 50%. This is due to the smoothing in the resampling process
which brought the values of relevant object boundaries close to the
values of air. Post-classified rendering requires a thin shell of vox-
els around iso-boundaries to ensure good iso-surface interpolation.
Since now the voxels in this shell have values close to those usually
removed as air, they cannot be distinguished and all voxels, both
air and boundary, must be included in the list. The other two
datasets have more distinct boundaries in terms of value and thus
don’t suffer from this effect. Hence, their compression remain
around 50%. Note that this reduction of compression ratio is due to
the required resampling step. Note that if we had obtained the BCC
data directly from the domain process, then the smoothing would
not have occurred (except the hyper-spherical smoothing).

The point list is then used to interpolate a hyperslice. We
show data for the interpolation of an arbitrary time step. The result
of interpolating a 4D BCC grid is a 3D BCC grid, which has a the-
oretical compression to 71%. In practice we get compressions in
the range of 71% to 84%. This is again due to the smoothing along
the interpolated axis (here time). We also list the size of the RLE
list which we construct on-the -fly for the extracted 3D dataset. It is
up to 40% larger than complexity of the point list. We construct the
RLE only when the user extracts the 4D hyperslice for further
exploration in 3D, using the usual 3D rotations and transfer func-
tion modifications. If the user is in 4D hyperslicing mode, we toss
the points directly into the buckets, without constructing a 3D RLE

Figure 7: 4D turbulent jet dataset. Top left: 4D CC grid; bottom left: 4D BCC grid; top right: hyperslice at z=62; bottom right: hyper-
slice at x=35.
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list. For the axis-aligned slicing, points from different instances but
with the same spatial location are merged and added, properly
weighted into a single point, before the bucket toss.

The time to render a frame, which includes the 4D extraction,
is listed in the last column of Table 3. We observe that the BCC
grid gains us about 20-30% speedup for rendering, depending on
dataset. The rendering time is very closely related to the number of
points, which comes at no surprise since we found that the point
rasterization takes up over 70% of the overall rendering effort.

Fig. 9 demonstrates the motion-blur effect for the Vortex
dataset at t=60, for an iso-value=150 and a motion trail of ∆t=10.
The top left image in the one obtained with post-compositing two
separate images of iso-surface and motion trail, while the top right
image was obtained with slice-wise compositing of these two
objects. For both images we have set the transfer function for the
motion blurred object to a slight blue and the alpha transfer func-
tion to a flat 0.3. The iso-surface for the object at t1 appears as an
opaque purple structure. For comparison, on the bottom of Fig. 9
we also show a few of the actual timesteps (within steps 50-60)
that contribute to the blurred features of the final image. We
observe that the slice-wise composited image shows occlusions of
the two object states correctly, while the post-postprocessed image
does not. The time required to render the two images is about the
same.

7 Conclusions

In this paper, we have applied well established mathematical

theory on hyper-spherical lattices to losslessly compress 4D
datasets, under the condition that the frequency spectrum of the
data is spherically bandlimited. We found that the raw datasets
could be compressed to about 50% of their original size, a ratio
that is in par with theory. Since we are using a point-based renderer
we can reduce the magnitude of the data even more by only storing
an RLE list of relevant data points (those with values greater than
“air” and noise). The RLE-encoded BCC point lists compress to a
size of 20-50% of the raw CC data for the datasets tested. Since the
resampling of the data from the original 4D CC grid into the 4D
BCC grid introduced some amount of lowpassing which required
the inclusion of some of the air voxels into the point list, we
believe that the compression ratios would be even better if the
tested datasets were sampled directly into the 4D BCC grid by the
data generation process. In these regards, our research (as well as
that of [38]) has hopefully provided some pointers to the communi-
ties working in these fields of science.

We have used a hyper-slice approach to explore the 4D data,
i.e., the user first specifies a 4D slice of the data, which amounts to
a 3D volume, and then views this volume using our point-based
renderer. Transfer functions and shading are available to bring out
certain aspects of extracted volume. Slicing a 4D BCC grid results
in a volume on a 3D BCC grid, which theoretically compresses the
data to 70% of the CC size. We come close to that, with some
reductions due to the lowpassing incurred in the slicing. The qual-
ity of the BCC and CC volume is virtually identical, with perhaps a
small amount of smoothing visible in the former for some datasets.
The reductions in dataset size translate directly into rendering

Table 3: Numerical results for the time-varying datasets used in our study. The relevant voxels are those voxels that have values above
“air” and noise. The relevant interpolated voxels are the voxels interpolated for the arbitrarily chosen time step shown in Fig. 7. These
voxels are passed into the splat renderer. The RLE is needed for efficient storage and transformation of these spatially non-connected
points. The render time is the time (in seconds) to render the image.

Dataset
# time
steps

Total data
size

Total # relevant
voxels

(% total size)

# relevant
voxels in %
BCC / CC

# relevant
interpolated voxels

(% BCC / CC)

Size RLE encoding
(% of # relevant

interpolated voxels)

Render time
(% BCC /

CC)

Turbulent CC 99 168.3 M 9.2 M (5%) - 127 k 146 k (114%) 1.23

Turbulent BCC 139 87.0 M 7.4 M (8%) 80% 107 k (84 %) 146 k (136%) 1.01 (82%)

Vortex CC 80 160.0 M 109.7 M (68%) - 1.3 M 1.6 M (123 %) 5.63

Vortex BCC 112 84.3 M 60.3 M (75%) 54% 986 k (75 %) 1.35 M (137 %) 4.58 (81%)

Jet Shockwave CC 56 89.6 M 38.0 M (42%) - 727 k 719 k (98%) 5.42

Jet Shockwave BCC 80 48.0 M 20.0 M (41%)  52% 520 k (71 %) 544 k (104 %) 3.90 (71%)

Figure 8:  Jet shockwave dataset. Left: 4D CC grid; right: 4D BCC grid.
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speedups of 20-30%. The speedups are mainly for slices along one
of the 4 major axes. For arbitrary axes the 4D interpolation is more
expensive.

Rendering is not interactive. This is partially due to the fact
that we do not use any type of hardware acceleration, which is in
contrast to other methods published [8][30]. We are currently
working on an approach that uses texture mapping hardware for
splat rasterization which is the main bottleneck in our application.
We are also currently exploring more cache-coherent data access.
This has been shown to provide major speedups by [14][15][16],
although especially the author of the last two references has done a
lot more to optimize volume rendering in software.

In the presented work, we have also attempted to integrate the
variation of the data in the 4th dimension into one still frame.
Instead of glyphs, we use a variation of motion blur to depict past
traces of data object into the display. We use a simultaneous inter-
leaved volumetric rendering approach that composites slice-by-
slice the current iso-surface along with its motion-blurred trace
over a user-selectable interval along the 4th dimension, or perpen-
dicular to the hyperslice. At the current time we can assign differ-
ent colors to the two data objects. A possible extension would be to
subdivide the motion interval and render each with a different
transfer function. This multi-channel approach would enable a
smooth degradation in color in relation to the time-stamp in the
motion-blurred interval.

In future work, we would like to use 4D BCC grids in con-
junction with lossy compression techniques, such as wavelets or
DCT. An interesting result was reported in [38] for the 3D case.
There it was shown that for larger datasets an entropy-coding
(gzip) of BCC volumes yielded compression ratios that were 30%
higher than those of the equivalent CC volumes. However, one
drawback of further compression of the dataset is that extra work is
required for decompression before voxel extraction and rendering
can take place. Our present implementation can extract voxels right
away. We would like to investigate these trade-offs further.

We would also like to explore higher-quality filters [24] for
the BCC grid interpolation in order to eliminate, or at least lower,
the smoothing artifacts apparent in the images we rendered from

the BCC grids. However, the best strategy would be to acquire the
volumes directly on BCC grids, which would eliminate the need
for the intermediate interpolation step. For this purpose, we plan to
evaluate BCC renderings of CT volumes that will be reconstructed
both on BCC grids as well as on CC grids [27].
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