The Role of Another Spatial Dimension
in Software Visualization

HIDEKI KOIKE
University of Electro-Communications

The primary objective of this article is to demonstrate the use of 3D-computer graphics in
wvisualizing shapeless software information by focusmng on performance monitoring of
parallel /concurrent computer systems. Issues are addressed from two different perspectives.
expressiveness of output media and user cognition The former describes the limitations of 2D
output media. The latter refers to a user’s cognitive load when using 2D representations in a
multiple-window environment. We show how these problems can be minimized by using a 3D
framework A prototype visuahzation system called VOGUE has been developed A 3D frame-
work is used to visualize the execution pattern of two parallel /concurrent computer systems' an
electric power control system and a parallel manipulator system Through these visualizations,
we show the effectiveness of our framework The applications of 3D frameworks to other kinds of
software information are also described.

Categories and Subject Descriptors. D.1 3 [Programming Techniques] Concurrent Program-
ming—distributed programming: parallel programming; D.2.2 [Software Engineering]: Tools
and Techniques—user interfaces; D.2 7 [Software Engineering]. Distribution and Maintenance
—version control; D.3.2 [Programming Languages| Language Classifications—concurrent,
distributed, and parallel languages, ohject-oriented languages; H.1 2 [Models and Principles}:
User/Machine Systems—human factors; 137 [Computer Graphics]: Three-Dimensional
Graphics and Realism—uirtual reality; 1.3.8 [Computer Graphics]- Applications

General Terms' Design, Human Factors

Additional Key Words and Phrases' Electric power control system, information visualization,
parallel manipulator

1. INTRODUCTION

Information has no shape or color. Thus, one of the advantages of using
diagrams is that virtual shape can be given to information to aid our
comprehension and understanding. For example, a logical hierarchy itself is
not a tree. The tree shape is created for our cognitive convenience. Once such
mental models are created, we begin to think with these figures. Therefore, it
is essential to create and portray diagrams which are designed from a human
cognitive perspective.

This work was partially supported by the Tokyo Electric Power Company.

Author’s address Department of Communications and Systems, University of Electro-Communi-
cations, 1-5-1, Chofugaoka, Chofu, Tokyo 182, Japan; email: koike(tcas.uec.ac Jp.

Permission to copy without fee all or part of this material 1s granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice 18 given that copying 1s by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and /or
specific permission.

¢ 1993 ACM 1046-8188 /93 /0700-0266 $01 50

ACM Transactions on Information Systems, Vol 11, No 3. July 1993, Pages 266-286

Another Spatial Dimension in Software Visualization . 267

The purpose of software visualization systems [Chang 1988; Meyers 1986;
Shu 1988] is to support software development by portraying such diagrams
on computer displays. The diagrams which were once represented on paper
media are now visualized on computer displays due to the advances in bitmap
technology. Consequently, it became possible to store, recall, and reuse
diagrams, and to even interact with the information in them. Currently, 3D
computer graphics is the primary focus in the development of new output
media. Mechanical CAD systems, molecular-modeling systems, and
scientific-visualization systems have emerged since the introduction of 3D
computer graphics. The reasons are as follows: (1) they can visualize objects
which do not really exist (such as Van-der Waals surfaces), (2) they can
visualize inherently 3D objects (such as molecular models), and (3) they can
visualize dynamics through use of their animation capabilities. At present,
3D graphics are also being used in software visualization. However, the use of
3D graphics in software visualization raises an important question: How do
we visualize shapeless software information in 3D?

The main goal of this article is to provide insight into this question by
focusing on a performance visualization tool for parallel /concurrent com-
puter systems. We address issues from two different perspectives: expressive-
ness of output media and user cognition. The former perspective discusses the
limitations of 2D output medium, and the latter discusses the user’s cognitive
load when 2D representations are used in a multiple-window environment.
As we stated earlier, consideration of the user’s cognitive viewpoint is neces-
sary when any visual representations are designed.

In this article we show how these problems can be reduced by applying a
3D visualization framework. A 3D framework represents one relation (e.g.,
the relation between processes) in 2D and assigns another meaning (e.g., the
time) to the third axis. Thus, it is possible for the user to see two relations
(e.g., process relations and their execution pattern) simultaneously as well as
to focus on each single relation without changing mental models. A prototype
visualization system called VOGUE (Visualization-Oriented Generic User
Interface Environment) has been developed. Using VOGUE, we show how the
3D framework can be used to visualize the execution patterns of
parallel /concurrent computer systems. We also compare the effectiveness of
this approach to traditional approaches and discuss visualization of other
software applications using the 3D framework.

2. RELATED WORK

Information visualization in 3D space remains an area with much to be
explored. Particularly, in the visualization of parallel computers, only a few
systems have used a 3D framework. Related work falls into two main
categories: information visualization in 3D space and performance visualiza-
tion of parallel /concurrent systems.

Pioneering work in information visualization in 3D space was done by
SemNet [Fairchild et al. 1988]. SemNet was built to aid the maintenance of
large knowledge bases by visualizing Prolog knowledge bases as 3D graphs.

ACM Transactions on Information Systems, Vol. 11, No. 3, July 1993,

268 . Hideki Koike

The authors also experimented with automatic layout and navigation tech-
nigues. SemNet shows that link crossing, as it occurs with 2D graphs, can be
minimized and that it is easier to trace each link. Other early work includes
Lieberman’s [1989] system, which represents the tree structure of programs
as boxes and visualizes program execution with animation. The focus is on
the animation capability of computer graphics. However, the author does not
discuss the effective use of an additional spatial dimension. Information
Visualizer [Card et al. 1991; Mackinlay et al. 1991; Robertson et al. 1991],
developed at Xerox PARC, clearly demonstrates the importance of 3D visual-
ization. For example, Cone tree [Robertson et al. 1991] visualizes hierarchical
structures in 3D trees and demonstrates the effective use of the screen.
Perspective wall [Mackinlay et al. 1991] visualizes relational information as
3D walls and shows the smooth integration of detail and context. The authors
also described how interactive animation reduces the user’s cognitive load.
FSN [Silicon Graphics 1992] is a file navigation tool for UNIX and uses a 3D
graphics library to implement directory hierarchies. FSN focuses on a per-
spective view of 3D graphics. Although all display 3D graphics, rotation about
any axis does not reveal any new information. One perspective allows all
information to be seen.

Much work has been done on performance visualization of parallel /concur-
rent systems. An early system was the PIE [Lehr et al. 1989] system
developed at Carnegie-Mellon University, which is a performance monitor for
the Mach Operating System. PIE visualizes the execution of threads in 2D
graphs, where the threads are placed on the y-axis, and the x-axis indicates
time. The authors reported that it became easier to recognize the kernel
configuration. A similar system is ParVis [Linden 1990] developed at MIT.
ParVis is a visualization tool for parallel LISP. ParVis visualizes process
execution using a 2D process-time framework. The relation between the
parent process and the child process is specified by a line drawn from parent
to child. JED [Maloney 1990] is a visualization tool for the Cedar multiproces-
sor environment. It focuses on events which are visualized as different icons.
There are many other examples [McDowell and Helmbold 1989]; however, it
is noteworthy that these visualization systems use a common framework—a
2D process-time space. The Pavane System [Cox and Roman 1991] proposes
another visualization framework for concurrent computations and also tries
to introduce 3D concepts. The role of the additional dimension, however, is
not discussed analytically.

3. 2D VISUALIZATION PROBLEMS

As computer systems become larger and more distributed, parallel /concur-
rent programming will play a larger role. However, the debugging techniques
currently used in sequential programming are not sufficient for parallel /con-
current programming. McDowell and Helmbold [1989] reported that the
visualization of control flow, or that of distributed data, is one effective
approach for debugging such programs. He also concluded that the debugger
for complex parallel /concurrent systems should visualize both the states of

ACM Transactions on Information Systems, Vol 11, No 3, July 1993

Another Spatial Dimension in Software Visualization . 269

the system at one moment as well as the running pattern for a certain time in
a multiple-window environment. As described in Section 2, most of the
performance-tuning tools use the process-time framework. If communication
between processes takes place, they are represented as lines or arrows from
the sender process to the receiver process in these diagrams. For such 2D
visualization, we will examine two issues: expressiveness of output media
and user cognition.

3.1 Expressiveness of Output Media

Two-dimensional output media such as paper or bitmap displays can gener-
ally represent two independent relations. This fact, however, limits the
expressiveness of diagrams visualized in 2D media. The following examples
illustrate these limitations:

—The overflow of the y-axis due to the increase in the number of processes. In
current 2D tools, 10 or 20 processes, at most, are expected. However, in a
larger system such as an electric power control system (described later),
hundreds of processes are executed and need to be visualized. Moreover, in
the near future, hundreds or thousands of processes will be running in
parallel computer systems. Unfortunately, current 2D frameworks cannot
visualize such a larger number of processes on the y-axis.

~—The representation of the relation between processes. Consider, for example,
the transputer system [Inmos 1988]. A transputer itself is a multiprocess
computer, and several processes can run simultaneously within it. More-
over, by connecting four physical channels to other transputers, a multiple
CPU system can be constructed. Thus, several processors run in parallel,
while several processes run concurrently in each processor (see Figure 1).
These processes can be classified corresponding to the processors they
belong to. It is not natural to display this hierarchical structure in one
dimension. Moreover, the request to visualize the physical connections
between transputers can not be satisfied. Consider, as another example,
geographically distributed computer systems. In such systems, the layout
or location of computers is crucial. Thus, to recognize their cooperative
computation, it is necessary to visualize both their physical placement and
time relation simultaneously. These requirements, however, are not satis-
fied in a 2D framework.

—The representation of the communication between processes. As we de-
scribed earlier, interprocess communication is often represented by lines or
arrows. However, these lines must intersect the parallel lines for each
processor (see Figure 2). If the number of processes or amount of interpro-
cess communication (such as the communication between the parent pro-
cess and the child process) increases, the diagram becomes difficult to
understand.

As the above examples indicate, current 2D frameworks for the perfor-
mance visualization of parallel /concurrent systems are not likely to accom-
modate future systems.

ACM Transactions on Information Systems, Vol. 11, No. 3, July 1993.

270 . Hideki Koike

Process Process
I / A\

Processor 1 Processor 2

Fig 1. This diagram represents the relation between transputers and their processes. Several
processes are running in each transputer. To represent this relation, two dimensions are needed.

\

Fig 2. This diagram represents the
execution pattern of each process and
interactive communication. In this
framework. 1t 1s difficult to represent
hundreds of processes Moreover, the
arrows which represent message pass-
g between processes must intersect
the horizontal lines for each process.

L\
\ f
W/
\J

N () N O TR O B © M V)]

3.2 Cognitive Load of the User

As discussed earlier, designing from the user’s cognitive perspective is essen-
tial in building effective visual representations. A system developed without
such considerations may be beneficial for demonstrations, but never be very
supportive in practical programming.

One of the important properties of the human visual system is its paral-
lelism. We are able to rapidly process numerous pieces of information in an
instant. Thus, in order to leverage these capabilities, it is desirable to display
as many relations as possible in one diagram. However, this may cause an
increase in complexity, and if the amount of information and complexity
exceeds reasonable limits, the diagram becomes so complex that it does not
help the users and may even cause further and unnecessary confusion.

To disperse the complexity, separated diagrams are generally used. Partic-
ularly, in multiple-window environments, diagrams showing different visual
aspects can be shown in different windows. However, if a user’s mental
models are different, the same object is often represented in different shapes.
For example, in visualizing transputer systems, the connection between
transputers is represented as one diagram (see Figure 1), and its execution
pattern is represented as another diagram (see Figure 2). In this case, the
transputers placed in 2D space in Figure 1 and the transputers placed on the
y-axis in Figure 2 are the same (i.e., a in Figure 1 corresponds to a in Figure
2; b in Figure 1 corresponds to b in Figure 2, etc.).

ACM Transactions on Information Systems, Vol 11, No 3, July 1993

Another Spatial Dimension in Software Visualization . 271

Such use of diagrams is sometimes quite confusing and counterproductive.
The diagram may help users to construct their mental models, but in the
same token, force them to do it in a way that may be unproductive. Hence,
users obtain different mental models from each diagram. To thoroughly
understand the relationship between processes and their running patterns,
users must reconstruct one mental model which satisfies each constraint (see
Figure 3).

3.3 3D Visualization as a Proposed Solution

The problems associated with the limitation of output media can be effec-
tively reduced by using a 3D framework. Figure 4 represents the concept of a
3D performance visualization tool for parallel /concurrent systems. In this
framework, two spatial dimensions (the xy-plane, for example) are used to
represent the relations between processes, such as hierarchical structures or
geographical locations. Another spatial dimension (the z-axis, for example) is
used to represent time. If the current 2D tool can visualize n processes on the
y-axis, approximately n® processes can be visualized in the xy-plane. In
addition, this framework can represent the relations between processes be-
cause we have two dimensions to layout processes. Moreover, in general,
arrows for interprocess communication do not intersect with lines for
processes.

This framework can also considerably minimize the problems associated
with user cognition. Using this framework, two 2D diagrams are integrated
into one 3D diagram. Since only one representation is given to users, there is
very little need for users to reconstruct their mental models. The 3D repre-
sentation itself satisfies the constraints of each 2D diagram. In other words,
this 3D representation itself can literally be a user’s mental model. For this
reason, it appears to reduce user cognitive load. Although experiments are
necessary to provide statistical significance, the following example can pro-
vide support for our discussion. Consider, Apollonian curves as shown in
Figure 5. Apollonian curves include circles, ellipses, and parabolas. When we
see these curves, it may be difficult to understand the relations behind them.
However, by introducing a conceptual model with a cone and a plane, which
divides the cone, the relation between each curve is easily seen. The 3D model
which conveys the information of 2D curves facilitates our understanding.

People may question whether or not current 2D diagrams are more desir-
able when focusing on the process-time relation. However, if we view the 3D
representations from the direction perpendicular to the z-axis, we can obtain
a process-time diagram. When we wish to focus on the relation between
processes, we may rotate our viewpoint and look parallel to the z-axis.
Ultimately, each 2D diagram is one of the viewpoints in the 3D representa-
tion, depending on which viewpoint we have chosen.

4. VISUALIZATION EXAMPLES

In this section, two applications of our 3D framework will be discussed. The
first example is an electric power control system. The second example is a

ACM Transactions on Information Systems, Vol. 11, No. 3, July 1993.

272 . Hideki Koike

Mental model

Fig. 3. Reconstruction of a mental model. The user obtains different mental models from each
diagram. The user, then, has to reconstruct one mental model which satisfies each constraint.

Fig 4 The concept of a 3D performance visuahzation tool for parallel /concurrent systems.
Using three dimensions, the process relations (such as those shown in Figure 1) and their time
flow (such as those shown in Figure 2) can be represented in one diagram.

parallel manipulator system for a robotic arm. Both visualizations were
obtained using a prototype visualization system called VOGUE.

4.1 VOGUE Overview

There are two modules in VOGUE: an object-oriented database [Atkinson et
al. 1990] module and a 3D grapher module. The object-oriented database was
implemented by extending CLOS (Common Lisp Object System) [Steele

ACM Transactions on Information Systems, Vol 11, No. 3, July 1993

Another Spatial Dimension in Software Visualization . 273

A

1N
> 1o

N~

Fig. 5. Apollonian curves such as circles, ellipses, and parabolas. The relation between each
curve is more easily understood when a 3D model with a cone and a plane is introduced.

1990], while the 3D grapher was implemented with 3D graphic libraries.
(Initially, the 3D grapher was implemented on a Hewlett-Packard
HP9000 /350SRX [Hewlett-Packard 1988]. Presently, it is running on a Sili-
con Graphics IRIS workstation [Silicon Graphics 1991]) To obtain visual
representations, users made models for their target software by defining
classes as subclasses of the VOGUE node class or VOGUE link class, both of
which are predefined in the object-oriented database. For example, processors
or processes are defined as a subclass of the VOGUE node class, and their
relation is defined as a subclass of the VOGUE link class. After each instance
is created, it is mapped as a graphic node or a graphic link, respectively.

The system has some interaction capabilities. Sliders and buttons on the
graphics display allow users to translate or rotate their viewpoints dynami-
cally. Shepard and Metzler’s [1991] experiments on mental rotation showed
that the time needed for a user to recognize whether or not two separately
represented pictures were of the same object was dependent on the angle of
rotation between the two objects. Thus, fast and continuous movement of the
viewpoint is necessary. Users can change their focused node by selecting with
the mouse. If the selected node corresponds to a UNIX file, it is possible to
open an editor window and edit the file. Further details of the VOGUE
implementation are discussed elsewhere [Koike 1991].

4.2 Electric Power Control System

In the electric power control system for TEPCO (Tokyo Electric Power
Company), a number of computers run in parallel and communicate with
each other. Each computer is responsible for about a hundred tasks and these
tasks are subgrouped according to their roles, such as man-machine tasks,
analysis tasks, and so on. To debug the system, an exclusive process monitor
has been developed and has been put into practical use. By executing the
system, the process monitor produces trace files, such as that shown in
Figure 6, containing some process information such as the time at which the

ACM Transactions on Information Systems, Vol. 11, No. 3, July 1993.

274 . Hideki Koike

INF. PROCESS SYSTEM

NO. TYPE TIME PID NAME STATE PRI M EVENT PC PFC
3351 EVENT 22-18:32.27 10081 MMOPEC COM 24 WAKE TFFEDF8A

3352 EVENT 22:18:32.27 100A6 NTAACP HIB 30 WAKE TFFEDF8A

3353 CTXED 22:18:32.27 10086 MMPBIN CUR 25 K 80008956 0
3354 CTXST 22:18:32.27 10046 NTAACP CUR 30 K 7FFEDF8A

3355 WAIT 22:18:32 27 100A6 NTAACP HIB 30 K TFFEDF84A 0
3366 CTXST 22:18:32.27 10086 MMPBIN CUR 25 K 80008956

3357 WAIT 22:18:32.28 10086 MMPBIN HIB 25 U 7FFEDF8A 0
3358 CTXST 22:18:32.28 10081 MMOPEC CUR 24 0T TFFEDF8A

3359 EVENT 22:18:32 28 100A6 NTAACP HIB 30 AST 7FFEDF8A

3360 CTXED 22:18:32.28 10081 MMOPEC CUR 24 U 7FFEDF8A 0

Fig 6. A trace file produced by the process monitor. Each column shows the imnformation about
one process Generally, one trace file contains thousands of lines.

process was executed and the state of the process. In general, the size of the
trace file is much larger (e.g., thousands of lines). At present, programmers
have to trace these files line by line.

The visualization of this trace data is an attractive idea. The difficulties,
however, are how to visualize such large numbers of processes and how to
represent the task groups. A 3D framework can be used to address these
problems. Figure 7 is an example of a visualization. The nodes corresponding
to each task are arranged on the xy-plane, which is parallel to a display
screen, so that tasks belonging to the same group are placed physically near
each other and are stretched along the z-axis, which is perpendicular to the
display screen. In Figure 7, only the task nodes of one task, which is indicated
by a yellow line, are shown. When a trace file is specified, the system starts to
animate the execution of processes. The system reads a line from a trace file,
creates a node for the process, and puts it at an appropriate position. Since
there are 14 different states of processes, different colors are assigned to
them. Some links are added, making it easier to recognize the time flow. The
system is capable of displaying two or more diagrams and comparing the
difference between them. In addition, if the user selects a node, an edit
window opens and displays the corresponding line in the trace file.

This visualization application illustrates some of the advantages of 3D
visualization. As we can see, in this diagram, about a hundred processes can
be visualized. Furthermore, the tasks belonging to each task group are placed
physically near each other. It is difficult for traditional 2D visualization
methods to effectively represent this information. Moreover, the smooth
integration of local and global information (also demonstrated by Perspective
wall [Mackinlay et al. 1991]) was achieved in our 3D visualization system.
When a trace file containing about two thousand lines is visualized in a 2D
framework, the nodes corresponding to each state are small in size. Thus,
when we view the global execution pattern of the graph, the local information
such as process state, which is indicated by different colors, cannot be seen.
To view the local information, part of the graph needs to be magnified. When
this is done, however, the global information cannot be easily seen and
recognized. In contrast, when observing with 3D visualization and using a 3D

ACM Transactions on Information Systems, Vol 11, No 3, July 1993

Another Spatial Dimension in Software Visualization . 275

Fig. 7. A 3D visualization of the trace file produced by the process monitor when executing the
electric power control system at Tokyo Electric Power Company.

perspective view, it ig possible to observe the local information which is close
to the viewer’s eye while maintaining the rest of the execution pattern of
graphs within our field of vision.

Due to the risks involved with experiments on a real electric power control
system, some experiments were conducted using a TEPCO system simulator,
which employed the same computers as the real system. Possible scenarios
were made by patching existing programs. For example, a deadlock situation
was created by altering the order in which processes obtained resources. The
visualization of deadlock is similar to Figure 7, but the yellow node, which is
indicated by (A) in the figure, is replaced by a green node, and following
nodes, which are indicated by (B) in the figure, do not appear. This represen-
tation shows that the process is blocked and is waiting indefinitely for
resources. Our experience shows it was more difficult for users, using 2D
visualization, to identify the difference between the two diagrams. This is
because it was more difficult, with 2D visualization, to note the change of
color and the disappearance of nodes simultaneously.

4.3 Parallel Manipulator System

Ikei et al’s [1990] parallel manipulator is a robot manipulator arm which
contains a CPU for each joint. Each CPU runs in parallel and communicates

ACM Transactions on Information Systems, Vol. 11, No. 3, July 1993

276 . Hideki Koike

with other CPUs through message passing. When one joint is damaged, a
given task is completed by wusing the other joints. In the experiment, 2D
visualization was used to represent the process execution and the message
passing. Figure 8 represents the message passing during a normal situation,
and Figure 9 represents the message passing when the 3rd joint is damaged.
However, the arrows which represent message passing must intersect the
vertical lines for CPUs. Consequently, it is difficult to identify the differences
between these diagrams.

This problem motivated the development of debuggers for parallel systems.
When we debug parallel systems, it is crucial to identify where and when the
trouble occurred. Using visual representations, this can be done by creating a
visual pattern of message passing. The programmers may identify the fail-
ures by finding the communication or execution of processes which are not
seen during the normal situation. It is, however, difficult in 2D due to the
complexity of the diagram.

We applied our 3D framework to the parallel manipulator system. Figure
10 illustrates 3D visualization during a normal situation, and Figure 11
shows 3D visualization when the 3rd joint is damaged. A node for the
network management processor is placed at the center of the display, and a
node for the supervisory controller is placed to the left of it. The nodes for
joint4, joint3, joint2, jointl, hand, and sensor are located clockwise from the
top of the display to the bottom. When we observe Figure 11, we notice that
communication exists between the 3rd joint and the 1st joint, which does not
exist in a normal situation. Therefore, we can infer that some trouble might
have occurred at the 3rd joint and that the 3rd joint might be sending
messages to the lst joint. Thus, the programmer can effectively identify
hardware /software trouble. This is not only because the link-crossing prob-
lem (described in [Fairchild et al. 1988]) is minimized in 3D, but also because
two aspects, time flow and the relationship between processors, are repre-
sented simultaneously in 3D while separating each relation.

5. DISCUSSION

5.1 Toward a Practical 3D Visualization Tool

The main objectives of this article are to discuss the role of an additional
spatial dimension and to show the effectiveness of a 3D framework with
practical examples. Therefore, it is not sufficient to develop a tool specific to a
certain application, but necessary to develop a tool which can be applied to
several applications. In VOGUE, the 3D grapher is equipped with basic
operations, such as changing the position of nodes, scale, or color. Conse-
quently, VOGUE is generic enough to be applied to different parallel /concur-
rent systems as well as different types of visualizations which will be
described in the next section. However, to make 3D visualization practical, it
is also necessary to discuss the use of such graphic attributes of nodes.

In addition, significant problems remain unsolved, these include: interac-
tion with 3D objects and increase in the number of graphic elements.

ACM Transactions on Information Systems, Vol 11, No 3, July 1993

Another Spatial Dimension In Software Visualization . 277

Network

glé?:r::vlilse?(y g;r;zgs:g:ent Jontd Jont3 Jomt2 Jomt! Finger Sensor
Py
I ”“**L__ﬁ::l
Pt l
q""““‘:jb
q —d
s I
T %
f’_.—.__ -
P, H—“H—“H—?
fr:'—'—:?i
9
L-———-'—-AD
1T | |
P
[—
]
— b

]
|
\

= amanan

)
—

JD i s

Fig. 8. Two-dimensional visualization of the message passing during a normal situation.

—Interaction with 3D Objects. There are two primary aspects associated with
the interaction between 3D objects. One is the manipulation of 3D objects
(i.e., holding /releasing, translating, and rotating the objects). Another is
the changing of the user’s viewpoint in 3D space. With 2D tools, the
horizontal /vertical translations and zoom in/out are sufficient for chang-
ing user viewpoints. On the other hand, with 3D tools, in addition to the
translations, both rotation around the user and rotation around the focal
point must also be considered. Some research [Chen et al. 1988; Fairchild
et al. 1988; Robertson et al. 1991] attempts to address these problems
using 2D input devices, such as a mouse. In addition, virtual-reality
techniques which use new input/output devices such as the DataGlove
[Zimmerman et al. 1987], head-mounted display, and so on, are also being
developed. For example, work by Feiner and Beshers [{1990], Fisher et al.
[1986], and Show et al. [1992] can be easily integrated with our 3D
visualization techniques. We are also experimenting with the interaction
techniques in virtual environments whereby the visualization in this study

ACM Transactions on Information Systems, Vol. 11, No 3, July 1993.

278 . Hideki Kolke

s Network
UPOIVISOTY Management jonta Jontd Jontz Jont1 Finger Sensor
Contraller progadenr

le———¢— [|

-
Fig. 9. Two-dimensional visualization of T

the message passing when the 3rd joint is
damaged. e 4

is being displayed on a video projector, and the nodes and links are
manipulated directly with a DataGlove [Myoi et al. 1991]. These so-called
VR techniques should be experimented with in parallel with visualization
techniques as they are closely related.

—Increase of Graphic Elements. The update /refresh rate of graphic displays,
in general, deteriorates with an increase in the number of graphic ele-
ments. When we visualize a large amount of data, it is difficult to obtain
real-time interaction. Furthermore, the increase in the number of graphic
elements disturbs user cognition. Thus, it is necessary to reduce the
amount of displayed information. With VOGUE, we are experimenting
with several methods, such as an object-oriented approach and a syntactic
approach. The former uses node information which is held by an object-ori-
ented database in VOGUE. For example, it can isolate and display the
instances of a class and its subclasses. The latter focuses on a logical
structure of the graph and displays a focus node and its neighbors. SemNet
uses fisheye views [Furnas 1986] to reduce graphic elements. In VOGUE,
fisheye views as well as a fractal-based technique have been implemented.!
However, none of these methods is a total solution in itself. Further

'By using the technique described in Koike and Ishii [1992], users obtain a view similar to
Furnas’s fisheye views. This technique, however, can keep the total amount of displayed
information nearly constant whichever node the user focuses on.

ACM Transactions on Information Systems, Vol 11, No 3, July 1993.

Another Spatial Dimension in Software Visualization . 279

Fig. 10. Three-dimensional visualization of the message passing during a normal situation.

research will be critical to finding more complete solutions to this problem
through the integration and fusion of various technologies and methods.

5.2 Other Applications

In the previous sections, we showed how the 3D framework was applied to
improve the performance of visualization tools for parallel /concurrent sys-
tems. Another spatial dimension made it possible to visualize both the
relations between processes and their time flow, while not disturbing user
cognition. In software development, there are many other situations where it
is natural (or necessary) to display two relations simultaneously. Two addi-
tional application areas will be described for 3D visualization.

5.2.1 Class Libraries of Object-Oriented Languages. Method inheritance
in object-oriented languages is an efficient way of reusing program source
code. The message which is sent to one instance of a certain class is not
always processed by a method of the class. In this case, the method really
executed belongs to one of its superclasses. Attention to this complex mecha-
nism of method inheritance is not necessary when we run the program
because it is done by the system automatically. However, when we debug the
program, we must trace code line by line.

To support object-oriented programming visually, class hierarchy trees (see
Figure 12) are generally used. However, the position of the method actually

ACM Transactions on Information Systems, Vol. 11, No. 3, July 1993.

280 . Hideki Koike

Fig. 11. Three-dimensional visualization of the message passing when the 3rd joint is damaged

executed is not clear just by observing the hierarchy tree. We need to know
the list of classes (see Figure 13) that have the method of the same name. On
the other hand, if we have only the method list, we cannot tell which method
was really executed. Thus, we require both pieces of information. However, if
these pieces of information are given by different visual representations, we
must make efforts to construct mental models that satisfy each constraint.

Figure 14 shows a 3D representation of a class library. The class hierarchy
is represented as a tree in the xy-plane. Each method node has the same
xy-coordinates as the class node to which the method belongs, and the
methods that have the same name have the same z-coordinate. If we look in
the xy-plane, we realize the class hierarchy. If we look from the direction
perpendicular to the z-axis, we realize the method list.

This visualization was also implemented in VOGUE (see Figure 15). In the
figure, red nodes and white nodes represent classes and methods respectively.
Users can rotate their viewpoints using sliders. If a node is selected, an editor
window will open, and the source code is displayed.

Using this type of visualization, some experiments were conducted [Koike
1992]. For example, subjects were asked to answer the return value of several
CLOS expressions. Results concluded that performance was much better with
this type of visualization compared to a Prograph-style 2D visual browser
[Cox and Pietrzykowski 1988] or a Smalltalk-style textual browser [Goldberg
and Robson 1983]. Since the methods with the same name were positioned on

ACM Transactions on Information Systems. Vol 11, No 3, July 1993.

Another Spatial Dimension in Software Visualization . 281

Fig. 12. The class hierarchy tree.

Method 1 | Method 2
class A (@) O
class B (o)
class C O . . .

Fig. 13. The list of methods which have the same name.

class D O .
class E (@)
class F (o)
class G O

[class node

method node

Class Hierarchy View Method List View

Fig. 14 The concept of 3D visuahzation of a class library. The class hierarchy and the method
list are visualized in one diagram.

the same vertical line in a common xy-plane when viewing from the direction
perpendicular to the z-axis, while the class hierarchies were also visible,
users could easily identify the method which was really executed.

In practical object-oriented programming, class libraries are often modified
by programmers. Methods can be deleted from subclasses and defined in a
superclass. Such generalization processes must be done carefully because the
change at the superclass effects its subclasses. Since programmers could

ACM Transactions on Information Systems, Vol. 11, No. 3, July 1993.

282 . Hideki Koike

Fig. 15. Three-dimensional visualization of a class library implemented in VOGUE

easily recognize, with our 3D visualization framework, which classes were
affected when they rewrote the method, unexpected errors were reduced.
Also, 3D visualization was used to teach the concept of method inheritance in
object-oriented programming to undergraduate students. From our experi-
mental results, students learning with 3D visualization understood the con-
cepts more quickly and easily.

5.2.2 Version and Module Information. In practical software development
processes, version control and module management are very important. In
UNIX, SCCS (Source Code Control System) or RCS (Revision Control Sys-
tem) is used as a version control tool, and Make is used as a module
management tool. Unfortunately these tools do not have visual interfaces. On
the other hand, CASE tools have more powerful capabilities as well as visual
interfaces. In CASE systems, the version information is represented as trees
along a time axis (e.g., Figure 16), and the module information is represented
as trees (e.g., Figure 17) or bubble charts in 2D.

However, the version information and the module information are inher-
ently unseparable. Consider, for example, a certain software system which
congists of module A, B, and C (see Figure 17). In this example, when the
system version is 1.0, the version number of each module is also 1.0. On the
other hand, when the system version is 2.0, each version number is not the
same. Module A is updated many times, while module C has no need to be

ACM Transactions on Information Systems. Vol 11, No 3, July 1993

Another Spatial Dimension In Software Visualization . 283

Fig. 16. A version tree.

System System
version1.0 version2.0
Modpie A Module B Module C Module A Module B Module C
version1.0 version1.0 version1.0 version2.0 versiont.1 versiont.0

Fig. 17. A module tree. In general, each version number is not the same. In this example,
Module C is not updated and is used both in System 1.0 and in System 2.0.

updated and is reused. The version history of module A is represented as
shown in Figure 16. To install the software, it is necessary to know which
modules it consists of as well as the version of each module.

It is possible to use a 3D framework to visualize both version and module
information simultaneously, as shown in Figure 18. Using this representa-
tion, we can visually recognize the version /module structures. Although, it is
possible to develop a system which retrieves, compiles, and links the needed
versions, software engineers should still be aware of (i.e., have mental images
of) this information.

6. CONCLUSIONS

This article describes how 3D space could be effectively applied as a frame-
work for visualizing parallel /concurrent computer systems. The importance
of 3D software visualization is emphasized from two different perspectives:
expressiveness of output media and user cognition. To summarize, using
another spatial dimension (the 8rd dimension which is perpendicular to the
2D plane) makes it possible to represent separately two (or more) relations in
one 3D diagram in a way that makes it easy for users to quickly create their
own mental models. Since only one representation is given to users, they have
less difficulty in constructing mental models. As we discussed before, visual-
ization systems must be designed from a user’s cognitive perspective. In
particular, efforts must be made to reduce the user’s cognitive load, thereby
improving performance.

We also discuss other application areas of 3D visualization. Both object-
oriented programming and version/module management are very important

ACM Transactions on Information Systems, Vol. 11, No. 3, July 1993.

284 . Hideki Koike

v

’
‘
’
,
/
’
’
’
’
'
7
t
’
I3
’
R s DI PP
/
,
’

b
%

A e e

Module A
versiont 0

— module link

version link

Fig 18 Concept of 3D visualization of both version and module information. The version tree
and the module tree are represented in one diagram

in software engineering. Another spatial dimension plays a crucial role in
these types of visualizations. Our long-term goal is to develop a visualization
environment which integrates such visualizations.

ACKNOWLEDGMENTS

The author would like to express his deepest gratitude toward Takemochi
Ishii of Keio University for his many helpful suggestions and toward
Yasushi Ikei of Osaka University for providing trace data from his manipula-
tor research. As well, the author would like to thank Simon Gibbs and the
other reviewers for their valuable comments.

REFERENCES

ATKINSON, M, BANCILHON, F, DEWrT, D, Drrrricn, K. R., MaIgr, D., aND ZDONIK, S. 1990,
The object-oriented database system manifesto. In Proceedings of the Ist International
Conference on Deductive and Object-Oriented Databases

Carp, S. K., ROBERTSON, G G . AND MACKINLAY, J. D. 1991. The information visualizer. an
mformation workspace. In Proceedings of the ACM Conference on Human Factors in Comput-
ing Systems (CHI’91). ACM Press, New York, 181-188.

CHaNG, 5 K. 1988. Visual languages. A tutorial and survey, IEEE Softw 4, 1

CHEN, M., MOUNTFORD, S. J., AND SELLEN, A. 1988 A study in interactive 3-D rotation using
2-D control devices. Comput Graph 22,4, 121-129

Cox, K C, anp Roman, G.-C. 1991 Visualizing concurrent computations. In Proceedings of
1991 IEEE Workshop on Visual Languages. IEEE Computer Society Press. Los Alamitos.
Cahf., 18-24.

ACM Transactions on Information Systems, Vol 11, No 3. Julv 1993

Another Spatial Dimension in Software Visualization . 285

Cox, P. T., anp PieTRzZYKOWSKT, T. 1988. Using a pictorial representation to combine dataflow
and object-orientation in a language independent programming mechanism. In Proceedings of
the International Computer Science Conference. ITEEE, New York.

Famrcowp, K. M., Portrock, S. E., anp Furnas, G. W. 1988. SemNet: Three-dimensional
graphic representation of large knowledge bases. In Cognitive Science And Its Applications
For Human-Computer Interaction. Lawrence Erlbaum Associates, Hillsdale, N.J.

FEINER, S., AND BrsHERs, C. 1990. Worlds within worlds metaphors for exploring n-dimen-
sional virtual worlds, In Proceedings of the ACM SIGGRAPH Symposium on User Interface
Software and Technology (UIST’90). ACM Press, New York, 76-83.

Fisuer, S. S., McGRreEvy, M., HUMPHRIES, J., AND ROBINETT, W. 1986. Virtual environment
display system. In Proceedings of the ACM 1986 Workshop on Interactive 3D Graphics. ACM,
New York

Furnas, G. W. 1986. Generalized fisheye views. In Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI’86). ACM Press, New York, 16-23.

GOLDBERG, A., AND RossoN, D. 1983. Smalltalk-80: The Language and Its Implementation.
Xerox.

HewLETT-PACKARD CoMPANY. 1988. Starbase Graphics Techniques HP-UX Concepts and Tuto-
rials. Vol. 1.

JkEL, Y., HIROSE, M., aND IsHm, T. 1990. Fault tolerant design of holonic manipulator. In
Proceedings of MSET21: The International Conference on Manufacturing Systems and Envi-
ronment. JSME, 117-122.

Inmos. 1988, IMS B015 User Manual.

Kolke, H. 1992. An application of three-dimensional visualization to object-oriented program-
ming. In Advanced Visual Interfaces. Proceedings of the International Workshop AVI'92.
World Scientific, 180-192.

Koike, H. 1991, An application of three-dimensional visualization to software engineering.
Ph.D. thesis, Univ. of Tokyo. In Japanese.

Koige, H., anD IsHn, T. 1992, A fractal-based method for information display control. Trans.
Inf. Process. Soc Japan 33, 2, 101-109.

LEHR, T, SEGALL, Z., VRsaLovic, D. F., CapraN, E., CHUNG, A. L., aND FINEMAN, C. E. 1989.
Visualizing performance debugging. IEEE Comput. 22, 10 (Oct.).

LiEBERMAN, H. 1989. A three-dimensional representation for program execution. In Proceed-
ings of the 1989 IEEE Workshop on Visual Languages IEEE Computer Science Press, Los
Alamitos, Calif.

LINDEN, L. B. 1990. Parallel program visualization using ParVis. In Performance Instrumen-
tation and Visualization, ACM Press, New York, 157-188.

MACKINLAY, J. D., ROBERTSON, G. G., AND CARD, S. K. 1991. The perspective wall: Detail and
context smoothly integrated. In Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI’91). ACM Press, New York, 173~179.

MavLony, A. D. 1990. JED: Just an Event Display. In Performance Instrumentation and
Visualization. ACM Press, New York, 99-116.

McDoweLL, C. E., anp HELMBOLD, D. P. 1989. Debugging concurrent programs. ACM Comput.
Surv. 21, 4.

Mryegrs, B. A. 1986. Visual programming. Programming by example and program visualiza-
tion: A taxonomy. In Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI'86). ACM Press, New York, 59-66.

Mvyor, T., AMARI, H., INAMURA, K., Koike, H., Kuzuoka, H., Hirosg, M., IsHi, T., aND HavasHI, T.
1991. A method of large-scale control system design aided by system visualization technol-
ogy. Trans. IEE Japan 111-C, 5, 194-201. In Japanese.

ROBERTSON, G. G., MACKINLAY, J. D. AND CARD, S. K. 1991. Cone Trees: Animated 3D visual-
izations of hierarchical information. In Proceedings of the ACM Conference on Human Factors
in Computing Systems (CHI'91). ACM Press, New York, 189-194.

SHEPARD, R. N., AND METZLER, J. 1971. Mental rotation of three-dimensional objects. Science
171.

ACM Transactions on Information Systems, Vol. 11, No. 3, July 1993

286 . Hideki Koike

Suow, C, LiaNG, J., GREEN, M., AND SUN, Y 1992, The decoupled simulation model for virtual
reality systems. In Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI’92). ACM Press, New York, 321-328.

Sru, N. C. 1988. Visual Programming Van Nostrand Reinhold, New York.

SILICON GrapHics, INC. 1992. FSN: File System Navigator. Online Manual Silicon Graphics,
Mountain View, Calif.

SILICON GrapHICS. Inc. 1991, Graphics Library Programming Guide. Sihicon Graphics, Moun-
tain View, Calif

STEELE, G. L., JR. 1990. Common Lisp the Language 2nd ed. Digital Press, Cambridge, Mass.

ZIMMERMAN, T., LANIER, J., BLANCHARD, C., BRYSON, S., AND HarviLL, Y. 1987. A hand gesture
mterface device. Tn Proceedings of the ACM Conference on Human Factors in Computing
Systems and Graphics Interface (CHI + GI 1987). ACM Press, New York. 189-192.

Received November 1992; revised April 1993; accepted April 1993

ACM Transactions on Information Systems, Vol 11, No 3, July 1993

