
The Role of Another Spatial Dimension
in Software Visualization

HIDEKI KOIKE

University of Electro-Communications

The pr]mary objective of this article is to demonstrate the use of 3D-computer graphics m

visualizing shapeless software information by focusing on performance monitormg of

parallel/concurrent computer systems. Issues are addressed from two different perspectives.

expressiveness of output media and user cognition The former describes the limitations of 2D

output media. The latter refers to a user’s cognitive load when us]ng 2D representations in a

multlple-window environment. We show how these problems can be minim]zed by using a 3D

framework A prototype vlsuabzation system called VOGUE has been developed A 3D frame-

work is used to visualize the execution pattern of two parallel,’concurrent computer systems an

electrlc power control system and a parallel mampulator system Thrmgb these visuahzations,

we show the effectiveness of our framework The apphcations of 3D frameworks to other kinds of

software reformation are also described.

Categories and Subject Descriptors. D. 13 [Programming Techniques] Concurrent Program-

mlng—dlstrzhuted progrummzng: parallel programming: D.2.2 [Software Engineering]: Tools

and Techniques—user Lnterfaces; D.2 7 [Software Engineering], Distrihutlon an d Maintenance

—c,erslon control: D.3.2 [Programming Languages] Language f.lassificatlons-umcur re~zt,

dL.strzbuted, and paralle/ [anguages, object-oriented languages; H.1 2 [Models and Principles]:

User/Machine Systems—human factors; 1.37 [Computer Graphics] Three-Dlmenslonal

Graphics and Realism—~zrtual realzty; 1.3.8 [Computer Graphics]. Applications

General Terms Dcslgn, Human Factors

Additional Key Words and Phrases Electric power control system, information visualization,

parallel rnampulatm

1. INTRODUCTION

Information has no shape or color. Thus, one of the advantages of using

diagrams is that virtual shape can be given to information to aid our

comprehension and understanding. l?or example, a logical hierarchy itself is

not a tree. The tree shape is created for our cognitive convenience. Once such

mental models are created, we begin to think with these figures. Therefore, it

is essential to create and portray diagrams which are designed from a human

cognitive perspective.

This work was partially supported by the Tokyo Electric Power Company,

Author’s address Department of Commumcations and Systems, Umverslty of Electro-Communi-

catlons, 1-5-1, Chofugaoka, Chofu, Tokyo 182, Japan; emad: koike(~< cas.uec. ac jp.

Permlsslon to copy w~thout fee all or part of this mater]al M granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice 1s given that copying IS by permission of the

Assomatlon for Computing Machinery, To copy otherwise, or to repubhsh, reqmres a fee and/or

speclflc permission.
ICI 1993 ACM 1046–8188/93/0700–0266 $0150

ACM Transactions on Information Systems, Vol 11, No 3. July 1993. Pages 266-286

Another Spatial Dimension in Software Vlsuallzahon . 267

The purpose of software visualization systems [Chang 1988; Meyers 1986;

Shu 1988] is to support software development by portraying such diagrams

on computer displays. The diagrams which were once represented on paper

media are now visualized on computer displays due to the advances in bitmap

technology. Consequently, it became possible to store, recall, and reuse

diagrams, and to even interact with the information in them. Currently, 3D

computer graphics is the primary focus in the development of new output

media. Mechanical CAD systems, molecular-modeling systems, and

scientific-visualization systems have emerged since the introduction of 3D

computer graphics. The reasons are as follows: (1) they can visualize objects

which do not really exist (such as Van-der Waals surfaces), (2) they can

visualize inherently 3D objects (such as molecular models), and (3) they can

visualize dynamics through use of their animation capabilities. At present,

3D graphics are also being used in software visualization. However, the use of

3D graphics in software visualization raises an important question: How do

we visualize shapeless software information in 3D?

The main goal of this article is to provide insight into this question by

focusing on a performance visualization tool for parallel\ concurrent com-

puter systems. We address issues from two different perspectives: expressive-

ness of output media and user cognition. The former perspective discusses the

limitations of 2D output medium, and the latter discusses the user’s cognitive

load when 2D representations are used in a multiple-window environment.

As we stated earlier, consideration of the user’s cognitive viewpoint is neces-

sary when any visual representations are designed.

In this article we show how these problems can be reduced by applying a

3D visualization framework. A 3D framework represents one relation (e.g.,

the relation between processes) in 2D and assigns another meaning (e.g., the

time) to the third axis. Thus, it is possible for the user to see two relations

(e.g., process relations and their execution pattern) simultaneously as well as

to focus on each single relation without changing mental models. A prototype

visualization system called VOGUE (Visualization-Oriented Generic User

Interface Environment) has been developed. Using VOGUE, we show how the

3D framework can be used to visualize the execution patterns of

parallel\ concurrent computer systems. We also compare the effectiveness of

this approach to traditional approaches and discuss visualization of other

software applications using the 3D framework.

2. RELATED WORK

Information visualization in 3D space remains an area with much to be

explored. Particularly, in the visualization of parallel computers, only a few

systems have used a 3D framework. Related work falls into two main

categories: information visualization in 3D space and performance visualiza-

tion of parallel/concurrent systems.

Pioneering work in information visualization in 3D space was done by

SemNet [Fairchild et al. 1988]. SemNet was built to aid the maintenance of

large knowledge bases by visualizing Prolog knowledge bases as 3D graphs.

ACM Transactions on Information Systems, Vol. 11, No. 3, July 1993,

268 . Hidekl Koike

The authors also experimented with automatic layout and navigation tech-

niques. SemNet shows that link crossing, as it occurs with 2D graphs, can be

minimized and that it is easier to trace each link. Other early work includes

Lieberman’s [1989] system, which represents the tree structure of programs

as boxes and visualizes program execution with animation. The focus is on

the animation capability of computer graphics. However, the author does not

discuss the effective use of an additional spatial dimension. Information

Visualizer [Card et al. 1991; Mackinlay et al. 1991; Robertson et al. 1991],

developed at Xerox PARC, clearly demonstrates the importance of 3D visual-

ization. For example, Cone tree [Robertson et al. 1991] visualizes hierarchical

structures in 3D trees and demonstrates the effective use of the screen.

Perspective wall [Mackinlay et al. 1991] visualizes relational information as

3D walls and shows the smooth integration of detail and context. The authors

also described how interactive animation reduces the user’s cognitive load.

FSN [Silicon Graphics 1992] is a file navigation tool for UNIX and uses a 3D

graphics library to implement directory hierarchies. FSN focuses on a per-

spective view of 3D graphics. Although all display 3D graphics, rotation about

any axis does not reveal any new information. One perspective allows all

information to be seen.

Much work has been done on performance visualization of parallel\ concur-

rent systems. An early system was the PIE [Lehr et al. 1989] system

developed at Carnegie-Mellon University, which is a performance monitor for

the Mach Operating System. PIE visualizes the execution of threads in 2D

graphs, where the threads are placed on the y-axis, and the x-axis indicates

time. The authors reported that it became easier to recognize the kernel

configuration. A similar system is ParVis [Linden 1990] developed at MIT.

ParVis is a visualization tool for parallel LISP. ParVis visualizes process

execution using a 2D process-time framework. The relation between the

parent process and the child process is specified by a line drawn from parent

to child. JED [Maloney 1990] is a visualization tool for the Cedar multiproces-

sor environment. It focuses on events which are visualized as different icons.

There are many other examples [McDowell and Helmbold 1989]; however, it

is noteworthy that these visualization systems use a common framework—a

2D process-time space. The Pavane System [Cox and Roman 1991] proposes

another visualization framework for concurrent computations and also tries

to introduce 3D concepts. The role of the additional dimension, however, is

not discussed analytically.

3. 2D VISUALIZATION PROBLEMS

As computer systems become larger and more distributed, parallel/concur-

rent programming will play a larger role. However, the debugging techniques

currently used in sequential programming are not sufficient for parallel/con-

current programming. McDowell and Helmbold [1989] reported that the

visualization of control flow, or that of distributed data, is one effective

approach for debugging such programs. He also concluded that the debugger

for complex parallel/concurrent systems should visualize both the states of

ACM Transachons on Information Systems, Vol 11. No 3, July 1993

Another Spatial Dimension in Software Vlsuallzahon . 269

the system at one moment as well as the running pattern for a certain time in

a multiple-window environment. As described in Section 2, most of the

performance-tuning tools use the process-time framework. If communication

between processes takes place, they are represented as lines or arrows from

the sender process to the receiver process in these diagrams. For such 2D

visualization, we will examine two issues: expressiveness of output media

and user cognition.

3.1 Expressiveness of Output Media

Two-dimensional output media such as paper or bitmap displays can gener-

ally represent two independent relations. This fact, however, limits the

expressiveness of diagrams visualized in 2D media. The following examples

illustrate these limitations:

—The overflow of the y-axis due to the increase in the number of processes. In

current 2D tools, 10 or 20 processes, at most, are expected. However, in a

larger system such as an electric power control system (described later),

hundreds of processes are executed and need to be visualized. Moreover, in

the near future, hundreds or thousands of processes will be running in

parallel computer systems. Unfortunately, current 2D frameworks cannot

visualize such a larger number of processes on the y-axis.

—The representation of the relation between processes. Consider, for example,

the transputer system [Inmos 1988]. A transputer itself is a multiprocess

computer, and several processes can run simultaneously within it. More-

over, by connecting four physical channels to other transputers, a multiple

CPU system can be constructed. Thus, several processors run in parallel,

while several processes run concurrently in each processor (see Figure l).

These processes can be classified corresponding to the processors they

belong to. It is not natural to display this hierarchical structure in one

dimension. Moreover, the request to visualize the physical connections

between transputers can not be satisfied. Consider, as another example,

geographically distributed computer systems. In such systems, the layout

or location of computers is crucial. Thus, to recognize their cooperative

computation, it is necessary to visualize both their physical placement and

time relation simultaneously. These requirements, however, are not satis-

fied in a 2D framework.

—The representation of the communication between processes. As we de-

scribed earlier, interprocess communication is often represented by lines or

arrows. However, these lines must intersect the parallel lines for each

processor (see Figure 2). If the number of processes or amount of interpro-

cess communication (such as the communication between the parent pro-

cess and the child process) increases, the diagram becomes difficult to

understand.

As the above examples indicate, current 2D frameworks for the perfor-

mance visualization of parallel/concurrent systems are not likely to accom-

modate future systems.

ACM Transactions on Information Systems, Vol. 11, No. 3, July 1993.

270 . Hidekl Koike

P;ocfss Process
/1

Processor 1 Processor 2

Fig 1. This diagram represents the relation between transputers andtbeirpmcesses. Several

processes are running in each transputer. To represent this relation, two dimensions are needed,

F]g 2. This diagram represents the b 3
execution pattern of each process and

mteractlve communication. In this

framework, It is difficult to represent
c

hundreds of processes Moreover, the d
arrows which represent message pass-

ing between processes must intersect

the horizontal hnesfo reachprocess. e

f

3.2 Cognitive Load of the User

As discussed earlier, designing from the user’s cognitive perspective is essen-

tial in building effective visual representations. A system developed without

such considerations may be beneficial for demonstrations, but never be very

supportive in practical programming.

One of the important properties of the human visual system is its paral-

lelism. We are able to rapidly process numerous pieces of information in an

instant. Thus, in order to leverage these capabilities, it is desirable to display

as many relations as possible in one diagram. However, this may cause an

increase in complexity, and if the amount of information and complexity

exceeds reasonable limits, the diagram becomes so complex that it does not

help the users and may even cause further and unnecessary confusion.

To disperse the complexity, separated diagrams are generally used. Partic-

ular y, in multiple-window environments, diagrams showing different visual

aspects can be shown in different windows. However, if a user’s mental

models are different, the same object is often represented in different shapes.

For example, in visualizing transputer systems, the connection between

transputers is represented as one diagram (see Figure 1), and its execution

pattern is represented as another diagram (see Figure 2). In this case, the

transputers placed in 2D space in Figure 1 and the transputers placed on the

y-axis in Figure 2 are the same (i.e., a in Figure 1 corresponds to a in Figure
2; b in Figure 1 corresponds to b in Figure 2, etc.).

ACM Transactions on Information Systems, Vol 11, No 3, July 1993

Another Spatial Dimension in Software Visualization . 271

Such use of diagrams is sometimes quite confusing and counterproductive.

The diagram may help users to construct their mental models, but in the

same token, force them to do it in a way that may be unproductive. Hence,

users obtain different mental models from each diagram. To thoroughly

understand the relationship between processes and their running patterns,

users must reconstruct one mental model which satisfies each constraint (see

Figure 3).

3.3 3D Visualization as a Proposed Solution

The problems associated with the limitation of output media can be effec-

tively reduced by using a 3D framework. Figure 4 represents the concept of a

3D performance visualization tool for paralleI/concurrent systems. In this

framework, two spatial dimensions (the xy-plane, for example) are used to

represent the relations between processes, such as hierarchical structures or

geographical locations. Another spatial dimension (the z-axis, for example) is

used to represent time. If the current 2D tool can visualize n processes on the

Y-axis, approximately nz processes can be visualized in the xy-plane. In
addition, this framework can represent the relations between processes be-

cause we have two dimensions to layout processes. Moreover, in general,

arrows for interprocess communication do not intersect with lines for

processes.

This framework can also considerably minimize the problems associated

with user cognition. Using this framework, two 2D diagrams are integrated

into one 3D diagram. Since only one representation is given to users, there is

very little need for users to reconstruct their mental models. The 3D repre-

sentation itself satisfies the constraints of each 2D diagram. In other words,

this 3D representation itself can literally be a user’s mental model. For this

reason, it appears to reduce user cognitive load. Although experiments are

necessary to provide statistical significance, the following example can pro-

vide support for our discussion. Consider, Apollonian curves as shown in

Figure 5. Apollonian curves include circles, ellipses, and parabolas. When we

see these curves, it may be difficult to understand the relations behind them.

However, by introducing a conceptual model with a cone and a plane, which

divides the cone, the relation between each curve is easily seen. The 3D model

which conveys the information of 2D curves facilitates our understanding.

People may question whether or not current 2D diagrams are more desir-

able when focusing on the process-time relation. However, if we view the 3D
representations from the direction perpendicular to the z-axis, we can obtain

a process-time diagram. When we wish to focus on the relation between
processes, we may rotate our viewpoint and look parallel to the z-axis.

Ultimately, each 2D diagram is one of the viewpoints in the 3D representa-

tion, depending on which viewpoint we have chosen.

4. VISUALIZATION EXAMPLES

In this section, two applications of our 3D framework will be discussed. The

first example is an electric power control system. The second example is a

ACM Transactions on Information Systems, Vol. 11, No. 3, July 1993.

272 . Hidekl Kolke

w“ ~ “E21
UserA B

Fig. 3. ReconstructIon of a mental model. The user obtains different mental models from each
diagram. The user, then, has to reconstruct one mental model which satisfies each constraint.

Fig 4 The concept of a 3D performance visuahzatlon tool for parallel\ concurrent systems.

Using three dimensions, the process relatlons (such as those shown in Figure 1) and their time

flow (such as those shown in Figure 2) can be represented in one diagram,

parallel manipulator system for a robotic arm. Both visualizations were

obtained using a prototype visualization system called VOGUE.

4.1 VOGUE Overview

There are two modules in VOGUE: an object-oriented database [Atkinson et

al. 1990] module and a 3D grapher module. The object-oriented database was

implemented by extending CLOS (Common Lisp Object System) [Steele

ACM TransactIons on Information Systems, Vol 11, No, 3, July 1993

Another Spatial Dimension in Sottware Vrsuallzatlon . 273

+--+-’
Q.0!.........

A>’

L

Fig. 5. Apollonian curves such as circles, ellipses, and parabolas. The relation between each

curve is more easily understood when a 3D model with a cone and a plane is introduced.

1990], while the 3D grapher was implemented with 3D graphic libraries.

(Initially, ~he 3D grapher was implemented on a Hewlett-Packard
HP9000\350SRX [Hewlett-Packard 1988]. Presently, it is running on a Sili-

con Graphics IRIS workstation [Silicon Graphics 199 1].) To obtain visual

representations, users made models for their target software by defining

classes as subclasses of the VOGUE node class or VOGUE link class, both of

which are predefine in the object-oriented database. For example, processors

or processes are defined as a subclass of the VOGUE node class, and their

relation is defined as a subclass of the VOGUE link class. After each instance

is created, it is mapped as a graphic node or a graphic link, respectively.

The system has some interaction capabilities. Sliders and buttons on the

graphics display allow users to translate or rotate their viewpoints dynami-

cally. Shepard and Metzler’s [1991] experiments on mental rotation showed

that the time needed for a user to recognize whether or not two separately

represented pictures were of the same object was dependent on the angle of

rotation between the two objects. Thus, fast and continuous movement of the

viewpoint is necessary. Users can change their focused node by selecting with

the mouse. If the selected node corresponds to a UNIX file, it is possible to

open an editor window and edit the file. Further details of the VOGUE

implementation are discussed elsewhere [Koike 1991].

4.2 Electric Power Control System

In the electric power control system for TEPCO (Tokyo Electric Power

Company), a number of computers run in parallel and communicate with

each other. Each computer is responsible for about a hundred tasks and these

tasks are subgrouped according to their roles, such as man-machine tasks,

analysis tasks, and so on. To debug the system, an exclusive process monitor

has been developed and has been put into practical use. By executing the

system, the process monitor produces trace files, such as that shown in

Figure 6, containing some process information such as the time at which the

ACM TransactIons on Information Systems, Vol. 11, No. 3, July 1993.

274 . Hideki Koike

INF
NO. TYPE TIME

---- ----- ----------- --
3351 EVENT 2218:32.27
3352 EVENT 22:18:32.27
3353 CTXED 22:18:32.27
3354 CTXST 22:18:32.27
3355 WAIT 22:18:32 27
3356 CTXST 22:18:32.27
3357 WAIT 22:18:32.28
3358 CTXST 22:18:32.28
3359 EVENT 22:18:32 28
3360 CTXED 22:18:32.28

PROCESS
PID NAME

------ ------
10081 MMOPEC
IOOA6 NTAACP
10086 MMPBIN
100A6 NTAACP
IOOA6 NTAACP
10086 MMPBIN
10086 MMPBIN
10081 MMOPEC
100A6 NTAACP
10081 MMOPEC

STATE
----—
COM
HIB
CUR
CUR
HIB
CUR
HIB
CUR
HIB
CUR

PRI M

24
30
25 K
30 K
30 K
25 K
25 U
24 U
30
24 U

SYSTEM
EVENT Pc

----—— --------
WAKE 7FFEDF8A
WAKE 7FFEDF8A

80008956
7FFEDF8A
7FFEDF8A
80008956
7FFEDF8A
7FFEDF8A

AST 7FFEDF8A
7FFEDF8A

PFC

0

0

0

0

Fig 6. Atracefile produced bytheprocess monitor. Each column shows thelnformation about

one process Generally, one trace file contains thousands of lines

process was executed and the state ofthe process. In general, thesize of the

trace file is much larger (e.g., thousands of lines). At present, programmers

have to trace these files line byline.

The visualization ofthis trace data is an attractive idea. The difficulties,

however, are howto visualize such large numbers of processes and how to

represent the task groups. A 3D framework can be used to address these

problems. Figure 7is an example ofa visualization. The nodes corresponding

to each task are arranged on the xy-plane, which is parallel to a display

screen, so that tasks belongingto the same group are placed physically near

each other and are stretched along the z-axis, which is perpendicular to the

display screen. In Figure 7,0nly thetasknodesof onetask, which is indicated

byayellow line, areshown. When atracefile is specified, the system starts to

animate the execution ofprocesses. The system reads a line from a trace file,

creates a node for the process, and puts it at an appropriate position. Since

there are 14 different states of processes, different colors are assigned to

them. Some links are added, making it easier to recognize the time flow. The

system is capable of displaying two or more diagrams and comparing the

difference between them. In addition, if the user selects a node, an edit

window opens and displays the corresponding line in the trace file.

This visualization application illustrates some of the advantages of 3D

visualization. As we can see, in this diagram, about a hundred processes can

be visualized. Furthermore, the tasks belonging to each task group are placed

physically near each other. It is difficult for traditional 2D visualization

methods to effectively represent this information. Moreover, the smooth

integration oflocal and global information (also demonstrated by Perspective
wall [Mackinlay et al. 1991]) was achieved in our 3D visualization system.

When a trace file containing about two thousand lines is visualized in a 2D

framework, the nodes corresponding to each state are small in size. Thus,

when we view the global execution pattern of the graph, the local information

such as process state, which is indicated by different colors, cannot be seen.
To view the local information, part of the graph needs to be magnified. When

this is done, however, the global information cannot be easily seen and

recognized. In contrast, when observing with 3D visualization and using a 3D

ACM Transactions on Information Systems, Vol 11, No 3, July 1993

Another Spatial Dimension in Software Visualization . 275

Fig. 7. A 3D visualization of the trace file produced by the process monitor when executing the

electric power control system at Tokyo Electric Power Company.

perspective view, it is possible to observe the local information which is close

to the viewer’s eye while maintaining the rest of the execution pattern of

graphs within our field of vision.

Due to the risks involved with experiments on a real electric power control

system, some experiments were conducted using a TEPCO system simulator,

which employed the same computers as the real system. Possible scenarios

were made by patching existing programs. For example, a deadlock situation

was created by altering the order in which processes obtained resources. The

visualization of deadlock is similar to Figure 7, but the yellow node, which is

indicated by (A) in the figure, is replaced by a green node, and following

nodes, which are indicated by (B) in the figure, do not appear. This represen-

tation shows that the process is blocked and is waiting indefinitely for

resources. Our experience shows it was more difficult for users, using 2D

visualization, to identify the difference between the two diagrams. This is

because it was more difficult, with 2D visualization, to note the change of

color and the disappearance of nodes simultaneously.

4.3 Parallel Manipulator System

Ikei et al.’s [1990] parallel manipulator is a robot manipulator arm which

contains a CPU for each joint. Each CPU runs in parallel and communicates

ACM Transactions on Information Systems, VO1. 11, No. 3, JUIY 1993

276 . Hideki Koike

with other CPUS through message passing. When one joint is damaged, a

given task is completed by using the other joints. In the experiment, 2D

visualization was used to represent the process execution and the message

passing. Figure 8 represents the message passing during a normal situation,

and Figure 9 represents the message passing when the 3rd joint is damaged.

However, the arrows which represent message passing must intersect the

vertical lines for CPUS. Consequently, it is difficult to identify the differences

between these diagrams.

This problem motivated the development of debuggers for parallel systems.

When we debug parallel systems, it is crucial to identify where and when the

trouble occurred. Using visual representations, this can be done by creating a

visual pattern of message passing. The programmers may identify the fail-

ures by finding the communication or execution of processes which are not

seen during the normal situation. It is, however, difficult in 2D due to the

complexity of the diagram.

We applied our 3D framework to the parallel manipulator system. Figure

10 illustrates 3D visualization during a normal situation, and Figure 11

shows 3D visualization when the 3rd joint is damaged. A node for the

network management processor is placed at the center of the display, and a

node for the supervisory controller is placed to the left of it. The nodes for

joint4, joint3, joint2, jointl, hand, and sensor are located clockwise from the

top of the display to the bottom. When we observe Figure 11, we notice that

communication exists between the 3rd joint and the 1st joint, which does not

exist in a normal situation. Therefore, we can infer that some trouble might

have occurred at the 3rd joint and that the 3rd joint might be sending

messages to the 1st joint. Thus, the programmer can effectively identify

hardware/software trouble. This is not only because the link-crossing prob-

lem (described in [Fairchild et al. 1988]) is minimized in 3D, but also because

two aspects, time flow and the relationship between processors, are repre-

sented simultaneously in 3D while separating each relation.

5. DISCUSSION

5.1 Toward a Practical 3D Visualization Tool

The main objectives of this article are to discuss the role of an additional

spatial dimension and to show the effectiveness of a 3D framework with

practical examples. Therefore, it is not sufficient to develop a tool specific to a
certain application, but necessary to develop a tool which can be applied to

several applications. In VOGUE, the 3D grapher is equipped with basic

operations, such as changing the position of nodes, scale, or color. Conse-

quently, VOGUE is generic enough to be applied to different parallel/concur-

rent systems as well as different types of visualizations which will be

described in the next section. However, to make 3D visualization practical, it

is also necessary to discuss the use of such graphic attributes of nodes.

In addition, significant problems remain unsolved, these include: interac-

tion with 3D objects and increase in the number of graphic elements.

ACM TransactIons on Information Systems, Vol 11, No 3, July 1993

Another Spatial Dimension In Software Vlsuallzatlon . 277

Network
SWerv160ryMansgemen!~ol”t4
Controller JoIot3 Jolnt2 Joint1

Procassor
Finger %nsot

Fig. 8, Two-dimensional visualization of the message passing during a normal situation.

—Interaction with 3D Objects. There are two primary aspects associated with

the interaction between 3D objects. One is the manipulation of 3D objects

(i.e., holding/releasing, translating, and rotating the objects). Another is

the changing of the user’s viewpoint in 3D space. With 2D tools, the

horizontal/vertical translations and zoom in/out are sufficient for chang-

ing user viewpoints. On the other hand, with 3D tools, in addition to the

translations, both rotation around the user and rotation around the focal

point must also be considered. Some research [Chen et al. 1988; Fairchild

et al. 1988; Robertson et al. 1991] attempts to address these problems

using 2D input devices, such as a mouse. In addition, virtual-reality

techniques which use new input/output devices such as the DataG1ove

[Zimmerman et al. 1987], head-mounted display, and so on, are also being

developed. For example, work by Feiner and Beshers [1990], Fisher et al.

[1986], and Show et al. [1992] can be easily integrated with our 3D

visualization techniques. We are also experimenting with the interaction

techniques in virtual environments whereby the visualization in this study

ACM Transactions on Information Systems, Vol. 11, No 3, July 1993.

278 . Hldeki Kolke

Fig. 9. Two-dimensional visuahzation of

the message passing when the 3rd joint is

damaged.

Network
S.pewlw Ma.a@mmt blnM JOInt3 Jmtz .!anll FInW San$Qr
C..tr.ll.r Procp.mr

is being displayed on a video projector, and the

manipulated directly with a DataGlove [Myoi et al.

nodes and links are

1991]. These so-called

VR techniques should be experimented with in parallel with visualization

techniques as they are closely related,

—Increase of Graphic Elements. The update/refresh rate of graphic displays,

in general, deteriorates with an increase in the number of graphic ele-

ments. When we visualize a large amount of data, it is difficult to obtain

real-time interaction. Furthermore, the increase in the number of graphic

elements disturbs user cognition. Thus, it is necessary to reduce the

amount of displayed information. With VOGUE, we are experimenting

with several methods, such as an object-oriented approach and a syntactic

approach. The former uses node information which is held by an object-ori-

ented database in VOGUE. For example, it can isolate and display the

instances of a class and its subclasses. The latter focuses on a logical
structure of the graph and displays a focus node and its neighbors. SemNet

uses fisheye views [Furnas 1986] to reduce graphic elements. In VOGUE,

fisheye views as well as a fractal-based technique have been implemented.1

However, none of these methods is a total solution in itself. Further

lBy using the technique described in Koike and Ishli [1992], users obtain a view similar to

Furnas’s fisheye views. This technique, however, can keep the total amount of displayed

information nearly constant whichever node the user focuses on,

ACM Transactions on Information Systems, Vol 11, No 3, July 1993.

research will be critical to finding more complete solutions to this problem

through the integration and fusion of various technologies and methods.

5.2 Other Applications

In the previous sections, we showed how the 3D framework was applied to

improve the performance of visualization tools for parallel/concurrent sys-

tems. Another spatial dimension made it possible to visualize both the

relations between processes and their time flow, while not disturbing user

cognition. In software development, there are many other situations where it

is natural (or necessary) to display two relations simultaneously. Two addi-

tional application areas will be described for 3D visualization.

5.2.1 Class Libraries of Object-Oriented Languages. Method inheritance

in object-oriented languages is an efficient way of reusing program source

code. The message which is sent to one instance of a certain class is not

always processed by a method of the class. In this case, the method really

executed belongs to one of its superclasses. Attention to this complex mecha-

nism of method inheritance is not necessary when we run the program

because it is done by the system automatically. However, when we debug the

program, we must trace code line by line.
To support object-oriented programming visually, class hierarchy trees (see

Figure 12) are generally used. However, the position of the method actually

ACM TransactIons on Information Systems, Vol. 11, No. 3, July 1993.

280 . Hidekl Koike

executed is not clear just by observing the hierarchy tree. We need to know

the list of classes (see Figure 13) that have the method of the same name. On

the other hand, if we have only the method list, we cannot tell which method

was really executed. Thus, we require both pieces of information. However, if

these pieces of information are given by different visual representations, we

must make efforts to construct mental models that satisfy each constraint.

Figure 14 shows a 3D representation of a class library. The class hierarchy

is represented as a tree in the xy-plane. Each method node has the same

xy-coordinates as the class node to which the method belongs, and the

methods that have the same name have the same z-coordinate. If we look in

the xy-plane, we realize the class hierarchy. If we look from the direction

perpendicular to the z-axis, we realize the method list.

This visualization was also implemented in VOGUE (see Figure 15). In the

figure, red nodes and white nodes represent classes and methods respectively.
Users can rotate their viewpoints using sliders. If a node is selected, an editor

window will open, and the source code is displayed.

Using this type of visualization, some experiments were conducted [Koike

1992]. For example, subjects were asked to answer the return value of several

CLOS expressions. Results concluded that performance was much better with

this type of visualization compared to a Prograph-style 2D visual browser

[Cox and Pietrzykowski 1988] or a Smalltalk-style textual browser [Goldberg

and Robson 1983]. Since the methods with the same name were positioned on

ACM TransactIons on Information Systems, Vol 11, No 3, July 1993,

Another Spatial Dimension In Software Vlsualizatlon . 281

Fig. 12. The class hierarchy tree.

Method 1 Method 2

class A o 0
class B o
class C o
class D o
class E o
class F o
class G o

Fig. 13. The list of methods which have the same name.

m class node

Fig. 14 The concept of 3D visuahzation of a class library. The class hierarchy and the method

list are visualized in one diagram.

the same vertical line in a common xy-plane when viewing from the direction

perpendicular to the z-axis, while the class hierarchies were also visible,

users could easily identify the method which was really executed.

In practical object-oriented programming, class libraries are often modified

by programmers. Methods can be deleted from subclasses and defined in a

superclass. Such generalization processes must be done carefully because the

change at the superclass effects its subclasses. Since programmers couId

ACM Transactions on Information Systems, Vol. 11, No. 3, July 1993.

282 . Hldeki Koike

easily recognize, with our 3D visualization framework, which classes were

affected when they rewrote the method, unexpected errors were reduced.

Also, 3D visualization was used to teach the concept of method inheritance in

object-oriented programming to undergraduate students. From our experi-

mental results, students learning with 3D visualization understood the con-

cepts more quickly and easily.

5.2.2 Version and Module In for~nation. In practical software development

processes, version control and module management are very important. In

UNIX, SCCS (Source Code Control System) or RCS (Revision Control Sys-

tem) is used as a version control tool, and Make is used as a module

management tool. Unfortunately these tools do not have visual interfaces. On

the other hand, CASE tools have more powerful capabilities as well as visual
interfaces. In CASE systems, the version information is represented as trees

along a time axis (e.g., Figure 16), and the module information is represented

as trees (e.g., Figure 17) or bubble charts in 2D.
However, the version information and the module information are inher-

ently inseparable. Consider, for example, a certain software system which

consists of module A, B, and C (see Figure 17). In this example, when the

system version is 1.0, the version number of each module is also 1.0. On the

other hand, when the system version is 2.0, each version number is not the

same. Module A is updated many times, while module C has no need to be

ACM TransactIons on Infmmat,on Systems, Vol 11, No 3, July 1993

Another Spatial Dimension In Soitware Vlsuahzation . 283

Fig. 16. A version tree.

Fig, 17. A module tree. In general, each version number is not the same. In this example,

Module C is not updated and is used both in System 1.0 and in System 2.0.

updated and is reused. The version history of module A is represented as

shown in Figure 16. To install the software, it is necessary to know which

modules it consists of as well as the version of each module.

It is possible to use a 3D framework to visualize both version and module

information simultaneously, as shown in Figure 18. Using this representa-

tion, we can visually recognize the version/module structures. Although, it is

possible to develop a system which retrieves, compiles, and links the needed

versions, software engineers should still be aware of (i.e., have mental images

of) this information.

6. CONCLUSIONS

This article describes how 3D space could be effectively applied as a frame-

work for visualizing parallel/concurrent computer systems. The importance

of 3D software visualization is emphasized from two different perspectives:

expressiveness of output media and user cognition. To summarize, using

another spatial dimension (the 3rd dimension which is perpendicular to the

2D plane) makes it possible to represent separately two (or more) relations in

one 3D diagram in a way that makes it easy for users to quickly create their

own mental models. Since only one representation is given to users, they have

less difficulty in constructing mental models. As we discussed before, visual-

ization systems must be designed from a user’s cognitive perspective. In

particular, efforts must be made to reduce the user’s cognitive load, thereby

improving performance.

We also discuss other application areas of 3D visualization. Both object-

oriented programming and version/module management are very important

ACM Transactions on Information Systems, Vol. 11, No. 3, July 1993.

284 . Hldekl Kolke

module link

version link

Fig 18 Concept of 3D visualization of both version and module mformatlon. The version tree

and the module tree are represented in one diagram

in software engineering. Another spatial dimension plays a crucial role in

these types of visualizations. Our long-term goal is to develop a visualization

environment which integrates such visualizations.

ACKNOWLEDGMENTS

The author would like to express his deepest gratitude toward Takemochi

Ishii of Keio University for his many helpfhl suggestions and toward

Yasushi Ikei of Osaka University for providing trace data from his manipula-

tor research. As well, the author would like to thank Simon Gibbs and the

other reviewers for their valuable comments.

REFERENCES

ATIiINSON, M , BANCTLHON, F , DEWITT, D , DIT~IUrH, K. R., MAIEW, D., AND ZDONIK, S. 1990.

The object-oriented database system manifesto. In Proceedings of the 1st International

Conference on Deductlt,e and Ob]ect-Orzented Databases

C!ARI), S. K,, ROBEIITSON, G G +w~ M.lrKINLAY, J, D. 1991, The information vlsuallzer, an

Inform ation workspace. In Pmceedzngs of tb e ACM Conference on Hurrlan Factors m C’nrnp ut-

mg Systems (CHI’.9I), ACM Press, New York, 181–188.

CHANG, S K. 1988. Visual languages. A tutor,al and survey, IEEE SoftLv 4, 1

CI+EN, M., MOUNTFORU, S. J., AND SELL~N, A. 1988 A study in interactive 3-D rotation using

2-D control devices. Conzput Graph 22, 4, 121–129

COX, K C , AND RONIAN, G.-C. 1991 Vlsualizmg concurrent computations. In Proceedings of

1991 IEEE lVorkshop on 7T1saal Langaages, IEEE Computer Society Press. Los Alamitos,
Cahf,. 18-24.

ACM Transactions on Information Systems, Vol 11, No 3. July 1993

Another Spatial Dimension in Software Visualization . 285

Cox, P. T., AND PIETRZYKOWSItI, T. 1988. Using a pictorial representation to combine dataflow

and object-orientation m a language independent programming mechanism. In F’roceedz ngs of

tke Internatwnul CompzLter Science Conference. IEEE, New York.

FMRCHIL~, K, M., POLTROCK, S. E., ANIJ FURNAS, G. W. 1988. SemNet: Three-dimensional

graphic representation of large knowledge bases. In CognztiLe Sczence And Its Applications

For Human -Computer Interaction. Lawrence Erlbaum Associates, Hillsdale, N.J.

FEIN~I?, S., AND BMHERS, C. 1990. Worlds within worlds metaphors for exploring n-dimen-

sional vu-tual worlds, In Proceedings of the ACM SIGGRAPH Symposz urn on User Interface

Software and Technologuv (UIST’90). ACM Press, New York, 76-83.

FISHER, S. S., MCGREICVY, M., HUMPHRIES, J., AND ROBINETT, W. 1986. Virtual environment
display system. In Proceedings of the ACM 1986 Works/Lop on Interactive 3D Graphzcs. ACM,

New York

FURNAS, G. W. 1986. Generalized fisheye views. In Proceedings of the ACM Conference on

Human Factors in Computing Systems (CHI’86J. ACM Press, New York, 16-23.

GOLDBF,R~, A., AND ROBSUN, D. 1983. Smalltalk-80: The Language and Its Znzplcmentatwn.

Xerox.

HEWLETT-PACKARD COMPANY. 1988. Starbase Graphics Techniques HP-UX Concepts and Tuto-

rials. Vol. 1.

IKEI, Y., HIROSE, M., AND IsHn, T. 1990. Fault tolerant design of holomc manipulator, In

Proceedings of MSET21: The International Conference on Manufacturing Systems and EnL1l -

ronment. JSME, 117–122.

INMOS. 1988. IMS B015 User ManzLal.

KOHCE,H. 1992. An applicatmn of three-dimensional visualization to object-oriented program-
ming. In Adc,ancea’ Vwua/ Interfaces. Proceedings of the International Workshop AVI’92,

World Scientific, 180-192.

KOIKE, H. 1991. An application of three-dimensional visualization to software engineering.

Ph.D. thesm, Univ. of Tokyo. In Japanese,

Konm, H., AND ISHIJ, T. 1992, A fractal-based method for reformation display control. Trans.

Inf. Process. Soc Japan ,33, 2, 101–109.

LEHR, T , SEGALL, Z., VRSALOVIC, D. F., CAPLAN, E., CHUNG, A. L., AND FINENAN, C. E. 1989,

Visualizing performance debugging. IEEE Comput. 22, 10 (Oct.).

LIEBEIUMAN, H. 1989. A three-dimensional representation for program execution. In Proceed-

t ngs of the 1989 IEEE Workshop on Visual Languages IEEE Computer Science Press, Los

Alamitos, Calif.

LINDEN, L. B. 1990. Parallel program visualizatmn using ParVis. In Performance Instrumen-

tation and Visualization, ACM Press, New York, 157–188.

MACWNLAY, J. D., ROBERTSON,G. G,, AND CARD, S. K. 1991. The perspectwe wall: Detail and

context smoothly integrated. In proceedi~Lgs of tke ACM Conference on Harnan Factors m

Computzng Systems (CHI’91). ACM Press, New York, 173-179.

MALONY, A, D. 1990. JED: Just an Event Display. In Perforntance Instrumentation and

Vzsualizatton. ACM Press, New York, 99-116.

MCDOWELL, C. E., AND HELMBOLEL D. P. 1989. Debugging concurrent programs. ACM Comput.

Suru. 21, 4.

MYERS, B. A. 1986. Visual programmmg, Programming by example and program visualiza-

tion: A taxonomy. In Proceedings of the ACM Conference on HunLan Factors in Computzng

Systems (CHI’86). ACM Press, New York, 59-66.

MYOI, T., ANIARI, H., INAiUURA, K., Konm, H., KUZUOKA, H., HI~OSE, M., lSHH, T., AND HAYASHI, T.

1991. A method of large-scale control system design aided by system visualization technol-

ogy. Trans. IEE Japan 111-C, 5, 194–201. In Japanese.

ROBERTSON, G. G., MACKINLAY, J. D. AND CARD, S. K. 1991. Cone Trees: Animated 3D visual-

izations of hierarchical information. In Proceedz ngs of the ACM Conference on HzLman Factors

Ln Computing Sy.stpms (CHI’91). ACM Press, New York. 189–194.

SH~PARD, R. N., AND MET2LER, J. 1971. Mental rotation of three-dimensional objects. Sczence

171.

ACM Transactions on Information Systems, Vol. 11, No. 3, July 1993

286 . Hldeki Kolke

SHOW, C , LTAN~, J., GREEN, M., ANO SUN, Y 1992. The decoupled simulation model for vmtual

reality systems. In Proceedings of the ACM Conference on Hum u n Factors [n Computing

Systems (CHI’92). ACM Press, New York, 321-328.

SHL, N. C. 1988. Vzsual Progranzm ing Van Nostrand Reinhold, New York.

SILTC’ON GRAPHIC+, INC. 1992. FSN: Fde Systcm Naulgator, Online Manual Shcon Graphics,

Mountain View, Calif.

SILICON GRAPHICS. INC. 1991. GraphLcs Llbrarv Progr[Lnznling Guldc. Slhcon Graphics. Moun-
ta,n View, Calif

STE~Li?, G. L., JR. 1990. Common LLsp the Language 2nd ed. Dq+tal Press, Cambridge, Mass.

ZIMMERMAN, T., LANIER, J., BLAIWHARD, C., BRYWN, S., AND HAFWILL, Y. 1987. A hand gesture

interface device. In Proceedz rLgs of the ACM Conference O?L Human Factors zn Computzng

Systems und Graphics Interface (CHI + GI 1987). ACM Press, New York. 189-192.

Received November 1992; revised April 1993: accepted April 1993

ACM Transactions cm In f.rmat,on Systems, t’ol 11, No 3, July 1993

