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Abstract. In this paper, we propose a method for directly rendering
point sets which only have positional information by using recent graph-
ics processors (GPUs). Almost all the algorithms in our method are pro-
cessed on GPU. Our point-based rendering algorithms apply an image
buffer which has lower-resolution image than a frame buffer. Normal
vectors are computed and various types of noises are reduced on such
an image buffer. Our approach then produces high-quality images even
for noisy point clouds especially acquired by 3D scanning devices. Our
approach also uses splats in the actual rendering process. However, the
number of points to be rendered in our method is in general less than
the number of input points due to the use of selected points on an im-
age buffer, which allows our approach to be processed faster than the
previous approaches of GPU-based point rendering.

1 Introduction

In recent years, point-based surface representation is becoming more and more
important and drawing increasing attention thanks to recent advances of 3D
scanning technology. Though a large number of points can be acquired by using
3D scanning devices, it is difficult to handle large meshes constructed from these
point primitives. Therefore, approaches to point-based modeling or rendering,
which directly handle point primitives instead of constructing meshes or high-
order surfaces, have been a focus of constant attention.

Among these point-based approaches, point-based rendering is suitable for
visualizing a large number of point primitives. In the process of rendering a mesh
with millions of triangles, an overhead to rasterizing a triangle is too high because
the area of a triangle projected to a screen buffer is often smaller than that of
a pixel. This fact marks a watershed to alter a point-based rendering instead
of a surface rendering based on triangles. Moreover, the process of point-based
rendering can be accelerated using recent graphics processors (GPUs).

In this paper, we propose a direct rendering approach of point primitives
using GPU. ”Direct” in our case means that points are rendered using only their
position information. Our approach is effective especially for rendering a large
number of points acquired from 3D scanning devices. This is because that those
acquired points mainly consist of only 3D positions and colors. On the other
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hand, a normal vector is also needed to compute shading effects when rendering.
These normal vectors are usually calculated from 3D positions of points (e.g.
[1, 2]) as a pre-process. If we define a normal vector for each point, large space
equivalent to the same size as 3D positions will be required to store such normal
vectors. This would cause a large bottleneck when rendering points on PCs with
a little DRAM memory.

The idea of our approach is based on the method proposed by Kawata and
Kanai [3]. However, our algorithm is mostly executed on GPU, and is essentially
different from the algorithm in [3] when implemented on GPU. The main features
of our approach are described as follows:

Ad-hoc normal vector calculation. Normal vectors needed for shading ef-
fects are calculated in the rendering process on GPU. This saves the calcu-
lation time of such vectors in the pre-processing stage.

Noise reduction. Noise reduction of points is applied on GPU. In general,
points acquired from 3D scanning devices involve several types of noises.
Our approach is effective for rendering such noisy points.

Fast rendering algorithm. Splats are used in the final rendering stage. Tex-
ture filtering needed for this stage is applied for only selected points on an
image buffer. The number of such selected points are in general less than
input points. Our algorithm then renders points quickly compared to the
previous approaches of GPU-based point rendering.

2 Related Work

Details of the approaches of point-based computer graphics are described in [4, 5].
Here we mainly describe related researches of point-based rendering. Point based
rendering was first introduced by Levoy and Whitted [6]. One important process
is to fill holes between neighboring points. There are two types of approaches
for such hole-filling; screen-based approach and object-based approach. Our ap-
proach is basically of the former approach.

On the other hand, most of GPU-based point-rendering approaches focus on
the implementation of the filtering phase when overlapping splats. Ren et al. [7]
proposed an object-space anisotropic EWA filtering on GPU. In [7], a rectangle is
used as a rendering primitive which has the problem of rendering speed, because
four vertices in each splat have to be transferred to GPU. Guennebaud et al. [8]
and Botsch et al. [9] independently addressed this issue by using point sprites.
Zwicker et al. [10] proposed a high-quality object-space EWA texture filtering on
GPU. Botsch et al. [11] realized a per-pixel lighting (Phong shading) by using a
normal vector field for each splat. Other approaches include a method to transfer
points effectively to GPU by using linear point lists [12], and an implementation
of point-selection algorithm [13].

In our approach, splats are used to render points as done by most of the
approaches described above. In addition, both the normal vector computation
and noise reduction processes are also implemented on GPU.
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3 Rendering Algorithm Using GPU

Figure 1 illustrates an overview of our direct point rendering algorithm on GPU.
The input for our algorithm is a set of points P : pi ∈ P (i = 1 . . . n, n is the
number of points). Although only a 3D position pi is required for each point, in
some cases it is also possible to attach color information ci.
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Fig. 1. Overview of our direct point rendering algorithm on GPU

Our approach adopts a totally five-pass algorithm. In the process of filling
holes, we use an image buffer as proposed in [3] which has a lower resolution than
a frame buffer. In our approach, an image buffer is used from the first to the fourth
passes. In the fifth pass, we magnify a buffer to the resolution of an actual frame
buffer and apply splat rendering in this pass. We allocate several floating-point
textures Ω in VRAM memory on GPU. They have the same resolution as an im-
age buffer and are used as inputs/outputs for each pass of our whole algorithm.

3.1 Setting the Resolution of an Image Buffer

In the first and second passes, we project each point to an image buffer1(details
are described in Section 3.2).

In these processes, an appropriate resolution of an image buffer has to be
determined for filling holes. This resolution is dynamically determined by the
resolution of a point set and by camera parameters (a view position, field of
view, the size of view frustum, etc.).

Let the width and height of a frame buffer and an image buffer be ws, hs,
wi, hi, respectively. wi, hi are then calculated by the following equations derived
from the perspective projection:

wi = ws/ρ, hi = hs/ρ, (1)

1 For the image buffer, we use a floating-point buffer on GPU. In case of DirectX, IEEE-
format D3DFMT A32B32G32R32F is available. In case of OpenGL, pbuffer can be used.
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ρ =
σ

tan(f/2)
· 1
λ

· ws, (2)

λ =
zf · zn

zf − zn
· |v − p̃| + 1. (3)

where f denotes a view angle (fov), v denotes a view position, zf , zn denote the
distance from a view position to the far plane and the near plane respectively,
and p̃ denotes a barycentric point of a point set.

σ in Equation (2) is the resolution of a point set, that is, a parameter which
estimates an interval between neighbor points. σ can be calculated as follows:
First, a k−neighbor graph of a point set is defined. For each point, the distance
to the closest point is calculated. σ is set as the minimum of these distances.
Since the definition of a k−neighbor graph and the calculation of the closest
point is view-independent, we can calculate σ as a pre-process when we input a
point set. Using the above equations, the value of ρ is usually greater or equal
to 1, and the value of wi, hi is then smaller or equal to ws, hs.

3.2 Points Selection for Noise Reduction and Averaging

In the first and second passes described in Figure 1, the selection of a point set
to an image buffer is processed by using vertex shader. These processes are done
to reduce noises of a point set. Note that only a point can be stored for each
pixel on current GPUs. We then add rendering passes to store multiple points.
In our case, a two-pass rendering algorithm is applied.

For each pass, we apply perspective projection for each point and store a pro-
jected point to an image buffer. This process is done by both vertex shader and
pixel shader on GPU. In the vertex shader, the perspective projection to a camera
coordinate for each point is applied. In the pixel shader, a projected point is simply
written to an image buffer. After the process of the pixel shader, the contents of
an image buffer are copied to a floating-point texture Ω. In this case, a projected
point is stored in a corresponding pixel of a texture as a floating point value.

Figure 2 shows the procedure for selective storage of points to an image
buffer. When multiple points are projected to the same pixel, only the closest
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Fig. 2. Overview of selective storage process
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point to a view position is selected and stored to a pixel of a texture Ω1 in the
first pass (Figure 2 left).

In the second pass, we also apply perspective projection for each point and
store the projected one to an image buffer. In this case, we select a point whose
depth from a point selected in the first pass is in the range of γ, and which is
the farthest point within this range (Figure 2 right). There are two purposes for
this selective storage: One is to omit isolated points (called outliners), and the
other is to reduce bumpy noises by averaging.

To implement this selective storage on GPU, we first look up a point on Ω1
and investigate whether the depth of a projected point is within the range of
γ or not in the vertex shader of the second pass. If a point is out of range, we
omit this point. By setting γ, we can omit later processes for outliners or for
points of back faces. γ is a view-independent parameter, then a constant value
can be set in the pre-processing stage. According to our experiments, we found
that 0.5-1.0% over a diagonal length of a bounding box surrounding at an object
is suitable for our results.

Next, the farthest point within the range of a threshold γ is selected by
setting “write if the depth of a pixel is larger than that which has already been
written”2in the depth test on GPU. A selected point by this test is stored in a
pixel of a texture Ω2.

Even if a point has both its position and a color, both results can be written to
separate buffers in each pass by using MRT (Multiple Renger Target). Moreover,
we also use Vertex Texturing to look up a point stored in a texture Ω1 in the
vertex shader of the second pass. These two functionalities are supported from
Shader Model 3.0, and can be used by only nVIDIA GeForce 6 series GPU.

In the third pass, we look up two corresponding points on floating-point
textures Ω1 and Ω2 in the pixel shader to compute their average value. An
average value is then stored to a texture Ωa. This value is used only as a position
for drawing splats in the final pass described in Section 3.4.

3.3 Computation of Normal Vectors

In this sub-section, we describe our novel approach to compute normal vectors
on GPU. The computation of normal vectors is processed in the pixel shader of
the fourth pass in Figure 1.

In the process of computing normal vectors, information on neighboring
points for each point is needed. To rapidly acquire neighboring points, we utilize
textures Ω1 and Ω2 created in the selective storage process described before.
Figure 3 shows the principle of computing normal vectors. In the left figure of
Figure 3, a normal vector at a point p is computed by using its neighboring point
pi (18 points at a maximum).

We approximate here the proximity of a point p defined on the camera coor-
dinate system to a plane,

f(x, y) = z = Ax + By + C, (4)
2 In case of DirectX, we can use D3DCMP GREATER flag for this process.
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Fig. 3. Plane-fitting process and computation of normal vector

by using least-square fitting (Figure 3 right). We first look up neighboring points
pi = {xi, yi, zi} (i = 1 . . .N ≤ 18) from Ω1, Ω2. For point p, we compute coeffi-
cients A, B, C by solving the following equation:

N∑

i=1

{zi − (Axi + Byi + C)}2 → min. (5)

A, B, C are the solution of a 3×3 linear equation. Here we try to solve this
equation by using both Cramer’s formula and Gauss’s elimination method. Al-
though the latter is the numerical solution, we can expand the code and write it
to the pixel shader directly. Compared to these two solutions, we found that the
computation time and thus the number of instruction sets in the pixel shader is
almost equal (Gauss’s elimination: 336, Cramer’s formula 340). By using such
computed coefficients, a normal vector can be defined as (A, B, −1). We then
apply shading to compute a color by using a normal vector and a point from Ωa
and store a color to a texture Ωc.

We approximate a plane in Equation (4) to the proximity of a point p. How-
ever, in this equation, we cannot define a plane parallel to a viewing direction.
In our case, situations which a normal vector is completely perpendicular to the
viewing direction rarely occur. We then think that it is a trivial problem for prac-
tical use. We also think that more general equations such as Ax+By+Cz+D = 0
can be used to fit to a plane. In this case, complicated numerical approaches such
as Newton’s method are required to compute coefficients, which tend to increase
the number of instruction sets and thus the computation time.

3.4 Rendering with Splats

We now draw splats in the fifth pass with two floating-point textures Ωa and Ωc
where positions and colors are contained respectively in Figure 1. Along with Botsch
et al.’s approach [9], each splat is rendered with alpha-blending by using a Point
Sprite with an attached Gaussian kernel texture. A Gaussian kernel texture is a
2D texture sample (point sprite) in which a Gaussian function is embedded. Each
vertex of this texture has its own 2D texture coordinate (ui, vi) whose origin is
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(a) (b) (c)

Fig. 4. Rendering results for actual range images. Top: Stanford Asian Dragon. Bot-
tom: Beetle. (a) Range image. (b) Rendering results by approach in [9]. (c) Rendering
results by our approach.

the center point. The rendering process is done in both vertex shader and pixel
shader. The final color in a frame buffer is a weighted sum of splat colors. The res-
olution of textures Ωa, Ωc is smaller than that of a frame buffer. We therefore need
to magnify them to the same size as a frame buffer in this pass.

4 Results

Figure 4 shows visual comparisons between our approach and an approach in
[9] for actual range images. The upper part of Figure 4 denotes the results for a
point set of Stanford Asian Dragon (3,609,600 points). This point set is acquired
from a 3D scanning device, however it looks “good”, namely, it has less bumpy
noises. For such point sets, we found that the approach in [9] produces higher-
quality images than our approach, because normal vectors can be computed
correctly. In contrast, some blurring effects appear as a result of our approach.
This is thought to be a certain loss of points in the selective storage process.

The bottom of Figure 4 shows results for a point set of Beetle (559,327
points). This point set has high bumpy noises and considerable outliners, and it
is difficult to compute normal vectors correctly in this case. In the result of [9],
the blob patterns appear, while our approach can produce better quality image
even for such point sets, proving that our approach fully demonstrates it’s ability
for noisy point sets.

5 Conclusion and Future Work

In this paper, we have proposed a direct rendering approach for GPU to points
which only have positional information. We have demonstrated three advan-
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tages of our approach by experiments: First, we keep the rendering quality as
the previous GPU-based point rendering approaches, while involving normal vec-
tor computation for each frame. Secondly, our approach fully demonstrates it’s
ability for noisy point sets by the noise reduction process. Finally, the computa-
tion time is twice faster than previous approaches by using the selective storage
process.

In future work, we wish to decrease flickering effects in interactive rendering,
and to apply our approach for irregular point sets.
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