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Abstract 

In most virtual reality applications, 3-d space is a passive, 
ambient continuum in which the objects of study are placed. 
When the 3-d space itself is the object of study, as with 
mathematical manifolds, VR is especially important as a 
visualization medium. We describe the visualization of such 
spaces in the CAVE virtual environment. 

1 Introduction 

Computer graphics has become instrumental in new discov- 
eries in several domains of mathematics. For example, in 
the study of minimal surfaces computer graphics was indis- 
pensable in advancing several proofs and conjectures regard- 
ing a new minimal surface [I]. Depending on the emphasis, 
these new techniques are called either visual or experimental 
mathematics. Several centers have been founded to further 
research in this direction, such as the Geometry Center at 
the University of Minnesota and the SFB-288 lab at Tech- 
nical University Berlin. 

One area of visual mathematics where computer graph- 
ics can be helpful is the classification of 3-dimensional man- 
ifolds (3-manifolds). According to a conjecture of William 
Thurston (we omit some technical conditions), any 3-manifold 
can be classified by modeling it on one of eight model geome- 
tries (see [4] and related literature). In this paper, we will 
be concerned with three of these model geometries (the clas- 
sical cases which exist in every dimension): euclidean (E3), 
spherical (S3) and hyperbolic (H3). We will use the term 
manifolds loosely, to include the related spaces known as 
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o&folds, which may contain singular points. For a fuller dis- 
cussion of the mathematical background and its computer- 
graphical implementation followed here, see [3]. The next 
section contains a very abbreviated version of this article. 

2 Previous work on manifold visualization 

The visualization of 3-manifolds is not as straightforward 
as that of ‘-manifolds. The P-torus can be visualized di- 
rectly as a familiar doughnut-shaped surface by embedding 
it in a higher (third) dimension. This form of representation 
can be called the outsider’s view. However, living within 
3-dimensional space, we have no fourth, directly-visible di- 
mension in which to embed or immerse 3-manifolds. 

An alternative method for visualizing manifolds which 
solves this problem is the insider’s view. This is the view 
we would see if we were to live inside the manifold. It is 
constructed as a tessellation of the model geometry by non- 
overlapping copies of a single tile, or fundamental domain. 
One copy of this tile represents the underlying manifold; the 
other copies represent the different ways that light can travel 
in the manifold to reach the observer’s eye. In the case of our 
two-dimensional torus, the corresponding tessellation covers 
the euclidean plane with copies of a parallelogram. (To get 
the outsider’s view we take one copy of this parallelogram 
and roll it up in 3 dimensions to make the torus.) The funda- 
mental domain is replicated via the application of (a discrete 
group ofi isometries, in this case, translations in two inde- 
pendent directions. Likewise, the 3-torus is visualized from 
the inside by applying translations in three independent di- 
rections of E3. (The discrete groups we study can contain 
other kinds of isometries: glide-reflections, screw motions, 
rotations and reflections.) Figure 1 shows the insider’s view 
of the d-torus where the fundamental domain - a cube-like 
polytope - has been shrunk to improve visibility. 

3 Introduction to GeomCAVE 

The immersive nature of the insider’s view is what makes 
a virtual environment a better visualization medium for 3- 
manifolds than the graphics workstation. The Geometry 
Center has dcvelopcd an interactive viewer geomview based 
on the graphics library OOGL, capable of visualizing the 
three model geometries considered here on a workstation. 
The second author, while at the Geometry Center, devel- 
oped a related tool, maniuiew, for visualizing the insider’s 
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Figure 1: Tessellation of euclidean 3-space by 3-torus. 

view of 3-manifolds modeled on these geometries5. We 
have adapted these tools to the CAVE virtual environment 
developed at the Electronic Visualization Laboratory at the 
Universitv of Illinois of Chicago [2]. We call this hybrid tool 
GeomCA’vE; using it, the observer can for the first time 
actually travel within these 3-manifolds and see them from 
the inside. (After GeomCAVE was developed, more mod- 
est alternatives for traveling through hyperbolic and spheri- 
cal space using the standard CAVE libraries were developed 
by Ulrike Axen, Glenn Chappell, Chris Hartman, Joanna 
Mason, Paul McCreary and the fifth author for the Post- 
Euclidean Walkabout at SIGGRAPH ‘94. Stuart Levy and 
Tamara Munzner, from the Geometry Center, have recently 
expanded this code to read a subset of the OOGL formats 
directly into the CAVE.) 
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Modules for the CAVE generally take the form of a sin- 
gle draw routine consisting of GL function calls, which is 
called regularly from the main CAVE program. Since OOGL 
maintains its own graphics context, including transform and 
appearance stacks, which objects rely on when rendering 
themselves, GeomCAVE had to be slightly more sophisti- 
cated. We had to make some CAVE states available to the 
OOGL context (e.g., which wall is currently being drawn); 
and we also channeled the navigation data (walking and fly- 
ing data) through OOGL routines to generate non-euclidean 
isometries. 

The user of GeomCAVE is provided with a menu of icons 
representing different manifolds; choosing one brings him 
into the tessellation for that space. The fundamental tile is 
by default provided by a Dirichlet domain for the underlying 
group; it is represented once at full scale in wire frame and 
once at reduced scale as a shaded solid, with corresponding 
faces a unique color. The reduction in scale was necessary to 
provide visibility of the whole tessellation, while the coloring 
provides important information of the structure of the man- 
ifold. The observer is represented in the scene by a small 
dart-shaped object which is also tessellated (figure 2). It 
points in the direction of the observer’s gaze, and its motion 
and orientation with respect to the fixed geometry of the 
tessellation provides further structural information. Some 
of the example spaces contain singular axes; approach to 
these is signaled by the convergence of multiple copies of 
the dart to a single point. 

The observer can navigate through the space either by 
physically walking within the CAVE or by flying in the di- 
rection of a hand-held wand. He can reset himself to the 

5geomview and maniview are available via ftp from geom.umn.edu 
in pub/software 

Figure 2: Tessellation of euclidean 3-space by group con- 
taining rotation axes. 

Figure 3: Dodecahedral tessellation of spherical 3-space. 

origin if he gets lost, or can return to the icons to select 
another space to visit. 

3.1 The example manifolds 

Two of the non-euclidean examples are tessellated by regular 
dodecahedra, a construction impossible in E3. Because the 
sum of a triangle’s angles in H3 is less than 180°, a regular 
dodecahedron with right dihedral angles is possible. H3 can 
be tiled with these right, regular dodecahedra in a variety 
of ways. In ,GeomCAVE, the observer can verify this experi- 
mentally by flying or walking to the common corner of eight 
dodecahedra and examining these right angles directly. See 
[3] for an illustration of an H3 tessellation. 

In the same way, it is possible to have a regular dodec- 
ahedron in .S3 which has 120-degree dihedral angles (figure 
3). 

The euclidean 3-manifolds featured in GeomCAVE are 
both based on the tessellation of euclidean space by a #cube, 
but the discrete groups which perform the tessellation are 
different. See Figures 1 and 2. It is also possible to explic- 
itly provide geometry to be tessellated instead of using the 
Dirichlet domain (figure 4). 



Figure 4: Alternate tessellation of d-space by the group in 
Figure 2. 

4 GeomCAVE implementation challenges 

We encountered several challenges in the implementation of 
GeomCAVE: 
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4.1 

Conflicting viewing paradigms, 

Non-euclidean navigation in GeomCAVE, 

Manifold navigation in GeomCAVE, 

Stereo, and 

Efficiency measures. 

Conflicting viewing paradigms 

OOGL’s on-axis perspective projection is applicable in a 
head-mounted display VR system, where the view planes 
move with the viewer’s eyes, but not in the CAVE, where 
off-axis projection must be used because the view planes are 
stationary. This problem applied equally to all geometries. 
The solution required us to replace the OOGL camera object 
with an alternative means of transforming from world coor- 
dinates to screen coordinates based upon off-axis projection 
from the observer’s position within the CAVE. 

4.2 Non-euclidean navigation in GeomCAVE 

Euclidean 3-space can be trivially modeled in the euclidean 
3-space of the CAVE interior. We discuss the more difficult 
challenge of mapping hyperbolic geometry into the CAVE; 
similar remarks apply to the spherical case. 

The model of H3 we use in GeomCAVE the Beltrami- 
Klein (or projective) model [3]. In this model, hyperbolic 
space is modeled as the interior of the unit ball in E3. Mea- 
surements of distance and angle are computed using a dif- 
ferent metric; the result is that the unit sphere lies an in- 
finite (hyperbolic) distance from any point within the ball. 
Hence the unit sphere is called the sphere at infinity in this 
model. Figure 5 shows two views of a tessellation of the 
two-dimensional hyperbolic plane in this model. 

These facts have two consequences for navigation within 
GeomCAVE. The first follows from the requirement that the 
observer should not be allowed to leave hyperbolic space by 
walking (see end of this section). If we want to prevent the 
navigator from leaving H3 then it is clear that we must map 
the CAVE’s physical coordinates into the projective model 
so that it lies entirely within the unit ball. We settled on a 

Figure 5: Tessellation of hyperbolic plane by alternately- 
colored, regular, right-angled pentagons, in the Klein model. 
Right figure represents a hyperbolic translation of the left 
by the vector T. 

scaling value of 0.1, yielding typical corner coordinates of .5, 
.5, .5, which keeps the CAVE well within the unit sphere. At 
this value, the dihedral angles between the cave walls, mea- 
sured hyperbolically, are around 70”. Shrinking the cave 
yields angles approaching the right angle of Euclidean mea- 
surement. 

The second consequence affects how navigation is con- 

ceptualized. The most natural way to think of flying or 
walking is that the observer moves through the scent. How- 
ever, if we follow this model when we implement hyperbolic 
movement, the result is incorrect. The mistake occurs in 
the standard construction of the off-axis perspective trans- 
formation, which typically contains an implicit euclidean 
translation to move the observer to the origin. This eu- 
&dean translation naturally results in an incorrect image. 
The solution is to hyperbolically translate the scene past the 
observer, rather than vice-versa. 

In contrast to H3, which is modeled on the interior of 
the unit ball, the projective model of S3 contains all the 
available points. There is an implicit restriction on the size 
of the CAVE in model coordinates, since the intrinsic metric 
of S3 is finite. The CAVE can not be made larger than a 
certain size; beyond that scale the size of the cave begins to 
shrink, just as a circle on the 2-sphere attains a maximum 
size at the equator and beyond that point gets smaller. 

We made the decision to represent II3 as an inhabitant 
would experience it, which prohibited the navigator from 
traveling outside the space. We would like to explore the 
possibility of euclidean exploration of Z13, so that math- 
ematicians can see how this model “sits” within ordinary 
space (see Section 6). 

4.3 Manifold navigation in GeomCAVE 

Though not new with GeomCAVE ([3]), navigation in mani- 
folds is worth mentioning here. One of the challenges unique 
to manifold exploration involves “staying centered” in the 
tessellation. Since E3 and H3 are infinite (as opposed to 
.s3 ( which is a finite space), a complete tessellation would 
be of infinite extent. Since wc can only create a finite tes- 
sellation, the possibility exists that the navigator might fly 
beyond the computed tessellation. The solution adopted 
here is to “cage” the navigator within the central Dirichlet 
domain of the group. That is, if in the motion of walking or 
flying, a wall of the central Dirichlet domain passes by the 
observer (fixed at the origin), then the observer is moved 
to an equivalent point lying within the central fundamen- 
tal domain. That is, the cumulative navigation isometry is 
multiplied by the group element associated with the crossed 
face. The resulting isometry maintains the origin within 
the central Dirichlet domain. With respect to the manifold, 
this new transform is equivalent to the original isometry, 
since multiplication by group elements leave the manifold 

169 



invariant. However, this multiplication may be detectable 
in our finite implementation: some copies on the edge of 
the tessellation may appear or disappear. In the ideal im- 
plementation (requiring more computer power) these copies 
are barely visible, either being too small or too foggy. 

The alternative, to translate the tessellation to follow the 
observer, quickly leads in the hyperbolic caSe to severe nu- 
merical problems in the action in the group elements. The 
result is that the fourth, “homogeneous” coordinate of the 
transformed vertices grows exponentially large and the de- 
homogenization operation loses precision. This is avoided 
by the method outlined above. 

4.4 Stereo 

Modeling stereo vision presented challenges in the non-euclidean 
case. We first describe the more familiar solution available 
in the euclidean setting. The observer and the CAVE have a 
fixed physical reality which should be mirrored in the mod- 
els we a:pply to them. That is, the model coordinates for 
the navigator are the same as the model coordinates of the 
CAVE. 1.n particular, the interocular separation of the ob- 
server stays at a fixed ratio to the CAVE size. We found 
empirically that an interocular distance of about l/100 that 
of the diagonal of the CAVE is small enough to aSsure fu- 
sion. This translates to a distance of about 2 inches, roughly 
corresponding to human anatomy. In euclidean space, mak- 
ing the CAVE larger is equivalent to shrinking the scene 
while keeping the CAVE a constant size. However, in non- 
euclidean settings, this equivalence no longer holds! In these 
spaces, there is no change of size without also changing 
shape. Consequently, it is the CAVE and observer that 
changes size (and shape!) while the scene remains the same. 
Of course there is no guarantee of fusion; it may become dif- 
ficult if the observer in H3 becomes too large while standing 
near the fixed geometry; but the danger is no different from 
the physically observed difficulty of fusing stereo when you 
move your hand closer to your eyes in everyday life. 

The pair of images for the stereo effect is produced by 
rendering each eye separately as described above by hyper- 
bolically translating the scene to locate the given eye at the 
origin. 

4.5 Efficiency measures 

To maintain the frame rate required in VR, WC needed to 
disable the software lighting and shading for non-en&dean 
scenes (OOGL does lighting in software because of the dif- 
ferent metrics of the non-euclidean geometries). We kept the 
model of the tessellation simple - a wireframe, with simple, 
solid tiles inside. The discrete group software in OOGL au- 
tomaticaIly culled the copies of the tessellation which lay 
outside the viewing frustum of a given wall of the CAVE. 
Also, we kept the number of layers of the tessellation great 
enough to produce a sense of depth, but small enough to 
maintain an adequate frame rate. 

5 Evaluation 

We have combined the discrete group capabilities of OOGL 
with VR. the onlv visualization oaradigm for an immer- 
sive, direct experiknce of matheiatical”spaces, to extend 
the power of interactive 3-d visualization of such spaces. Ac- 
cess to d-manifolds via a virtual environment is a significant 
addition to the tools available for mathematical research 
and eclucation. For example, as pointed out in section 3, 
GeomCXVE allows direct observation of interesting prop- 
erties of non-euclidean spaces, such as the right angles of 
dodecahedra in hyperbolic space. GeomCAVE immediately 

makes features of OOGL available in VR., such as a col- 
lection of geometric models and discret,e group operations. 
Thus, a mathematician who has built a manifold for viewing 
in maniview would be able to also explore it. in GeomC’AVE. 

6 Further work 

l Implement mixed mode navigation in H3 (see conclu- 
sion of Section 4.2). 

l Add more features of maniview: 

- Control over the size and shape of the Dirichlet 
domain. 

- Control over the depth of the tessellation. 
- .4s hardware improves, re-activate the software 

shading and fog effects. 

l More sophisticated tools for mathematicians: 

- Connections with existing manifold software (such 
as snappeo ([5]). 

- Finer interactive control of the discrete group: se- 
lecting subgroups, use of color, deformation of the 
group. 

- Simulation of dynamical systems in non-euclidean 
spaces. 

- Extend the coverage to the other five Thurston 
geometries. 

l Experiment with audio tessellation along with the ge- 
omet:ric data. The resulting echo patterns cou1.d dis- 
tinguish differently-shaped manifolds. 
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