
Collision Detection by Four-Dimensional Intersection TestingStephen CameronJune 1990AbstractThe collision detection problem is easily stated: \Given two objects and desired motions, decidewhether the objects will come into collision over a given time span". The solution of this problemis useful, both in robotics and other problem domains. We describe a method for solving collisiondetection that involves transforming the problem into an intersection detection problem overspace-time. We give the theoretical basis for the solution, and describe an e�cient implementationbased on describing the objects and motions constructively. We also consider the related problemsof describing the collision region, and of detecting collisions when there are a more than twomoving objects.This paper appeared in IEEE Transactions on Robotics and Automation 6(3):291{302,June 1990. c
IEEE 1990.Contact address: Oxford University Computing Laboratory, Wolfson Building, Parks Road,Oxford OX1 3QD, UK. Phone: +44 1865 273850.1 IntroductionThe collision detection problem may be stated as: \Given two objects and desiredmotions, decidewhether the objects will come into collision over a given time span". Solving this problem is usefulin its own right, and the solution can also be used as parts of algorithms that try to generatecollision-free paths. We have been especially interested in solving the collision-detection problemfor robotics, but the work reported will also be of interest in other problem domains, such asVLSI and electronic circuit layout, \Cloth-cutting", bin-packing, assembly planning, and drivingnumerically-controlled machines. Previous work on this problem has mainly arisen from twosources. One source has been the proliferation of CAD descriptions of shapes, and the desireto do more design on the computer (e.g., [Boy79, Mey81, Mye81, CK86]). Another source hasbeen from algorithm design in its own right, which emphasises the design of algorithms with lowcomputational complexity. Our work is rooted �rmly in the former camp, but with emphasis onthe production of e�cient algorithms.There are many di�erent algorithms for collision detection. As argued in [Cam85], one classof algorithms is conceptually the simplest: we choose a number of times, ftig, within our time-span of interest, and perform a (static) interference test at each ti. This algorithm has manyadvantages: it is relatively simple, it is not necessary to derive a closed-form for the motion(access to a sampling function will su�ce), and it gives good operator feedback when used aspart of simulation. However, the algorithm is not perfect, and, in particular, it does not workwell if objects come into contact. Another method is to compute the volume swept out by theobjects over their motions, and to declare a collision if these swept volumes intersect. Again this1



method is intuitive but, as we shall see, the method described in this paper is e�ectively better(except in some \special cases").[Can86] describes yet another method for collision detection, in which the problem is trans-formed into detecting collisions for a point in con�guration space [LP83]. E�ectively Cannyconsiders intersection detection between a line and six-dimensional con�guration space obsta-cles, using algebraic techniques to �nd the intersection regions. Con�guration space is normallyassociated with solutions of the collision avoidance problem (e.g., [LP87, Don87, Can88]). Webelieve that collision detection is worthy of separate study as it can often be solved far fasterthan collision avoidance; also, many collision avoidance schemes require a collision detector to berun �rst to generate information about the collision region (e.g., [Mye81]).In x2 we give the formal basis for four-dimensional intersection testing. To visualise the pro-cess, we may imagine an analogue, whereby we perform collision-detection in a two-dimensionalworld [Abb52]. Imagine the two polygonal objects shown in �gure 1(a) as starting from the po-sitions shown and having the velocities arrowed. Now imagine that the two-dimensional universethat they inhabit is, in fact, the 
oor of a lift1, which is moving vertically upwards with someconstant velocity. Then the polygons will sweep out prisms in three-dimensional space, as shownin �gure 1(b). We can think of the vertical dimension in this case as being a time dimension;taking a particular horizontal slice of these prisms gives the positions of the polygons at the cor-responding time. Then, as we shall show, the polygons collide if and only if the prisms intersect.Figure 1(c) shows the union of the two prisms, and �gure 1(d) shows their (non-null) intersection.x3 describes how this problem transformation is performed within a geometric modellingsystem called robmod [CA88]. x4 gives the meat of the implementation, which is based onthe more general routine described in [Cam89]; examples of the routine in action are given inx5. The routine has a natural extension to tackle the collision detection problem when there aremany possible pairs of objects that could collide; this is outlined in x6. Further extensions, andconnections with work on other problems, are described in x7.2 Mathematical BasisWe regard an object as being de�ned by a point set. (This is equivalent to assuming that weknow exactly where objects are, and what their shape is.) Given an object O, we assume theexistence of a location function, �, which is a function that tells us where the object is at a giventime. In particular, � takes a time t and returns a transformation �(t) which tells us how tomove O into its position at time t, and so at this time O occupies the point setfx j (9y)y 2 O and x = �(t)(y)gwhich we normally write as �(t)(O). As an example, an object which is at its rest position attime 0 and has a constant velocity v has a location function that moves the point x to the pointx+ vt at time t. We will only be concerned with rigid-body motions, but we note that most ofthe motions made by \normal" materials, including elastic deformations and 
uid 
ows, can (inprinciple) be described by invertible, continuous location functions, as matter is not lost duringthe transformation.2.1 ExtrusionsThe above de�nitions give us enough structure to formally de�ne the extrusion operation thatwe introduced informally in x1. Given an object O and corresponding location function �, wede�ne the extrusion operator Ex byEx(�; O) = f(x; t) jx 2 �(t)(O)g (1)1aka. \elevator". 2
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An equivalent de�nition (for invertible transformations) isEx(�; O) = f(x; t) j�(t)�1(x) 2 Og (2)Then we note that object A (with location function �A) collides with object B (with locationfunction �B) if and only if9(x; t) x 2 �A(t)(A) and x 2 �B(t)(B) , Ex(�A; A)\ Ex(�B; B) 6= ;i.e., two objects collide if and only if their extrusions intersect.Thus extrusions give us a mathematical framework for considering the collision detectionproblem. However, these de�nitions do not tell us how to construct extrusions. [ER83] considersthe extrusion of collections of simple shapes, namely spheres. [ST85, FS89] use a hierarchaldescription called a bintree2 to describe space-time; the bintree is constructed using an algorithmsimilar to that described in x4.1, but always continues division until the space-time region is fullor empty. [Gla88] uses space-time to perform ray-tracing of moving objects for animation, forwhich only samples of the extrusion are required. [JP88] give a construction for the boundaryof extrusions when the location functions correspond to linear velocities and the objects arepolyhedral, but in general the boundary of an extrusion may be quite complex.In our work we have used constructive solid geometry (CSG) as the method for describingthree-dimensional shapes, whereby a shape is given as a set-combination of simple shapes|this is a common description method for solid models [RV82]. E�ectively, a CSG description isequivalent to a Boolean function F of a number of simple objects Pi, so that the object is givenby F (P1; P2; . . . ; Pm)where F is obtained by use of the set operations of union ([), intersection (\) and di�erence(=). Given such an F we may derive the function F̂ , obtained from F by replacing each three-dimensional set operation by the corresponding four-dimensional set operation3. Then thefollowing distribution theorem gives us a way of simplifying the construction of extrusions:� Distribution TheoremThe extrusion operation distributes over the set operations; that isEx(�; F (P1; P2; . . . ; Pm)) = F̂ (Ex(�; P1);Ex(�; P2); . . . ;Ex(�; Pm))Proof (for the standard set operations) Let �F denote the logical formula derived from a setformula F in the normal way (by replacing [ by _, etc.). Then(x; t) 2 Ex(�; F (P1; P2; . . . ; Pm)) , �(t)�1(x) 2 F (P1; P2; . . . ; Pm), �F (�(t)�1(x) 2 P1; . . . ;�(t)�1(x) 2 Pm), �F ((x; t) 2 Ex(�; P1); . . . ; (x; t) 2 Ex(�; Pm)), (x; t) 2 F̂ (Ex(�; P1);Ex(�; P2) . . . ;Ex(�; Pm))as required.The distribution theorem simpli�es the construction of extrusions as it is often easy to writedown the form of an extrusion of a simple shape Pi. In particular, if each Pi is a half-space:Pi = fx j pi(x) � 0g for some function pi2Similar to a quadtree [Sam84]3Essentially F and F̂ look the same; they are distinguished for reasons of pedantry.4



then the extruded half-space is another half-space:Ex(�; Pi) = f (x; t) j pi � �(t)�1(x) � 0g (3)where � denotes functional composition. One speci�c case that is of interest is when each half-space of the object is linear, and moving with constant linear velocity. So if P corresponds tothe half-space p(x) = n:x + d (where : is the scalar product operator) and � is the locationfunction corresponding to the identity transform at time 0 and a constant velocity v, we �ndthat Ex(�; P ) corresponds to the (four-dimensional) half-spacep̂(x; t) = n:x� n:vt+ d (4)We use the combination of (3) and the distribution theorem to model the extrusions of objects.If we have two extrusions, say F̂ (P̂1; P̂2; . . . ; P̂m) and Ĝ(Q̂1; Q̂2; . . . ; Q̂n), where P̂1, etc., denoteextruded primitives, then the objects collide if and only if the extrusions intersect; that is, ifĤ(P̂1; P̂2; . . . ; P̂m; Q̂1; Q̂2; . . . ; Q̂n) 6= ;where Ĥ(P̂1; P̂2; . . . ; P̂m; Q̂1; Q̂2; . . . ; Q̂n) = F̂ (P̂1; P̂2; . . . ; P̂m) \ Ĝ(Q̂1; Q̂2; . . . ; Q̂n)So we have transformed the collision detection problem into one of detecting whether any (four-dimensional) point satis�es a region given by a set theoretic formula.2.2 Mathematical NicetiesThe standard set operations are not generally used in geometric modelling practise, as it ispossible to construct non-three-dimensional objects with them. Instead the (closed) regularisedset operations are used; these are equivalent to performing a standard set operation, followed bytaking the closure of the interior of the resultant set. (Informally: we perform the set operation,and stretch a tight skin over the resultant set.) These operations can be shown to form aBoolean algebra [TR80], and the main problem in using them is that we have to be a carefulwhen considering the boundaries of sets formed. However, the following result can be shown[Cam84]:� Distribution Theorem (for regularised sets)The extrusion operator Ex distributes over the (closed) regularised set operations.Proof Here we will just give an outline proof of the theorem; details are to be found in [Cam84].By the same argument as was used for the standard set operations, we �nd that(x; t) 2 reg(Ex(�; F (P1; . . . ; Pm))), (x; t) 2 F̂ (Ex(�; P1); . . . ;Ex(�; Pm))where reg is the (four-dimensional) regularisation operation. Thus the result will follow ifEx(�; F (P1; . . . ; Pm)) is a regular set. But F (P1; . . . ; Pm) is regular (in three dimensions), andas � and its inverse are both continuous bijections we can show that Ex(�; F (P1; . . . ; Pm)) willbe regular, provided that the time span of interest is regular in one dimension, i.e., as long asthe time domain forms a closed set. To see that this is a reasonable requirement, consider theextrusions of the two-dimensional objects in �gure 1; if the extrusion is carried out over an opentime interval, the `tops' and `bottoms' of the extrusions will be open, and so the extrusions wouldnot be regular. 5



Another property of \well-behaved" geometric models is that they be triangulable [Req77];e�ectively, that their boundaries can be described by a �nite number of elements. For the workreported here triangulability follows from the �niteness of the CSG descriptions; however it isinteresting to note that triangulability is preserved under extrusion for the standard locationfunctions [Cam84].2.3 Connection with SweepingAs mentioned in x1, a common way of performing collision detection is to compute the vol-ume swept out by each object, and test these swept volumes for interference. Sweeping can beformalised by introducing the operator Sw, withSw(�; O) = fx j 9(y; t) x = �(t)(y) gComparing this equation with (1) we note that sweeping is equivalent to extrusion into space-time followed by a projection operation back into the original space, and thus that, functionally,sweeping is more complex than extrusion. It also explains why sweeping two moving objects andtesting for interference is not a su�cient test for collisions between the objects; the objects mightoccupy the the same space at di�erent times, but this temporal information is suppressed by thesweeping operation. Sweeping can be made a su�cient test by considering the relative motionsof two objects. However, such relative motions may be complex, and if there are many objectsmoving we may have to consider many pairs of relative motions. Using extrusion to solve themany-pair problem is more promising, as explained in x6.Given this added in-built complexity of sweeping over extrusion, it is interesting to speculateon the popularity of the sweeping method. We postulate two reasons. Firstly, for some shapesand some motions, the swept volume has a particularly nice form. For example, in [dPBB83]spheres are rotated and translated to form volumes that can be modelled using toroids, cylindersand spheres. Thus for these cases a fairly conventional solid modeller can be used. The secondreason is a lack of familiarity with the mathematics involved. (We hope that this paper mighthelp to alleviate such fears.)3 ImplementationIn our implementation, which is part of a solid modelling system called robmod [CA88], shapesare entered as expressions, that describe the shapes in terms of parameterised simple shapes(such as blocks and cylinders), together with rigid-body transformations, joint parameters (formechanisms), and set operations. These descriptions are read by a parser that converts theminto a tree structure, whose leaf nodes reference instances of simple shapes, and whose branchnodes either represent transformations or binary set operations. For simplicity we may imaginethese trees to be equivalent to trees without the transformation nodes, i.e., whose branch nodesdenote only binary set operations, and whose leaf nodes include the appropriate transformationtogether with the simple shape.We have used the construction paradigm to denote location functions also. A robmod ex-pression of type motion is made up of a chain of primitive motion commands, together with thetimes for which each is applicable. For example, the expressionrest until 0 vel 1 2 3 until 5 vel 0 1 1 until 10 restdenotes a motion that is at rest until time 0 and after time 10, the velocity (1; 2; 3) between times0 and 5, and the velocity (0; 1; 1) between times 5 and 10. This e�ectively gives us the derivativeof the location function; to �x a particular function we specify that a motion corresponds to the6



identity transformation at time 0. This syntax was used for convenience only; other syntax couldeasily be used in its place (such as specifying via points).To attach a motion expression to a given shape, we make a robmod worm expression4 byconnecting a shape expression to a motion expression. The collision detection function is giventwo worms as input, together with a time-bound over which to test for collisions. (The time-bound is not strictly necessary, as will be explained in x4.3.) In turn, each worm is presentedinternally as a binary shape tree, together with a list of primitive motion components for thatshape. These inputs are further converted into a single binary tree whose branch nodes areset operations and whose leaf nodes correspond to four-dimensional half-spaces. The rest of thissection gives the procedure for generating this tree, and x4 gives the procedure for testing whetherthis tree corresponds to the null set (and thus whether the objects collide within the given timebounds).The procedure for deriving the tree, given a single motion component, is straightforward:1. The leaf nodes in the shape tree correspond to complete simple shapes. We �rst rewriteeach simple shape into an appropriate combination of half-spaces|for example, a block isreplaced by the intersection of six linear half-spaces.2. The shape tree is now extruded|e�ectively, by extruding each primitive (using (3)) andreplacing each three-dimensional set operation by its four-dimensional version. (In fact,in robmod the second operation is a null step, as there is a single set operation node,regardless of the dimensionality.)3. This gives us an extrusion de�ned for all time. To limit the time to the time span of interest,say tl � t � th, we intersect this extruded shape tree with the intersection of the two linearhalf-spaces �t � �tl and t � th.Example Consider the block given by �1 � x; y; z � 1 moving with velocity (1; 1; 1) for0 � t � 10, and at rest otherwise. Then the complete extrusion is given by the union of1. The intersection of the seven half-spaces �1 � x; y; z � 1 and t � 0.2. The intersection of the eight half-spaces t� 1 � x; y; z � t + 1, t � 0 and t � 10.3. The intersection of the seven half-spaces 9 � x; y; z � 11 and t � 10.To construct a CSG description with multiple time components, say t1 < t2 < . . .< tn, we �ndthe extrusion over each component separately, bound the tree between max(tl; ti) and min(th; ti+1)(1 � i < n), and then take the set union of the extrusion trees to get the total extrusion. This givesus a binary tree that completely speci�es each worm; these are then intersected (symbolically) torepresent the entire region of space-time for which the objects overlap. (An alternative approachis to identify the time spans over which both objects have constant velocities, and to run thecollision detection process separately for each time span. This is the approach used in x4.3.)In our current robmod implementation we restrict ourselves to generating only linear four-dimensional half-spaces. This is done simply by considering only polyhedral approximationsto shapes, moving through motions which are composed of linear velocity segments. Thus weactually rewrite, say, a cylinder as the intersection of a number of (three-dimensional) linearhalf-spaces, and extrude all the half-spaces using (4).4So called because we can imagine the corresponding extrusions as \worms" in space-time7



4 Null Set DetectionWe now have a four-dimensional intersection set, speci�ed by a Boolean tree, and we want tosee whether the set is empty. This can be regarded as a set satis�ability problem: does thereexist a (four-dimensional) point that satis�es the set given by this Boolean formula? Severaltechniques exist for solving the intersection problem in three or fewer dimensions, and many ofthese techniques are amenable to tackling the four-dimensional problem. We will follow the gen-eral approach detailed in [Cam89], giving the modi�cations required for our particular geometricdomain. E�ectively, the algorithm is split into three stages, which operate in cascade to providean e�cient solution to the problem. These stages are:1. A pre-processing stage, based on reasoning about approximations to subtrees. This stageis called the S-bound preprocessing stage.2. A divide-and-conquer stage, whereby the problem is dynamically split into a number ofsimpler problems to reduce the computational complexity.3. A generate-and-test stage, at which the exact geometry of the problem is considered.The purpose of the cascade is to reduce the overall time cost of the algorithm, by using relativelycheap processing to solve the `easy' parts of the problem and only passing onto the further stagesthe parts that are still in doubt. Here, a \part" means a rectangular5 region of space-time in whichwe search for a point in the intersection set. Note that, for simplicity, we have not implementedthe redundancy-based routine described in [Cam89].In order to follow the development of this algorithm, and to improve the presentation, wedescribe the S-bound preprocessing stage last.4.1 Divide-and-ConquerThe input to this stage is a CSG description, plus a rectangular region of space-time within whichto search for evidence of non-nullity. (Finding such evidence implies that the extrusions overlapand so that the objects collide.) In our original implementation a bounding region of space wascomputed for each object by enclosing the object at every one of the points in time at whichthe velocity changes; the space-time region was then generated by intersecting the space regionsfor the two objects, and adding the time bounds given to the clash function. In the currentimplementation the space-time region is given directly by the S-bound preprocessing step (asdescribed in x4.3).This region and the intersection tree could be passed straight to the routine given in x4.2, butfor reasons of computational e�ciency we interpose a divide-and-conquer stage, which replacesour single problem by a number of smaller problems. The mechanism involved is discussed indetail in [Cam89], and we only give brief details here.1. Given a region of space-time R, and a tree, T , we measure the complexity of T , and decidewhether to continue to the generate-and-test routine (x4.2), or to divide the problem up.2. To divide the problem we split the region R into a number of subregions fRig, with thesubregions covering R. Then, for each Ri, we make a simpli�ed copy of the intersection treeTi, using the technique discussed below. The region/tree pairs hRi; Tii are then recursivelyevaluated (step 1).5We use `rectangular' to imply a product set of closed intervals, i.e., an aligned rectangle in two dimensions, abox in three, etc. 8



3. The entire problem terminates whenever any subproblem discovers that the intersection setis non-null, or when all the subproblems have reached the generate-and-test stage.Note that the space requirement of this process is proportional to the maximum depth of subdi-vision, and not to the total number of regions examined.As each of our regions are aligned, rectangular boxes (in four-dimensions), then a simplestrategy for splitting the regions is to split each box into sixteen parts by bisection along eachcoordinate axis. This is, in fact, the strategy that we have adopted, as it seems to work well;however a number of heuristics could be invoked to try to balance the size of the subproblemsgenerated; [Woo86] gives examples of such heuristics in a three-dimensional situation.The simpli�cation strategy is based on the observation that if the boundary of a half-spacedoes not pass through a region, then the corresponding leaf can be removed. For our convexhalf-spaces and convex polyhedral regions, we can check whether the boundary intersects theregion simply by computing the half-space function at the region extreme points. It is worthnoting that we may often discover that a region simpli�es to a null region, or a completely fullregion (proving non-nullity without having to consider the boundary intersections), or a regionwith only one or two half-space boundaries passing through it. In the latter case an e�cientclosed-form solutions exists, namely by treating the simpli�ed tree as de�ning a formula of thepropositional logic, and testing whether it is a contradiction.Example A sphere of radius 4 has centre at (5; 5; 5) at time 0, and moves with velocity (1; 1; 1).A cube of sides 4 is centred at (44; 54; 5) at time 0, and moves with velocity (0; 0; 1). To testwhether any collision occurs in 0 � x; y; z; t � 64 we consider the intersection of the 7 extrudedhalf-spaces (x� 5� t)2 + (y � 5� t)2 + (z � 5� t)2 � 1642 � x � 4652 � y � 563 � z � t � 7The division mechanism quickly decides that only the space-time bounded by 40 < x < 48,52 < y < 56, 44 < z < 52 and 42 < t < 46 contains any points of interest, and goes on to pass 8regions of width 4 to the next stage for further investigation. This means that only approximately0.01% of the original hypervolume is explored in detail.Calculation of the computational complexity of this process is di�cult, as the worst-caseanalysis is, experimentally, extremely pessimistic, and it is di�cult to characterise a set of morerealistic cases to give a measure of the expected complexity; however our analysis does suggestthat the expected complexity is not worse than O(n2) [Cam89]. We can also apply some heuristicsto speed up the process, such as relating our measure of `complexity' of a tree to the size of theregion. In our implementation we measure the complexity of a tree by its number of leaf nodes,and decide to `conquer' instead of `divide' if the complexity is smaller than �(d), where d isthe number of division steps already performed. In our implementation we use �(d) = 2d + 6(0 � d � 6). If the region size becomes very small we assume that the intersection hypervolumeis so small that it can be ignored. In practise, this has never happened.4.2 Generate-and-testThe generate-and-test routine is our general routine that checks for nullity. More sophisticatedroutines can be devised (e.g., [RV89]), but as the divide-and-conquer mechanism ensures thatthe problems given to our routine are bounded in size, we have chosen to go for simplicity, andfollow the approach given in [Cam89]. This involves generating a su�cient set of test points (in9



space-time) and checking these points to see if any is inside the intersection set. To generate thepoint set, we go though a loop:1. For every triple of half-spaces referenced by the tree, �nd their intersection. In the generalcase, this will be a line through space-time.2. Intersect every line with every half-space. (We do not, of course, need to intersect withany of the triple from which this line was formed.) This gives a number of potential edgesegments; if the intersection polytope is non-null, some of these edge segments will lie insideor on the intersection set.3. For every edge segment, classify the mid-point.This algorithm thus requires O(n4) point classi�cations. In a non-regularised set system, itwould be su�cient to classify a point by evaluating the half-space functions at the point, andcombine the Boolean truth values using ^ where we see set intersection, etc. Classi�cation inthis case is a linear time process, and so the total complexity of this stage is O(n5). However,in a regularised system we have to take the neighbourhood of the points into account6. Ourchoice of points to test|the mid-points of potential edges|is signi�cant here, as we can thentake a cross-section to the line at the test point. This reduces the problem to evaluating theintersection of three planes in three-dimensions, which is isomorphic to the problem of classifyinga vertex in three-dimensions. In turn, this can be solved by considering the edges surrounding thevertex (which are the intersections of pairs of the original triple of half-space boundaries, togetherwith the cross-section hypersurface), and using neighbourhood classi�cation techniques directlyon these. (Compare this with classifying an edge in three dimensions, by taking a cross-sectionperpendicular to the edge to reduce it to a two-dimensional classi�cation problem.) Eventuallythe classi�cation problem is reduced to testing a number of points, each of which can be testedusing the logic formula approach above. Details are given in appendix A.4.3 S-boundsThe test for a null intersection given above works, and works well, but it is dumb in the way thatit computes the initial space-time bound to consider. To illustrate this, imagine a pair of unitcubes, aligned with some world coordinate axes, with the �rst cube starting at the origin andmoving with velocity (1; 1; 1) for a length of time T , and the second starting at (2; 0; 0) and movingwith the same velocity|then the hypervolume considered will be �(T 4), whereas in a coordinateframe moving with velocity (1; 1; 1) both cubes would be �xed, and the hypervolume consideredwould be �(T ). In practise this is not too much of a drawback, as the divide-and-conqueralgorithm would quickly prove large regions of space-time null, as they would be entirely outsideone or other of the extrusions. However, S-bounds provide a way of focusing the attention of thealgorithm; they also help to remove so-called redundant primitives from consideration [Cam89].4.3.1 Overview of S-boundsThe binary tree representing the intersection set contains information about the relative con-straints between the half-spaces due to the root node of the tree, and thus the relative constraintsbetween subtrees. S-bounds give us a way of organising these constraints, so that we can quicklyreason about which parts of the tree are mutually contradictive. S-bounds are described in detailin [Cam89]. An S-bound system is de�ned by a class of bounds, together with two operators u6Using regularised sets is essential if we wish to deal reliably with objects in contact.10



Let T denote a general node of the tree, L(T ) its left child, R(T ) its right child,P(T ) its parent, and �(T ) its bound. Then we have the following rules:Upward Rule: If T is a branch node, set �(T ) �(T ) u S whereS = 8><>: �(L(T )) u �(R(T ))�(L(T )) t �(R(T ))�(L(T )) 9>=>; if the operator at T is8><>: \[= 9>=>;Downward Rule: If T is not the root node, set �(T ) �(T )u �(P(T ))Figure 2: Upward and Downward rules for S-bounds.and t. The bounds are subsets of space|in this case <4|that are chosen to be easily describedand manipulated. The operators must satisfy the rules:A uB � A \B A t B � A [ Bfor all bounds A and B. robmod uses rectangular boxes, aligned with the world coordinatesystem, as three-dimensional S-bounds (3DSBs), and then the operators are given by A u B =A\B, and AtB is the smallest aligned box that contains A[B. Both of these operators can beimplemented in unit time by simply taking the maximum and minimum of pairs of coordinatesthat de�ne the corners of the box. Given a tree, an initial set of bounds is generated by settingthe bounds at the leaf nodes to be supersets of the relevant primitive shapes, and 
 (the universalset) elsewhere. Such a set of bounds has the S-bounds property, namely that the set given by eachsubtree need not be evaluated outside of its appropriate bound. The real power of S-bounds liesin the fact that we can then rewrite the bound set using the set of rewrite rules in �gure 2 to geta new, smaller set of bounds with the S-bound property, where the Upward rule is �rst applied ina bottom-up manner throughout the tree, followed by the Downward rule in a top-down manner,and repeating. As shown in [Cam89], this procedure converges quickly for three-dimensionalintersection detection problems, and leads to signi�cant computational savings as we can oftendemonstrate that entire subtrees can be replaced by the null set, and thus need not be exploredin detail.4.3.2 S-bounds in Four DimensionsWhen we discussed the problem with the standard divide-and-conquer algorithm we mentionedthat the hypervolume to be considered can grow large if we bound the space relative to a movingframe. For the same reason, simply extending S-bounds to be rectangular regions of space-time isnot as e�cient as it might be. Thus we have decided to use a slightly more complicated S-boundssystem for our four-dimensional intersection detection work, by choosing S-bounds that moreexactly bound the extrusions.Formally, our four-dimensional S-bounds (4DSBs) consist of the union of a number of convexpolytopes in space-time, with the polytopes not overlapping in time. In particular, we splitthe problem up along the time dimension into a number of time spans, [ti; ti+1], so that both11



objects are moving with constant velocities over each time span. (Thus if the objects have mand n motion components, there will be at most m + n time spans to consider.) Further, wechoose the operators u and t so that the 4DSBs have a relatively simple form; each 4DSB isthe extrusion of a 3DSB with the same motion as the corresponding object, except at the rootnode, where the 4DSB is the unevaluated intersection of the 4DSBs of its children. To see whythis permits simple combination operations, consider two 4DSBs of this form, namely h�; �1i andh�; �2i. Then we can see (by considering the spatial and temporal dimensions separately) thath�; �1i2h�; �2i � h�; �12�2i gives a suitable de�nition of the four-dimensional operators (where2 is one of u or t), using the standard three-dimensional aligned box operators. So, within thesubtrees for each object, we can e�ectively use only the three-dimensional combination operators,and ignore the motions.Matters are only slightly more complicated at the root node. We need to be able to intersecttwo rectangular regions of space-time moving with arbitrary linear velocities, and express theresult as the intersection of two new rectangular regions of space-time, each moving with thesame velocity as before. (We do not have to consider a t operation here, as the root node isalways an intersection node for collision detection.) We have computed a closed-form solutionfor this problem, which is detailed in appendix B. Note that when we consider this root nodewe may (and often do) generate a smaller time-bound than that originally given. In terms of theexample of �gure 1, this would be equivalent to placing a bounding rectangle around the triangle,and solving exactly for the space-time in which the rectangle bound and the square overlap. Thisby itself is not su�cient to prove that the triangle and the square overlap, but it does limit thesearch space for our divide-and-conquer algorithm.Example Consider the example from x4.1. The original robmod bounding procedure considersa space-time region of dimensions 4�4�68�64. Applying the closed-form solution to rectangularS-bounds in this case gives a space-time region of dimensions 2� 2� 4� 2 instead!5 ExamplesFigure 3(a) shows a snapshot of a pair of composite objects, which are under motions thatcause a collision. The two sets of objects are an autonomous vehicle, which is carrying a palletedload and is moving straight forward, and a line of trays, two of which are carrying loads andwhich are moving in a direction perpendicular to the motion of the vehicle (supported from aninvisible overhead rail). In terms of geometric complexity, the composite objects are described by19 and 10 primitive shapes in the CSG descriptions, which require about 150 linear half-spacesto describe. Figures 3(b) and (c) show two later snapshots, with the former showing a collisionbetween a loaded tray and the load of the vehicle. The collision detection routine was asked tosearch for clashes over a time span of length 20; the S-bound stage correctly identi�ed a subspanof length 1:33 as being of interest, and found a witness to the collision (a point in space-timeat which the collision was occurring) in 0:5s of CPU time (on a sun 3/260 without a 
oatingpoint accelerator). To illustrate the usefulness of the S-bound stage here, note that only 5 ofthe 29 original primitives survived the S-bound stage after 2 Up/Down passes7, reducing thehypervolume to be considered by a factor of 20. (These �gures are for illustration only; in practisethe regions discarded by the S-bound stage would have otherwise been quickly discarded by thedivision stage.)Instead of terminating when any point of collision is found, the routine can also be asked to�nd an earliest witness (a point when the collision starts). This is done by ordering the division7A simple extension of the arguments in [CY92] show that the four-dimensional S-bounds must converge in alinear number of passes. 12



(a) (b)
(c) Figure 3: Vehicle Moving in a Straight Line
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stage of the routine so that the `earliest' regions are examined �rst, and only terminating whenthe routine is sure that the earliest point has not been missed. As this involves a search overtime it is slower than just �nding any witness, although in this particular case the extra timerequired is small; the same example consumed 0:6s of CPU time. As a �nal extension, we canask the routine to �nd all the edges in the skeleton of the common collision region. In this casethere is no way of terminating early; for the same example this process took 15:9s of CPU time.The morale here is that a simple yes/no answer is normally far easier to obtain!The example above only considered single motion components. In �gure 4 we show the sameobjects as before, but now the trays have been lowered, so that the only part of the vehicle thata tray can only pass over is the centre section. The trays are moving with constant velocity,as before: the vehicle moves forward ((a)), stops((b) and (c)), and then moves forward ((d)),allowing a tray to move over itself in the process. It thus avoids collisions (but only just). Theroutine is able to check this; indeed, the S-bound stage is su�cient here (after two Up-Downpasses), as the paths and the objects happen to be aligned with the spatial axes. To make theproblem harder we can run the same test, but with all the spatial axes skewed with respect tothe \natural" axes de�ned by the problem. Even in this case checking for a collision took 4:1s;with the S-bound stage passing on a 11 leaf tree to the divide-and-conquer stage for one of the3 time spans, and providing 5 leaf trees for the other two time spans.6 The Multiple Objects ProblemUp to now we have been considering the problem of �nding collisions between only one pairof objects. If many objects are moving, we will wish to detect collisions between any pair ofobjects over a time span. A simple way of performing this is to consider each possible pair ofobjects separately. In many cases this is quite a sensible strategy, as we may wish to only test forcollisions between certain pairs. For example, if we have a robot manipulator we can often ignorethe possibility of collisions between adjacent links. However in the general case of n objects wewill have �(n2) possible object pairs to consider. Using extrusions it is possible to minimise anyduplication of e�ort, using the scheme given below. We follow the order that we used in thedescription of the case of a single pair of objects: the theoretical basis; the divide-and-conquermechanism; and the use of S-bounds.6.1 Theoretical BasisWe have n moving objects, say O1, O2,. . . ,On, with each Oi having a location function �i.To tell whether any pair collide, we need to determine whether Ei \ Ej 6= ; for i 6= j, whereEi = Ex(�i; Oi). But this will follow if the union of these Ei \ Ej 's is non-null, i.e., if]i fEig 6= ;where U is a new n-ary set operation, de�ned by]i fXig � [j 6=kXj \Xk(For completeness, we de�ne U to return ; if it has less than two argument sets.) Then toconsider whether there are intersections between any pair from fEig, we form a single CSG treefor each Ei, and then combine these as children of one U node. This operation has space andtime complexity linear in the size of the extrusions.14



(a) (b)
(c) (d)Figure 4: Vehicle Weaving
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6.2 Divide-and-ConquerGiven a composite CSG tree, with a U operation at the root node, the division process of x4.1 canbe used with little modi�cation. That is, starting with a tree and region of space-time, we needto be able to simplify the tree with respect to the region. Comparing the individual half-spacesat the leaves works exactly as before; to rewrite the tree, we need only additional rewrite rulesfor the U operation. These are given by the identities:� If Xj � ; UifXig � Ui6=jfXig� If any pair of Xi's are equivalent to 
 UifXig � 
The latter case yields proof of intersection.The conquer stage is also very similar to before. We just form candidate lines in space-timeby taking triples of half-spaces; split these using other half-space boundaries to form candidateedges; and consider the interior of these edges as points to check. Again, as each point is testedby considering a number of logical formulae this step is easily extended to take the U operatorinto account.Of course there is an extra penalty for considering n objects at once, instead of two; the sizeof the tree considered is bigger (by a factor of n=2). Assuming a division strategy that reducesthe problem into subproblems of bounded size then the e�ect of this increased size is to increasethe division time only; depending on the statistical distribution of the primitives, this can beexpected to increase only slightly worse than linearly [Cam84].6.3 S-boundsThe use of S-bounds in the many-pairs case is not as straightforward. The presence of the Uoperator at the root node of the tree changes the e�ective topology of the expression into a graph,as it is possible to �nd many paths from the root node to any leaf. However, the rewrite rulesthat make S-bounds e�cient are de�ned on tree structures.So to consider the properties of S-bounds about the U operator, we should rewrite the U asan equivalent tree. For example, UfE1; E2; E3g � (E1\E2)[(E2\E3)[(E3\E1). We note thatthe subtrees E1 \E2, etc., look like the entire tree in the case of a single pair of objects, and soif we were to concentrate our attention on one such subtree we could use the operators describedthere (including the special u operation). Also, if we apply the Upward rule at the root node (a[ operation) we obtain a bound on the entire tree: this bound will be bigger than that of anyof the subtrees, and so a subsequent application of the Downward rule about the root node willhave no e�ect on the bounds of the subtrees E1 \ E2, etc. Thus each subtree is, e�ectively, anisland, which will receive no useful information from any of the other subtrees. This suggests away for dealing with S-bounds about a U operator, without producing the expanded tree.1. Let the entire tree be UfEig. Associate with each node in each Ei an array of three-dimensional aligned boxes. To start the process, form three-dimensional S-bounds byconsidering just each Ei, placing the result for each node in every element, and set thefour-dimensional bound for the U node to be 
.2. For every pair 1 � i < j � n, apply the 4DSB processing for the implicit subtree Ei \ Ej .This is done by using the scheme of x4.3.2, using the bounds in the jth array elementsfrom Ei, and vice versa. When we are satis�ed with the bounds formed, add the (implicit)bound of Ei \ Ej to that of the U operator.The end result of this processing is a total (four-dimensional) bound at the root (U) node, plusa set of n bounds for each node of each Ei, with the jth set of bounds at Ei corresponding topossible interactions with Ej . 16



It will be noted that we have considered the interaction of all �(n2) pairs of objects by thisprocess. We regard this as a necessary evil, whose e�ect we are trying to minimise. It is possibleto produce bad-cases in which each object could, conceivably, collide with every other object, andso our routine must, in such cases, be prepared to consider all such pairs of objects. However,we believe that most real-life situations are much better behaved, and that only a few pairs ofobjects might collide. In such cases the S-bounds can decide, not only which pairs might collide,but also give bounds on the region of space-time in which each collision occurs, and even whichparts of each object could be involved in the collisions. Such `normal' situations will result inmost of the bounds created being ;. Further, it is possible to disable any further considerationof collisions between certain pairs of objects (e.g., adjacent links in a robot structure) by settingthe relevant S-bounds to ;; this e�ectively prunes the relevant pair from the CSG description.So once we have created these S-bounds we need to use them within the divide-and-conquermechanism. Here we suggest two schemes. The �rst, which would work well if only a few pairsof objects are shown to be capable of colliding, simply identi�es those pairs (from the S-bounds)and then tackles each pair separately (as in x4). This scheme is space-e�cient, as we can processeach pair when their S-bounds are considered without storing the S-bounds further. However, weare then performing the divide-and-conquer process many times. To avoid this we can use thesecond scheme, which is based on x6.2, but where we treat the union of the array of S-boundsstored at each leaf node as an outer bound for that node, and take these bounds into accountduring the division process8. This is done by ignoring any leaf node whose total S-bound doesnot intersect the region of interest; as the division process proceeds, the regions of interest getsmaller, and so more leaf nodes are (on average) pruned out. Further, at the conquer stage wecan take the S-bounds into account during the point classi�cation stage.The second scheme is likely to be more e�cient than the �rst when there are a large numberof possible collision regions between a large number of pairs of objects; however the organisationalcomplexity of the scheme increases. Intermediate approaches are possible; instead of forming theexact union of the S-bounds in the array (as a list of S-bounds), we could form an approximationto the union, using t instead of [. Again, the relative advantages of these approaches is heavilyin
uenced by the geometrical domain; the intermediate approach is likely to work well if thepossible collision regions for each object are localised (in space-time).Another approach that is likely to be useful for the many-pairs case is to build up a hierarchyof approximations to the objects. For example, in [FT87] a list of approximations to the shapeof objects is used, with the later approximations being �ner than the earlier approximations.We may think of the early approximations as shells around the objects; their algorithm initiallyconsiders the relationships between the outer shells, and when these get `too close' the currentshell is `broken' and the next approximation used. Thus a variable resolution is used in the models,depending on the distances between di�erent objects. To use this idea we would have to builda series of coarse S-bounds for each approximation, and to use di�erent levels of approximationsfor di�erent pairs of moving objects. In fact we may also regard the S-bounds in the CSG treeas naturally forming an approximation hierarchy, although then with sub-components of objectsrather than separate objects.7 SummaryWe have introduced a formalism that allows us to model objects in motion by subsets of space-time, and explained how the topological properties of the objects and motions a�ect the extrusionsformed. Extrusions can be used to transform the collision detection problem into an intersec-8We can, without loss of generality, consider only leaf nodes as the bounds formed are monotonic decreasing insize as we work down the CSG trees. 17



tion detection problem in space-time. The problem transformation is general, but takes on aparticularly easy form when the objects are described as a set-combination of half-spaces. Animplementation of the method has been developed for the case when the objects are polyhedraland moving with linear motions. The implementation uses a preprocessing step (based on S-bounds) which determines interesting regions of space-time in which to search for collisions. Thisstep also identi�es which parts of each object could be involved in collisions, and hence simpli�esthe size of the intersection detection problems. It should be noted that the preprocessing stepis easily extended to deal with other geometries, as we only need bounds on the sizes of regions.It could also be used with other forms of shape descriptions, for example, B-reps [RV82] wherean S-bound is stored with every boundary feature, although then it is more di�cult to identifywhich subcomponents of the objects might be involved in collisions. As a special case we coulduse a three-dimensional modeller to test for collisions between two-dimensional objects.The output of the preprocessing step is processed by a divide-and-conquer mechanism. Thisis based on splitting the original problem into a number of simpler problems, each of whichis �nally tackled using a generate-and-test routine. Of these stages only the `generate' step isdi�cult to generalise to arbitrary shapes and motions, as we used knowledge of the properties oflinear equations to produce our set of points to test.In use the preprocessing step is seen to be e�cient at selecting regions of space-time to test,at least for objects moving with linear motions. We conjecture that the preprocessing will alsowork well for general motions if we select bounds that are the extrusions of a simple shape (suchas spheres [Cam89]) moving with the centre of mass of the objects; this will involve a morecomplicated bound combination strategy as we will then, e�ectively, have to solve the collisiondetection problem for spheres.If many objects are moving we may wish to consider many potential pairs of objects in colli-sion. This can be tackled under the same framework by a slightly more complicated preprocessingsystem that identi�es which object-pairs are of interest. The remainder of the processing can beperformed (potentially in parallel) by a simple extension to the divide-and-conquer framework.Although for n objects there are �(n2) object pairs that could collide, the advantage of ourapproach is that we can share much of the processing, as the extrusions for each object are thesame regardless of which other object is potentially involved in a collision. This is not the casefor, say, the swept volume method for collision detection, in which the relative motions betweenobjects has to be used.The main limitation of the routine described here is in terms of the shapes and motions itcan consider. However the ability to deal with linear motions is useful for cartesian mechanismsand robots, vehicles, and the end-e�ectors of general robots under cartesian control. Generalrotations, such as those a�ected by the body of an anthropomorphic robot, do cause practicaldi�culties. Most of the routine is easily extended, with the real problem being performing the�nal null object detection tests (x4.2), which must generate a su�cient set of points to be sureof collisions. E�ectively, if you double the number of di�erent types of surfaces that have tobe considered then the number of ways of generating test points goes up by a large factor,whereas the extensions to the other stages scale linearly. This e�ect is well-known within thegeometric modelling community. A partial solution might be to adapt Canny's algorithm [Can86]as a solution to the null object detection problem, either by using his quaternion mapping toencode rotations as polynomial half-spaces, or by calling his routine in the hard cases with thevertices and surfaces within the regions given by the divide-and-conquer mechanism. Canny'simplementation combines `traditional' hand-encoded programming (to describe the con�gurationspace obstacles) with computer algebra techniques (to �nd the roots of the polynomials). For atruly general solution, in terms of the coverage of surface and rotation types, we believe that we18
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5. Similarly, if the fpig span three dimensions consider test points of the form f�pi � pjg.This is equivalent to testing a general vertex in three-dimensions by crawling along allpossible edges leading from that vertex, and testing those recursively.B Special Form of the u OperatorThe routine to be described takes two S-bounds, each consisting of a spatial (rectangular) boundmoving with constant velocity, and computes two new spatial bounds that tightly enclose theintersection, together with a new time-span [tl; th] over which they are valid. We may obtaina null time-span, which indicates that the space-time bound is null, and thus that the objectscannot collide (in this time-span). The algorithm proceeds as follows:1. Compute the new time-span, [tl; th], by considering the intersection of the spatial bounds.2. By considering each spatial dimension separately, compute the new spatial bounds.Note that if the objects have the same velocity, then the temporal bound is una�ected, and thechange in spatial bound is equivalent to that for the three-dimensional S-bound system.Computing [tl; th] Let q be one of the spatial parameters (x, y or z). Then if we ignore theother spatial parameters we are given four relationships between q and t, of the formut+ a � q � ut+ � vt+ b � q � vt + �(a, �, b and � are obtained directly from the 3DSBs, and u and v are the velocity components.)Solving these inequalities for t gives b � � � (u � v)t � � � a. [tl; th] is formed by taking theintersection of the three intervals formed in this way, together with [tL; tH ]. (A null time intervalcauses a null set to be returned, signifying a provably null region.)Computing the Spatial Bounds For each spatial component q, we e�ectively computebounds on q at each of tl and th, and then \push" the four spatial bounds to touch thesebounds. The bound at th is given by qh � q � Qh, where qh = max(uth + a; vth + b),Qh = min(uth + �; vth + �), and we can obtain similar expressions for the bounds at tl, qland Ql. (Note that, by our choice of tl and th, qh � Qh and ql � Ql.) Then we need tochoose values for the new spatial bounds, [a0; �0] and [b0; �0], so that the relevant space-timebounds (ut + a0 � q � ut + �0, etc.) contain the intersection region. This is satis�ed by settinga0 = min(ql � utl; qh � uth), which simpli�es toa0 = max(a; b+min((v � u)tl; (v� u)th))�0 = min(�; � +max((v � u)tl; (v � u)th))with similar expressions for b0 and �0. (To derive these forms, apply the a�ne transformationsq ! q � ut and q ! q � vt in turn. Note that we are guaranteed to have a0 � �0, etc.)An example is given in �gure 5, in which the dashed region shows the intersection of the sixbounds, but for which a reduction in the size of the bounds is not possible (along this spatialdimension). If one of the temporal bounds were to lie along the dashed line instead, a reductionin size would be possible. 21
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Figure 5: Example of a projection in q{t spaceOptimal Fitting of the Final Region The �nal region is the intersection of the two 4DSBs,together with a time bound, [tl; th]. We need to �nd a single rectangular bound around thisregion, to be passed to the divide-and-conquer routine. However, we are at liberty to measurethe velocities with respect to any frame we choose when selecting this frame. This is equivalentto applying an a�ne transform to the space-time diagrams, or �tting an optimal parallelogramregion around the projection of each parameter q. In fact, if we choose to measure with respectto a frame moving with velocity w in the direction above, and noting that the intersections ofthe left-most and right-most bounds in q cannot be redundant (as otherwise we could choosebetter bounds), then we �rst see that choosing w outside the range between u and v cannot givea optimal �t. So consider w = �u + (1� �)v for � 2 [0; 1]. Then we can show that the sides ofthe parallelogram are �c apart (measured in the q direction), where�c = �(�� a) + (1� �)(� � b)and so we are best choosing between w = u or w = v (unless either is optimal, in which caseso is any such w). Notice that this is not necessarily the same as choosing to regard one of theobjects as �xed: we decide which object to \�x" in each spatial dimension separately.
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