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Abstract

The collision detection problem is easily stated: “Given two objects and desired motions, decide
whether the objects will come into collision over a given time span”. The solution of this problem
is useful, both in robotics and other problem domains. We describe a method for solving collision
detection that involves transforming the problem into an intersection detection problem over
space-time. We give the theoretical basis for the solution, and describe an efficient implementation
based on describing the objects and motions constructively. We also consider the related problems
of describing the collision region, and of detecting collisions when there are a more than two
moving objects.
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1 Introduction

The collision detection problem may be stated as: “Given two objects and desired motions, decide
whether the objects will come into collision over a given time span”. Solving this problem is useful
in its own right, and the solution can also be used as parts of algorithms that try to generate
collision-free paths. We have been especially interested in solving the collision-detection problem
for robotics, but the work reported will also be of interest in other problem domains, such as
VLSI and electronic circuit layout, “Cloth-cutting”, bin-packing, assembly planning, and driving
numerically-controlled machines. Previous work on this problem has mainly arisen from two
sources. One source has been the proliferation of CAD descriptions of shapes, and the desire
to do more design on the computer (e.g., [Boy79, Mey81, Mye81, CK86]). Another source has
been from algorithm design in its own right, which emphasises the design of algorithms with low
computational complexity. Our work is rooted firmly in the former camp, but with emphasis on
the production of efficient algorithms.

There are many different algorithms for collision detection. As argued in [Cam85], one class
of algorithms is conceptually the simplest: we choose a number of times, {t;}, within our time-
span of interest, and perform a (static) interference test at each #;. This algorithm has many
advantages: it is relatively simple, it is not necessary to derive a closed-form for the motion
(access to a sampling function will suffice), and it gives good operator feedback when used as
part of simulation. However, the algorithm is not perfect, and, in particular, it does not work
well if objects come into contact. Another method is to compute the volume swept out by the
objects over their motions, and to declare a collision if these swept volumes intersect. Again this



method is intuitive but, as we shall see, the method described in this paper is effectively better
(except in some “special cases”).

[Can86] describes yet another method for collision detection, in which the problem is trans-
formed into detecting collisions for a point in configuration space [L.P83]. Effectively Canny
considers intersection detection between a line and six-dimensional configuration space obsta-
cles, using algebraic techniques to find the intersection regions. Configuration space is normally
associated with solutions of the collision avoidance problem (e.g., [LP87, Don87, Can88]). We
believe that collision detection is worthy of separate study as it can often be solved far faster
than collision avoidance; also, many collision avoidance schemes require a collision detector to be
run first to generate information about the collision region (e.g., [Mye81]).

In §2 we give the formal basis for four-dimensional intersection testing. To visualise the pro-
cess, we may imagine an analogue, whereby we perform collision-detection in a two-dimensional
world [Abb52]. Imagine the two polygonal objects shown in figure 1(a) as starting from the po-
sitions shown and having the velocities arrowed. Now imagine that the two-dimensional universe
that they inhabit is, in fact, the floor of a lift', which is moving vertically upwards with some
constant velocity. Then the polygons will sweep out prisms in three-dimensional space, as shown
in figure 1(b). We can think of the vertical dimension in this case as being a time dimension;
taking a particular horizontal slice of these prisms gives the positions of the polygons at the cor-
responding time. Then, as we shall show, the polygons collide if and only if the prisms intersect.
Figure 1(c) shows the union of the two prisms, and figure 1(d) shows their (non-null) intersection.

§3 describes how this problem transformation is performed within a geometric modelling
system called ROBMOD [CAS88]. §4 gives the meat of the implementation, which is based on
the more general routine described in [Cam89]; examples of the routine in action are given in
§5. The routine has a natural extension to tackle the collision detection problem when there are
many possible pairs of objects that could collide; this is outlined in §6. Further extensions, and
connections with work on other problems, are described in §7.

2 Mathematical Basis

We regard an object as being defined by a point set. (This is equivalent to assuming that we
know exactly where objects are, and what their shape is.) Given an object O, we assume the
existence of a location function, A, which is a function that tells us where the object is at a given
time. In particular, A takes a time ¢ and returns a transformation A(¢) which tells us how to
move O into its position at time ¢, and so at this time O occupies the point set

{x](Fy)y € O and x = A(t)(y)}

which we normally write as A(¢)(O). As an example, an object which is at its rest position at
time 0 and has a constant velocity v has a location function that moves the point x to the point
x + vt at time t. We will only be concerned with rigid-body motions, but we note that most of
the motions made by “normal” materials, including elastic deformations and fluid flows, can (in
principle) be described by invertible, continuous location functions, as matter is not lost during
the transformation.

2.1 Extrusions

The above definitions give us enough structure to formally define the extrusion operation that
we introduced informally in §1. Given an object O and corresponding location function A, we
define the extrusion operator Ex by

Ex(A,0) = {(x1)|xe A)(0)} (1)

Laka. “elevator”.
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Figure 1: Example of extruding from two-dimensions into three.




An equivalent definition (for invertible transformations) is

Ex(A,0) = {(x,1)|A(t)"(x) € 0} (2)

Then we note that object A (with location function A4) collides with object B (with location
function Apg) if and only if

I(x,1) x € Aa(t)(A) and x € Ap(t)(B) & Ex(As, A)NEx(Ag, B)#0

i.e., two objects collide if and only if their extrusions intersect.

Thus extrusions give us a mathematical framework for considering the collision detection
problem. However, these definitions do not tell us how to construct extrusions. [ER83] considers
the extrusion of collections of simple shapes, namely spheres. [ST85, FS89] use a hierarchal
description called a bintree? to describe space-time; the bintree is constructed using an algorithm
similar to that described in §4.1, but always continues division until the space-time region is full
or empty. [Gla88] uses space-time to perform ray-tracing of moving objects for animation, for
which only samples of the extrusion are required. [JP88] give a construction for the boundary
of extrusions when the location functions correspond to linear velocities and the objects are
polyhedral, but in general the boundary of an extrusion may be quite complex.

In our work we have used constructive solid geometry (CSG) as the method for describing
three-dimensional shapes, whereby a shape is given as a set-combination of simple shapes—
this is a common description method for solid models [RV82]. Effectively, a CSG description is
equivalent to a Boolean function F' of a number of simple objects P;, so that the object is given
by

F(Py, Py, ..., Py)
where ' is obtained by use of the set operations of union (U), intersection (N) and difference
(/). Given such an I we may derive the function F', obtained from F by replacing each three-

dimensional set operation by the corresponding four-dimensional set operation®. Then the
following distribution theorem gives us a way of simplifying the construction of extrusions:

¢ Distribution Theorem

The extrusion operation distributes over the set operations; that is

Ex(A, F(P1, Py,..., Py)) = F(Ex(A, P),Ex(A, Py),...,Ex(A, P,))

Proof (for the standard set operations) Let F denote the logical formula derived from a set
formula F'in the normal way (by replacing U by V, etc.). Then

(X,t)EEX(A,F(Pl,PQ,...,Pm)) =4 (t) ( )EF(Pl,PQ,...,Pm)
o FAD)U(X) € Pr,..., A1) (%) € Pp)

& F((X,t)EEX(A Py, ..., (x,t) € Ex(A, Pp))

o (x,1) € F(Ex(A, P, Ex(A, Py)..., Ex(A, P))

as required.
The distribution theorem simplifies the construction of extrusions as it is often easy to write
down the form of an extrusion of a simple shape P;. In particular, if each F; is a half-space:

P ={x|pi(x) <0} for some function p;

2Similar to a quadtree [Sam84]
Essentially F' and I look the same; they are distinguished for reasons of pedantry.
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then the extruded half-space is another half-space:
Ex(A, P;) = {(x, 1) pio A(t) "' (x) < 0} (3)

where o denotes functional composition. One specific case that is of interest is when each half-
space of the object is linear, and moving with constant linear velocity. So if P corresponds to
the half-space p(x) = n.x + d (where . is the scalar product operator) and A is the location
function corresponding to the identity transform at time 0 and a constant velocity v, we find
that Ex(A, P) corresponds to the (four-dimensional) half-space

p(x,t) =nx—n.vi+d (4)

We use the combination of (3) and the distribution theorem to model the extrusions of objects.
If we have two extrusions, say F( Py, P2, ..., Py) and G(Q1,Q2,...,Q,), where Py, etc., denote
extruded primitives, then the objects collide if and only if the extrusions intersect; that is, if

ﬁ(P17P27'"7]5m7@17@27"'76jn)#@

where

ﬁ(P17P27'"7]5m7@17@27"'76jn):F(Plvp%"'vpm)mé(@lv@?v"'vgn)

So we have transformed the collision detection problem into one of detecting whether any (four-
dimensional) point satisfies a region given by a set theoretic formula.

2.2 Mathematical Niceties

The standard set operations are not generally used in geometric modelling practise, as it is
possible to construct non-three-dimensional objects with them. Instead the (closed) regularised
set operations are used; these are equivalent to performing a standard set operation, followed by
taking the closure of the interior of the resultant set. (Informally: we perform the set operation,
and stretch a tight skin over the resultant set.) These operations can be shown to form a
Boolean algebra [TR80], and the main problem in using them is that we have to be a careful
when considering the boundaries of sets formed. However, the following result can be shown
[Cam84]:

¢ Distribution Theorem (for regularised sets)

The extrusion operator Ex distributes over the (closed) regularised set operations.

Proof Here we will just give an outline proof of the theorem; details are to be found in [Cam84].
By the same argument as was used for the standard set operations, we find that

(x,1) € reg(Ex(A, F(Py,..., Py))) & (x,1) € F(Ex(A, Py),...,Ex(A, P,))

where reg is the (four-dimensional) regularisation operation. Thus the result will follow if
Ex(A, F(Py,...,P,)) is a regular set. But F(Py,..., P,,) is regular (in three dimensions), and
as A and its inverse are both continuous bijections we can show that Ex(A, F(Py,..., Py,)) will
be regular, provided that the time span of interest is regular in one dimension, i.e., as long as
the time domain forms a closed set. To see that this is a reasonable requirement, consider the
extrusions of the two-dimensional objects in figure 1; if the extrusion is carried out over an open
time interval, the ‘tops’ and ‘bottoms’ of the extrusions will be open, and so the extrusions would
not be regular.



Another property of “well-behaved” geometric models is that they be triangulable [Req77];
effectively, that their boundaries can be described by a finite number of elements. For the work
reported here triangulability follows from the finiteness of the CSG descriptions; however it is
interesting to note that triangulability is preserved under extrusion for the standard location
functions [Cam84].

2.3 Connection with Sweeping

As mentioned in §1, a common way of performing collision detection is to compute the vol-
ume swept out by each object, and test these swept volumes for interference. Sweeping can be
formalised by introducing the operator Sw, with

Sw(A,0) = {x[ Ay, 1) x = At)(y)}

Comparing this equation with (1) we note that sweeping is equivalent to extrusion into space-
time followed by a projection operation back into the original space, and thus that, functionally,
sweeping is more complex than extrusion. It also explains why sweeping two moving objects and
testing for interference is not a sufficient test for collisions between the objects; the objects might
occupy the the same space at different times, but this temporal information is suppressed by the
sweeping operation. Sweeping can be made a suflicient test by considering the relative motions
of two objects. However, such relative motions may be complex, and if there are many objects
moving we may have to consider many pairs of relative motions. Using extrusion to solve the
many-pair problem is more promising, as explained in §6.

Given this added in-built complexity of sweeping over extrusion, it is interesting to speculate
on the popularity of the sweeping method. We postulate two reasons. Firstly, for some shapes
and some motions, the swept volume has a particularly nice form. For example, in [dPBBS&3]
spheres are rotated and translated to form volumes that can be modelled using toroids, cylinders
and spheres. Thus for these cases a fairly conventional solid modeller can be used. The second
reason is a lack of familiarity with the mathematics involved. (We hope that this paper might
help to alleviate such fears.)

3 Implementation

In our implementation, which is part of a solid modelling system called RoBMOD [CAS88], shapes
are entered as expressions, that describe the shapes in terms of parameterised simple shapes
(such as blocks and cylinders), together with rigid-body transformations, joint parameters (for
mechanisms), and set operations. These descriptions are read by a parser that converts them
into a tree structure, whose leaf nodes reference instances of simple shapes, and whose branch
nodes either represent transformations or binary set operations. For simplicity we may imagine
these trees to be equivalent to trees without the transformation nodes, i.e., whose branch nodes
denote only binary set operations, and whose leaf nodes include the appropriate transformation
together with the simple shape.

We have used the construction paradigm to denote location functions also. A ROBMOD ex-
pression of type motion is made up of a chain of primitive motion commands, together with the
times for which each is applicable. For example, the expression

rest until 0 vel 1 2 3 until 5 vel 0 1 1 until 10 rest

denotes a motion that is at rest until time 0 and after time 10, the velocity (1,2, 3) between times
0 and 5, and the velocity (0, 1, 1) between times 5 and 10. This effectively gives us the derivative
of the location function; to fix a particular function we specify that a motion corresponds to the



identity transformation at time 0. This syntax was used for convenience only; other syntax could
easily be used in its place (such as specifying via points).

To attach a motion expression to a given shape, we make a ROBMOD worm expression? by
connecting a shape expression to a motion expression. The collision detection function is given
two worms as input, together with a time-bound over which to test for collisions. (The time-
bound is not strictly necessary, as will be explained in §4.3.) In turn, each worm is presented
internally as a binary shape tree, together with a list of primitive motion components for that
shape. These inputs are further converted into a single binary tree whose branch nodes are
set operations and whose leaf nodes correspond to four-dimensional half-spaces. The rest of this
section gives the procedure for generating this tree, and §4 gives the procedure for testing whether
this tree corresponds to the null set (and thus whether the objects collide within the given time
bounds).

The procedure for deriving the tree, given a single motion component, is straightforward:

1. The leaf nodes in the shape tree correspond to complete simple shapes. We first rewrite
each simple shape into an appropriate combination of half-spaces—for example, a block is
replaced by the intersection of six linear half-spaces.

2. The shape tree is now extruded—effectively, by extruding each primitive (using (3)) and
replacing each three-dimensional set operation by its four-dimensional version. (In fact,
in ROBMOD the second operation is a null step, as there is a single set operation node,
regardless of the dimensionality.)

3. This gives us an extrusion defined for all time. To limit the time to the time span of interest,
say t; <t < tp, we intersect this extruded shape tree with the intersection of the two linear
half-spaces —t < —t; and t < 3.

Example Consider the block given by —1 < z,y,z < 1 moving with velocity (1,1,1) for
0 <t <10, and at rest otherwise. Then the complete extrusion is given by the union of

1. The intersection of the seven half-spaces —1 < z,y,z2 < 1 and t <0.
2. The intersection of the eight half-spaces t — 1 < z,y,2<t+1,¢t > 0 and ¢t < 10.
3. The intersection of the seven half-spaces 9 < x,y,z < 11 and ¢ > 10.

To construct a CSG description with multiple time components, say t; < t3 < ... < t,, we find
the extrusion over each component separately, bound the tree between max(t;,¢;) and min(¢s, ¢;41)
(1 <4< n), and then take the set union of the extrusion trees to get the total extrusion. This gives
us a binary tree that completely specifies each worm; these are then intersected (symbolically) to
represent the entire region of space-time for which the objects overlap. (An alternative approach
is to identify the time spans over which both objects have constant velocities, and to run the
collision detection process separately for each time span. This is the approach used in §4.3.)

In our current ROBMOD implementation we restrict ourselves to generating only linear four-
dimensional half-spaces. This is done simply by considering only polyhedral approximations
to shapes, moving through motions which are composed of linear velocity segments. Thus we
actually rewrite, say, a cylinder as the intersection of a number of (three-dimensional) linear
half-spaces, and extrude all the half-spaces using (4).

4 . . . . . .
So called because we can imagine the corresponding extrusions as “worms” in space-time



4 Null Set Detection

We now have a four-dimensional intersection set, specified by a Boolean tree, and we want to
see whether the set is empty. This can be regarded as a set satisfiability problem: does there
exist a (four-dimensional) point that satisfies the set given by this Boolean formula? Several
techniques exist for solving the intersection problem in three or fewer dimensions, and many of
these techniques are amenable to tackling the four-dimensional problem. We will follow the gen-
eral approach detailed in [Cam89], giving the modifications required for our particular geometric
domain. Effectively, the algorithm is split into three stages, which operate in cascade to provide
an efficient solution to the problem. These stages are:

1. A pre-processing stage, based on reasoning about approximations to subtrees. This stage
is called the S-bound preprocessing stage.

2. A divide-and-conquer stage, whereby the problem is dynamically split into a number of
simpler problems to reduce the computational complexity.

3. A generate-and-test stage, at which the exact geometry of the problem is considered.

The purpose of the cascade is to reduce the overall time cost of the algorithm, by using relatively
cheap processing to solve the ‘easy’ parts of the problem and only passing onto the further stages
the parts that are still in doubt. Here, a “part” means a rectangular® region of space-time in which
we search for a point in the intersection set. Note that, for simplicity, we have not implemented
the redundancy-based routine described in [Cam89].

In order to follow the development of this algorithm, and to improve the presentation, we
describe the S-bound preprocessing stage last.

4.1 Divide-and-Conquer

The input to this stage is a CSG description, plus a rectangular region of space-time within which
to search for evidence of non-nullity. (Finding such evidence implies that the extrusions overlap
and so that the objects collide.) In our original implementation a bounding region of space was
computed for each object by enclosing the object at every one of the points in time at which
the velocity changes; the space-time region was then generated by intersecting the space regions
for the two objects, and adding the time bounds given to the clash function. In the current
implementation the space-time region is given directly by the S-bound preprocessing step (as
described in §4.3).

This region and the intersection tree could be passed straight to the routine given in §4.2, but
for reasons of computational efficiency we interpose a divide-and-conquer stage, which replaces
our single problem by a number of smaller problems. The mechanism involved is discussed in
detail in [Cam89], and we only give brief details here.

1. Given a region of space-time R, and a tree, T', we measure the complexity of T, and decide
whether to continue to the generate-and-test routine (§4.2), or to divide the problem up.

2. To divide the problem we split the region R into a number of subregions {R;}, with the
subregions covering K. Then, for each R;, we make a simplified copy of the intersection tree
T;, using the technique discussed below. The region/tree pairs (R;,T;) are then recursively
evaluated (step 1).

®We use ‘rectangular’ to imply a product set of closed intervals, i.e., an aligned rectangle in two dimensions, a
box in three, etc.



3. The entire problem terminates whenever any subproblem discovers that the intersection set
is non-null, or when all the subproblems have reached the generate-and-test stage.

Note that the space requirement of this process is proportional to the maximum depth of subdi-
vision, and not to the total number of regions examined.

As each of our regions are aligned, rectangular boxes (in four-dimensions), then a simple
strategy for splitting the regions is to split each box into sixteen parts by bisection along each
coordinate axis. This is, in fact, the strategy that we have adopted, as it seems to work well;
however a number of heuristics could be invoked to try to balance the size of the subproblems
generated; [Woo86] gives examples of such heuristics in a three-dimensional situation.

The simplification strategy is based on the observation that if the boundary of a half-space
does not pass through a region, then the corresponding leaf can be removed. For our convex
half-spaces and convex polyhedral regions, we can check whether the boundary intersects the
region simply by computing the half-space function at the region extreme points. It is worth
noting that we may often discover that a region simplifies to a null region, or a completely full
region (proving non-nullity without having to consider the boundary intersections), or a region
with only one or two half-space boundaries passing through it. In the latter case an efficient
closed-form solutions exists, namely by treating the simplified tree as defining a formula of the
propositional logic, and testing whether it is a contradiction.

Example A sphere of radius 4 has centre at (5,5,5) at time 0, and moves with velocity (1,1,1).
A cube of sides 4 is centred at (44,54,5) at time 0, and moves with velocity (0,0,1). To test
whether any collision occurs in 0 < z,y, z,t < 64 we consider the intersection of the 7 extruded
half-spaces
(x=5—-1)24+(y—5—-1)*+(z—-5-1)%?<16

42 <z <46

52 < y < 56

3<z—-1t<7

The division mechanism quickly decides that only the space-time bounded by 40 < z < 48,
52 <y < 56,44 < z < 52 and 42 < ¢t < 46 contains any points of interest, and goes on to pass 8
regions of width 4 to the next stage for further investigation. This means that only approximately
0.01% of the original hypervolume is explored in detail.

Calculation of the computational complexity of this process is difficult, as the worst-case
analysis is, experimentally, extremely pessimistic, and it is difficult to characterise a set of more
realistic cases to give a measure of the expected complexity; however our analysis does suggest
that the expected complexity is not worse than O(n?) [Cam89]. We can also apply some heuristics
to speed up the process, such as relating our measure of ‘complexity’ of a tree to the size of the
region. In our implementation we measure the complexity of a tree by its number of leaf nodes,
and decide to ‘conquer’ instead of ‘divide’ if the complexity is smaller than x(d), where d is
the number of division steps already performed. In our implementation we use x(d) = 2d + 6
(0 < d <6). If the region size becomes very small we assume that the intersection hypervolume
is so small that it can be ignored. In practise, this has never happened.

4.2 Generate-and-test

The generate-and-test routine is our general routine that checks for nullity. More sophisticated
routines can be devised (e.g., [RV89]), but as the divide-and-conquer mechanism ensures that
the problems given to our routine are bounded in size, we have chosen to go for simplicity, and
follow the approach given in [Cam89]. This involves generating a sufficient set of test points (in



space-time) and checking these points to see if any is inside the intersection set. To generate the
point set, we go though a loop:

1. For every triple of half-spaces referenced by the tree, find their intersection. In the general
case, this will be a line through space-time.

2. Intersect every line with every half-space. (We do not, of course, need to intersect with
any of the triple from which this line was formed.) This gives a number of potential edge
segments; if the intersection polytope is non-null, some of these edge segments will lie inside
or on the intersection set.

3. For every edge segment, classify the mid-point.

This algorithm thus requires O(n*) point classifications. In a non-regularised set system, it
would be sufficient to classify a point by evaluating the half-space functions at the point, and
combine the Boolean truth values using A where we see set intersection, etc. Classification in
this case is a linear time process, and so the total complexity of this stage is O(n®). However,
in a regularised system we have to take the neighbourhood of the points into account.  Qur
choice of points to test—the mid-points of potential edges—is significant here, as we can then
take a cross-section to the line at the test point. This reduces the problem to evaluating the
intersection of three planes in three-dimensions, which is isomorphic to the problem of classifying
a vertex in three-dimensions. In turn, this can be solved by considering the edges surrounding the
vertex (which are the intersections of pairs of the original triple of half-space boundaries, together
with the cross-section hypersurface), and using neighbourhood classification techniques directly
on these. (Compare this with classifying an edge in three dimensions, by taking a cross-section
perpendicular to the edge to reduce it to a two-dimensional classification problem.) Eventually
the classification problem is reduced to testing a number of points, each of which can be tested
using the logic formula approach above. Details are given in appendix A.

4.3 S-bounds

The test for a null intersection given above works, and works well, but it is dumb in the way that
it computes the initial space-time bound to consider. To illustrate this, imagine a pair of unit
cubes, aligned with some world coordinate axes, with the first cube starting at the origin and
moving with velocity (1,1, 1) for alength of time 7', and the second starting at (2,0,0) and moving
with the same velocity—then the hypervolume considered will be ©(7*), whereas in a coordinate
frame moving with velocity (1,1,1) both cubes would be fixed, and the hypervolume considered
would be O(T). In practise this is not too much of a drawback, as the divide-and-conquer
algorithm would quickly prove large regions of space-time null, as they would be entirely outside
one or other of the extrusions. However, S-bounds provide a way of focusing the attention of the
algorithm; they also help to remove so-called redundant primitives from consideration [Cam89].

4.3.1 Overview of S-bounds

The binary tree representing the intersection set contains information about the relative con-
straints between the half-spaces due to the root node of the tree, and thus the relative constraints
between subtrees. S-bounds give us a way of organising these constraints, so that we can quickly
reason about which parts of the tree are mutually contradictive. S-bounds are described in detail
in [Cam89]. An S-bound system is defined by a class of bounds, together with two operators M

5Using regularised sets is essential if we wish to deal reliably with objects in contact.
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Let T denote a general node of the tree, L(T') its left child, R(T") its right child,
P(T) its parent, and 5(7T) its bound. Then we have the following rules:

Upward Rule: If 7" is a branch node, set 5(1T') — (1)1 .S where

PIT)) 1 BR(T)) n
S =4 B(LT)) U B(R(T)) pif the operator at T"is¢ U

BULT)) /

Downward Rule: If 7' is not the root node, set 5(1') — p(T) N B(P(T))

Figure 2: Upward and Downward rules for S-bounds.

and U. The bounds are subsets of space—in this case #*—that are chosen to be easily described
and manipulated. The operators must satisfy the rules:

ANB2DANDB AUBDAUB

for all bounds A and B. ROBMOD uses rectangular boxes, aligned with the world coordinate
system, as three-dimensional S-bounds (3DSBs), and then the operators are given by AN B =
AN B, and AU B is the smallest aligned box that contains AU B. Both of these operators can be
implemented in unit time by simply taking the maximum and minimum of pairs of coordinates
that define the corners of the box. Given a tree, an initial set of bounds is generated by setting
the bounds at the leaf nodes to be supersets of the relevant primitive shapes, and € (the universal
set) elsewhere. Such a set of bounds has the S-bounds property, namely that the set given by each
subtree need not be evaluated outside of its appropriate bound. The real power of S-bounds lies
in the fact that we can then rewrite the bound set using the set of rewrite rules in figure 2 to get
a new, smaller set of bounds with the S-bound property, where the Upward rule is first applied in
a bottom-up manner throughout the tree, followed by the Downward rule in a top-down manner,
and repeating. As shown in [Cam89], this procedure converges quickly for three-dimensional
intersection detection problems, and leads to significant computational savings as we can often
demonstrate that entire subtrees can be replaced by the null set, and thus need not be explored
in detail.

4.3.2 S-bounds in Four Dimensions

When we discussed the problem with the standard divide-and-conquer algorithm we mentioned
that the hypervolume to be considered can grow large if we bound the space relative to a moving
frame. For the same reason, simply extending S-bounds to be rectangular regions of space-time is
not as efficient as it might be. Thus we have decided to use a slightly more complicated S-bounds
system for our four-dimensional intersection detection work, by choosing S-bounds that more
exactly bound the extrusions.

Formally, our four-dimensional S-bounds (4DSBs) consist of the union of a number of convex
polytopes in space-time, with the polytopes not overlapping in time. In particular, we split
the problem up along the time dimension into a number of time spans, [t;,%;+1], so that both
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objects are moving with constant velocities over each time span. (Thus if the objects have m
and n motion components, there will be at most m + n time spans to consider.) Further, we
choose the operators M and U so that the 4DSBs have a relatively simple form; each 4DSB is
the extrusion of a 3DSB with the same motion as the corresponding object, except at the root
node, where the 4DSB is the unevaluated intersection of the 4DSBs of its children. To see why
this permits simple combination operations, consider two 4DSBs of this form, namely (A, 1) and
(A, B2). Then we can see (by considering the spatial and temporal dimensions separately) that
(A, B1)T(A, B2) = (A, 51005;) gives a suitable definition of the four-dimensional operators (where
O is one of M or U), using the standard three-dimensional aligned box operators. So, within the
subtrees for each object, we can effectively use only the three-dimensional combination operators,
and ignore the motions.

Matters are only slightly more complicated at the root node. We need to be able to intersect
two rectangular regions of space-time moving with arbitrary linear velocities, and express the
result as the intersection of two new rectangular regions of space-time, each moving with the
same velocity as before. (We do not have to consider a Ll operation here, as the root node is
always an intersection node for collision detection.) We have computed a closed-form solution
for this problem, which is detailed in appendix B. Note that when we consider this root node
we may (and often do) generate a smaller time-bound than that originally given. In terms of the
example of figure 1, this would be equivalent to placing a bounding rectangle around the triangle,
and solving ezactly for the space-time in which the rectangle bound and the square overlap. This
by itself is not sufficient to prove that the triangle and the square overlap, but it does limit the
search space for our divide-and-conquer algorithm.

Example Consider the example from §4.1. The original ROBMOD bounding procedure considers
a space-time region of dimensions 4 X4 X 68 X 64. Applying the closed-form solution to rectangular
S-bounds in this case gives a space-time region of dimensions 2 X 2 X 4 X 2 instead!

5 Examples

Figure 3(a) shows a snapshot of a pair of composite objects, which are under motions that
cause a collision. The two sets of objects are an autonomous vehicle, which is carrying a palleted
load and is moving straight forward, and a line of trays, two of which are carrying loads and
which are moving in a direction perpendicular to the motion of the vehicle (supported from an
invisible overhead rail). In terms of geometric complexity, the composite objects are described by
19 and 10 primitive shapes in the CSG descriptions, which require about 150 linear half-spaces
to describe. Figures 3(b) and (c) show two later snapshots, with the former showing a collision
between a loaded tray and the load of the vehicle. The collision detection routine was asked to
search for clashes over a time span of length 20; the S-bound stage correctly identified a subspan
of length 1.33 as being of interest, and found a witness to the collision (a point in space-time
at which the collision was occurring) in 0.5s of CPU time (on a suN 3/260 without a floating
point accelerator). To illustrate the usefulness of the S-bound stage here, note that only 5 of
the 29 original primitives survived the S-bound stage after 2 Up/Down passes’, reducing the
hypervolume to be considered by a factor of 20. (These figures are for illustration only; in practise
the regions discarded by the S-bound stage would have otherwise been quickly discarded by the
division stage.)

Instead of terminating when any point of collision is found, the routine can also be asked to
find an earliest witness (a point when the collision starts). This is done by ordering the division

TA simple extension of the arguments in [CY92] show that the four-dimensional S-bounds must converge in a
linear number of passes.
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Figure 3: Vehicle Moving in a Straight Line
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stage of the routine so that the ‘earliest’ regions are examined first, and only terminating when
the routine is sure that the earliest point has not been missed. As this involves a search over
time it is slower than just finding any witness, although in this particular case the extra time
required is small; the same example consumed 0.6s of CPU time. As a final extension, we can
ask the routine to find all the edges in the skeleton of the common collision region. In this case
there is no way of terminating early; for the same example this process took 15.9s of CPU time.
The morale here is that a simple yes/no answer is normally far easier to obtain!

The example above only considered single motion components. In figure 4 we show the same
objects as before, but now the trays have been lowered, so that the only part of the vehicle that
a tray can only pass over is the centre section. The trays are moving with constant velocity,
as before: the vehicle moves forward ((a)), stops((b) and (c)), and then moves forward ((d)),
allowing a tray to move over itself in the process. It thus avoids collisions (but only just). The
routine is able to check this; indeed, the S-bound stage is sufficient here (after two Up-Down
passes), as the paths and the objects happen to be aligned with the spatial axes. To make the
problem harder we can run the same test, but with all the spatial axes skewed with respect to
the “natural” axes defined by the problem. Even in this case checking for a collision took 4.1s;
with the S-bound stage passing on a 11 leaf tree to the divide-and-conquer stage for one of the
3 time spans, and providing 5 leaf trees for the other two time spans.

6 The Multiple Objects Problem

Up to now we have been considering the problem of finding collisions between only one pair
of objects. If many objects are moving, we will wish to detect collisions between any pair of
objects over a time span. A simple way of performing this is to consider each possible pair of
objects separately. In many cases this is quite a sensible strategy, as we may wish to only test for
collisions between certain pairs. For example, if we have a robot manipulator we can often ignore
the possibility of collisions between adjacent links. However in the general case of n objects we
will have ©(n?) possible object pairs to consider. Using extrusions it is possible to minimise any
duplication of effort, using the scheme given below. We follow the order that we used in the
description of the case of a single pair of objects: the theoretical basis; the divide-and-conquer
mechanism; and the use of S-bounds.

6.1 Theoretical Basis

We have n moving objects, say 01, Oa,...,0,, with each O; having a location function A;.
To tell whether any pair collide, we need to determine whether E; N E; # () for i # j, where
E; = Ex(A;, O;). But this will follow if the union of these F; N £;’s is non-null, i.e., if

where |3 is a new n-ary set operation, defined by

L‘_"J{Xz} = U X]‘ N Xy

i £k
(For completeness, we define | to return @ if it has less than two argument sets.) Then to
consider whether there are intersections between any pair from {F;}, we form a single CSG tree
for each F;, and then combine these as children of one 4 node. This operation has space and
time complexity linear in the size of the extrusions.
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Figure 4: Vehicle Weaving
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6.2 Divide-and-Conquer

Given a composite CSG tree, with a |3 operation at the root node, the division process of §4.1 can
be used with little modification. That is, starting with a tree and region of space-time, we need
to be able to simplify the tree with respect to the region. Comparing the individual half-spaces
at the leaves works exactly as before; to rewrite the tree, we need only additional rewrite rules
for the 4} operation. These are given by the identities:

o I X; =0 W{Xi} = t"Ji;éj{Xi}
o If any pair of X;’s are equivalent to HAX:}=Q

The latter case yields proof of intersection.

The conquer stage is also very similar to before. We just form candidate lines in space-time
by taking triples of half-spaces; split these using other half-space boundaries to form candidate
edges; and consider the interior of these edges as points to check. Again, as each point is tested
by considering a number of logical formulae this step is easily extended to take the |3 operator
into account.

Of course there is an extra penalty for considering n objects at once, instead of two; the size
of the tree considered is bigger (by a factor of n/2). Assuming a division strategy that reduces
the problem into subproblems of bounded size then the effect of this increased size is to increase
the division time only; depending on the statistical distribution of the primitives, this can be
expected to increase only slightly worse than linearly [Cam84].

6.3 S-bounds

The use of S-bounds in the many-pairs case is not as straightforward. The presence of the |3
operator at the root node of the tree changes the effective topology of the expression into a graph,
as it is possible to find many paths from the root node to any leaf. However, the rewrite rules
that make S-bounds efficient are defined on tree structures.

So to consider the properties of S-bounds about the | operator, we should rewrite the |4 as
an equivalent tree. For example, W{FE1, Fa, Fs} = (E1NE3)U(FaN E3)U(EsN Eq). We note that
the subtrees £y N Fsg, etc., look like the entire tree in the case of a single pair of objects, and so
if we were to concentrate our attention on one such subtree we could use the operators described
there (including the special M operation). Also, if we apply the Upward rule at the root node (a
U operation) we obtain a bound on the entire tree: this bound will be bigger than that of any
of the subtrees, and so a subsequent application of the Downward rule about the root node will
have no effect on the bounds of the subtrees Fy N F5, etc. Thus each subtree is, effectively, an
island, which will receive no useful information from any of the other subtrees. This suggests a
way for dealing with S-bounds about a |4 operator, without producing the expanded tree.

1. Let the entire tree be WJ{E;}. Associate with each node in each E; an array of three-
dimensional aligned boxes. To start the process, form three-dimensional S-bounds by
considering just each F;, placing the result for each node in every element, and set the
four-dimensional bound for the 4 node to be 2.

2. For every pair 1 <1 < j < n, apply the 4DSB processing for the implicit subtree F; N E;.
This is done by using the scheme of §4.3.2, using the bounds in the jth array elements
from F;, and vice versa. When we are satisfied with the bounds formed, add the (implicit)
bound of F; N F; to that of the [+ operator.

The end result of this processing is a total (four-dimensional) bound at the root () node, plus
a set of n bounds for each node of each F;, with the jth set of bounds at F; corresponding to
possible interactions with £;.

16



It will be noted that we have considered the interaction of all @(n?) pairs of objects by this
process. We regard this as a necessary evil, whose effect we are trying to minimise. It is possible
to produce bad-cases in which each object could, conceivably, collide with every other object, and
so our routine must, in such cases, be prepared to consider all such pairs of objects. However,
we believe that most real-life situations are much better behaved, and that only a few pairs of
objects might collide. In such cases the S-bounds can decide, not only which pairs might collide,
but also give bounds on the region of space-time in which each collision occurs, and even which
parts of each object could be involved in the collisions. Such ‘normal’ situations will result in
most of the bounds created being (. Further, it is possible to disable any further consideration
of collisions between certain pairs of objects (e.g., adjacent links in a robot structure) by setting
the relevant S-bounds to (; this effectively prunes the relevant pair from the CSG description.

So once we have created these S-bounds we need to use them within the divide-and-conquer
mechanism. Here we suggest two schemes. The first, which would work well if only a few pairs
of objects are shown to be capable of colliding, simply identifies those pairs (from the S-bounds)
and then tackles each pair separately (as in §4). This scheme is space-efficient, as we can process
each pair when their S-bounds are considered without storing the S-bounds further. However, we
are then performing the divide-and-conquer process many times. To avoid this we can use the
second scheme, which is based on §6.2, but where we treat the union of the array of S-bounds
stored at each leaf node as an outer bound for that node, and take these bounds into account
during the division process®. This is done by ignoring any leaf node whose total S-bound does
not intersect the region of interest; as the division process proceeds, the regions of interest get
smaller, and so more leaf nodes are (on average) pruned out. Further, at the conquer stage we
can take the S-bounds into account during the point classification stage.

The second scheme is likely to be more efficient than the first when there are a large number
of possible collision regions between a large number of pairs of objects; however the organisational
complexity of the scheme increases. Intermediate approaches are possible; instead of forming the
exact union of the S-bounds in the array (as a list of S-bounds), we could form an approximation
to the union, using U instead of U. Again, the relative advantages of these approaches is heavily
influenced by the geometrical domain; the intermediate approach is likely to work well if the
possible collision regions for each object are localised (in space-time).

Another approach that is likely to be useful for the many-pairs case is to build up a hierarchy
of approximations to the objects. For example, in [FT87] a list of approximations to the shape
of objects is used, with the later approximations being finer than the earlier approximations.
We may think of the early approximations as shells around the objects; their algorithm initially
considers the relationships between the outer shells, and when these get ‘too close’ the current
shell is ‘broken’ and the next approximation used. Thus a variable resolution is used in the models,
depending on the distances between different objects. To use this idea we would have to build
a series of coarse S-bounds for each approximation, and to use different levels of approximations
for different pairs of moving objects. In fact we may also regard the S-bounds in the CSG tree
as naturally forming an approximation hierarchy, although then with sub-components of objects
rather than separate objects.

7 Summary

We have introduced a formalism that allows us to model objects in motion by subsets of space-
time, and explained how the topological properties of the objects and motions affect the extrusions
formed. Extrusions can be used to transform the collision detection problem into an intersec-

8We can, without loss of generality, consider only leaf nodes as the bounds formed are monotonic decreasing in
size as we work down the CSG trees.
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tion detection problem in space-time. The problem transformation is general, but takes on a
particularly easy form when the objects are described as a set-combination of half-spaces. An
implementation of the method has been developed for the case when the objects are polyhedral
and moving with linear motions. The implementation uses a preprocessing step (based on S-
bounds) which determines interesting regions of space-time in which to search for collisions. This
step also identifies which parts of each object could be involved in collisions, and hence simplifies
the size of the intersection detection problems. It should be noted that the preprocessing step
is easily extended to deal with other geometries, as we only need bounds on the sizes of regions.
It could also be used with other forms of shape descriptions, for example, B-reps [RV82] where
an S-bound is stored with every boundary feature, although then it is more difficult to identify
which subcomponents of the objects might be involved in collisions. As a special case we could
use a three-dimensional modeller to test for collisions between two-dimensional objects.

The output of the preprocessing step is processed by a divide-and-conquer mechanism. This
is based on splitting the original problem into a number of simpler problems, each of which
is finally tackled using a generate-and-test routine. Of these stages only the ‘generate’ step is
difficult to generalise to arbitrary shapes and motions, as we used knowledge of the properties of
linear equations to produce our set of points to test.

In use the preprocessing step is seen to be efficient at selecting regions of space-time to test,
at least for objects moving with linear motions. We conjecture that the preprocessing will also
work well for general motions if we select bounds that are the extrusions of a simple shape (such
as spheres [Cam89]) moving with the centre of mass of the objects; this will involve a more
complicated bound combination strategy as we will then, effectively, have to solve the collision
detection problem for spheres.

If many objects are moving we may wish to consider many potential pairs of objects in colli-
sion. This can be tackled under the same framework by a slightly more complicated preprocessing
system that identifies which object-pairs are of interest. The remainder of the processing can be
performed (potentially in parallel) by a simple extension to the divide-and-conquer framework.
Although for n objects there are ©(n?) object pairs that could collide, the advantage of our
approach is that we can share much of the processing, as the extrusions for each object are the
same regardless of which other object is potentially involved in a collision. This is not the case
for, say, the swept volume method for collision detection, in which the relative motions between
objects has to be used.

The main limitation of the routine described here is in terms of the shapes and motions it
can consider. However the ability to deal with linear motions is useful for cartesian mechanisms
and robots, vehicles, and the end-effectors of general robots under cartesian control. General
rotations, such as those affected by the body of an anthropomorphic robot, do cause practical
difficulties. Most of the routine is easily extended, with the real problem being performing the
final null object detection tests (§4.2), which must generate a sufficient set of points to be sure
of collisions. Effectively, if you double the number of different types of surfaces that have to
be considered then the number of ways of generating test points goes up by a large factor,
whereas the extensions to the other stages scale linearly. This effect is well-known within the
geometric modelling community. A partial solution might be to adapt Canny’s algorithm [Can86]
as a solution to the null object detection problem, either by using his quaternion mapping to
encode rotations as polynomial half-spaces, or by calling his routine in the hard cases with the
vertices and surfaces within the regions given by the divide-and-conquer mechanism. Canny’s
implementation combines ‘traditional” hand-encoded programming (to describe the configuration
space obstacles) with computer algebra techniques (to find the roots of the polynomials). For a
truly general solution, in terms of the coverage of surface and rotation types, we believe that we
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will need further advances in computer algebra and theorem proving, in order to write routines

that can automatically handle the new surface types as they are added.
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Appendix
A Neighbourhood Computation in Four Dimensions

1. The neighbourhood is input as a Boolean function (CSG tree) over a number of linear half-
space passing through a common point and all containing the line direction [. By sorting
the normals to the half-spaces we can indentify any multiple references to a half-space or its
complement, and so express the Boolean function as a function of a unique set of normals
{p;} for 1 < i < n. In turn by forming an orthonormal basis {i, é1, €9, €3} and expressing
each p; as (0, p;) we convert the neighbourhood into the equivalent three-dimensional case
of number of planes passing through the origin.

2. If n < 2,o0rif n =3 and the {p;} are linearly independent then the logic-based approach
suffices [Cam89]. (Linear dependence is easily checked by generating the basis vectors é;
from the p; using the Gramm-Schmidt process.)

3. If n = 3 but the {p;} lie in a plane, the following is useful. Consider the Boolean function
and count for how many of the 8 possible inputs it can return true. If the answer is 0 or
greater than 2 then we can be sure whether the neighbourhood is empty or not, as there
are exactly 2 spatially redundant cases.

(In practise steps 1-3 take care of the vast majority of cases.)

4. Otherwise, if all the {p;} lie in a plane consider a new set of 2n test points of the form
{£p; X n}, where x is the vector product operator and n is the normal to the common
plane. Each test point must be amenable to the logic-based approach.
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5. Similarly, if the {p;} span three dimensions consider test points of the form {£p; X p;}.
This is equivalent to testing a general vertex in three-dimensions by crawling along all
possible edges leading from that vertex, and testing those recursively.

B Special Form of the M Operator

The routine to be described takes two S-bounds, each consisting of a spatial (rectangular) bound
moving with constant velocity, and computes two new spatial bounds that tightly enclose the
intersection, together with a new time-span [t;,;] over which they are valid. We may obtain
a null time-span, which indicates that the space-time bound is null, and thus that the objects
cannot collide (in this time-span). The algorithm proceeds as follows:

1. Compute the new time-span, [t;, %3], by considering the intersection of the spatial bounds.
2. By considering each spatial dimension separately, compute the new spatial bounds.

Note that if the objects have the same velocity, then the temporal bound is unaffected, and the
change in spatial bound is equivalent to that for the three-dimensional S-bound system.

Computing [#;,7,] Let ¢ be one of the spatial parameters (z, y or z). Then if we ignore the
other spatial parameters we are given four relationships between ¢ and ¢, of the form

ut +a < qg<ut+ « vt+b<qg<wvt+pg

(a, a, b and 3 are obtained directly from the 3DSBs, and u and v are the velocity components.)
Solving these inequalities for ¢ gives b — o < (u — v)t <  — a. [t;,11] is formed by taking the
intersection of the three intervals formed in this way, together with [t7,7x]. (A null time interval
causes a null set to be returned, signifying a provably null region.)

Computing the Spatial Bounds For each spatial component ¢, we effectively compute
bounds on ¢ at each of ¢; and ¢, and then “push” the four spatial bounds to touch these
bounds. The bound at t, is given by ¢, < ¢ < Qp, where g, = max(uty, + a,vty + b),
Qr = min(uty, + a,vty, + 3), and we can obtain similar expressions for the bounds at t, ¢
and @);. (Note that, by our choice of #; and t, ¢» < @Qp and ¢ < @;.) Then we need to
choose values for the new spatial bounds, [¢’,a] and [V/, '], so that the relevant space-time
bounds (ut + @’ < ¢ < ut 4 o', etc.) contain the intersection region. This is satisfied by setting
a’ = min(q; — ut;, g, — uty), which simplifies to

' = max(a,b+min((v — u)t;, (v — u)ty))
o = min(a, B+ max((v— u)t;, (v — u)ty))

with similar expressions for b’ and . (To derive these forms, apply the affine transformations
q — ¢ —ut and ¢ — ¢ — vt in turn. Note that we are guaranteed to have a’ < o/, etc.)

An example is given in figure 5, in which the dashed region shows the intersection of the six
bounds, but for which a reduction in the size of the bounds is not possible (along this spatial
dimension). If one of the temporal bounds were to lie along the dashed line instead, a reduction
in size would be possible.

21



qzit\er qg=u+p
=1

/ N

g=ul+a

qg=ul+«

Figure 5: Example of a projection in ¢—t space

Optimal Fitting of the Final Region The final region is the intersection of the two 4DSBs,
together with a time bound, [t;,1;]. We need to find a single rectangular bound around this
region, to be passed to the divide-and-conquer routine. However, we are at liberty to measure
the velocities with respect to any frame we choose when selecting this frame. This is equivalent
to applying an affine transform to the space-time diagrams, or fitting an optimal parallelogram
region around the projection of each parameter ¢. In fact, if we choose to measure with respect
to a frame moving with velocity w in the direction above, and noting that the intersections of
the left-most and right-most bounds in ¢ cannot be redundant (as otherwise we could choose
better bounds), then we first see that choosing w outside the range between u and v cannot give
a optimal fit. So consider w = Au + (1 — A)v for A € [0,1]. Then we can show that the sides of
the parallelogram are Ac apart (measured in the ¢ direction), where

Ac=Ma—a)+ (1= (B-0)

and so we are best choosing between w = u or w = v (unless either is optimal, in which case
so is any such w). Notice that this is not necessarily the same as choosing to regard one of the
objects as fixed: we decide which object to “fix” in each spatial dimension separately.
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