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Abstract 
Surfaces in 4-space generally produce self-intersections when 
projected to 3-space. The geometry of the projected surface 
changes as the surface rotates rigidly in 4-space. This paper 
presents techniques for interacting with such a surface, for 
recovering the geometry and depth information that the 
projection destroys, for computing the intersections and the 
surface when projected to 3-space, and for computing the 
silhouettes and the surface when projected to the screen. These 
techniques are part of an interactive system called Fourphront, 
which uses Pixel-Planes 5 as the graphics engine. 

1 Introduction 
Versatile high-performance graphics machines let us 
interactively manipulate surfaces in four dimensions. The 
projective geometry and linear algebra required for the job are 
well known [Semple], but surfaces in 4-space present challenges 
in designing a user interface and a set of visualization cues. This 
paper presents techniques to address these problems, using 
Pixel-Planes 5 as the graphics platform. In particular, we present 
techniques for gathering 3D input to manipulate a surface in 4- 
space, for providing visualization cues, and for applying 4D 
depth cues. These techniques are at the heart of an interactive 
system called “Fourphront.” 

Why study surfaces in 4-space? One reason is that topologists 
have yet to classify all the 3-dimensional compact surfaces, but 
have succeeded with the 2-dimensional surfaces (k-holed 
donuts and their non-orientable counterparts). Many of the 2- 
dimensional surfaces require four dimensions in which to 
imbcd, and none of the compact 3-dimensional surfaces can 
imbed in three dimensions of Euclidean space. It might be 
enlightening to examine and compare surfaces that are 
topologically equivalent and that inhabit four dimensions of 
space. Do they look alike or not? 
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It is difficult even to illustrate the 3D classification problem 
with genuine examples; these are volumes without boundaries, 
residing in up to seven dimensions of space. Even the 2- 
dimensional surfaces may require four dimensions for their 
imbedding. Interactive computer graphics can be of service by 
providing a window on these surfaces in 4-space. 
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Figure I. A user in 3.space manipulates a surface in I-space, which 
projects to 3-spat and then onfn the screen. 

The three steps of our task (figure 1) are (92) mapping input 
from user space to object space, ($3 and $4) projecting from 
object space to illumination space, and ($5) projecting from 
illumination space to the screen. 

2 Mapping User Input to World 
Transformations 

The illusion of reality is strongest when the user controls what 
scene it is that he views. Dynamic control of the transformation 
matrices requires an input device that offers a natural means for 
producing the object’s motion. There are ten degrees of 
freedom that we wish to control for manipulating objects in 4- 
space: four extents of translation in the axial directions (x, y, z, 
w). and six Euler angles of rotation within the axial planes (xw, 
yw, zw, xz. yz, xy). The 4D rotations look very much like their 
3D counterparts, although it bccomcs more appropriate to 
think of rotations occurring within a plane rather than 
occurring about an axis (figure 2). In 3-space, rotations leave a 
l-dimensional subspace fixed; that subspace is the rotation axis. 
In 4D, rotations leave a 2-dimensional subspace fixed, while 
permuting the points within the 2-dimensional rotation plant 
and within the bundle of planes parallel to it. In general, the 
rotation matrix A for the XiXj plane (i c i), contains Ihe elements 
Uii = Ujj = COS t, Uij = -Uji = (-l)(‘+j) sin 2, and 11lC rcniaining 
elements a&l = ~$1. For a more thorough trcatmcnl on Euler 
angles in 4-space. and how to specify orientation. see 
[Hoffman]. The challenge in assigning the ten dcgrccs of 
freedom in 4-space to input devices that exist physically in 3- 
space is to promote kinesthetic sympathy: Ihe similarity of 
input-motion to object-motion [Gauch]. 
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Figure 2. These are three of the six axial planes in xyzw-space, 
dejined by the a&pairs xw, yw, and zw. The other three axtal planes 
(xz, yz, and xy) lie in the jl-dimensional xyz-subspace. 

2.1 Mapping 2D Input to 3D Transformations 

The fact that an input device is constrained within a physical 3- 
dimensional world will impair kinesthetic sympathy. The 
question is, how much? This problem is very familiar in a 
different guise, namely, how to affect direct 3D manipulations 
with a 2D locator such as a mouse. In this case there are six 
degrees of freedom (three Euler angles and three orthogonal 
translations) to associate with a 2-dimensional input space. The 
popular techniques are to overload the input space, to partition 
the input space, to discard a dimension of control, or to create a 
cross-product of the input space by using multiple locators. The 
following is a highly compressed review of these techniques. 

2.1 .I Overloading the Input Mapping 

We can overload the input space (x’, y’, z’) by extracting x’ and 
y’ components of the locator’s velocity, and assigning the 
magnitude of circular acceleration to the z’ component 
[Evans]. Converting these components into translations in x, y. 
and z preserves sympathy for x and y. and naturally suggests a 
screw-translation for z. An important drawback to mapping the 
input space this way is that the locator’s velocity and 
acceleration are not decoupled. If the user wants to change the 
direction of the locator’s motion, that change necessarily 
produces a circular acceleration and hence a z-translation in 
worId space (figure 3). 

Figure 3. At the bottom point of this circular trajectory, the mouse’s 
velocity is purely horizontal, while its acceleration is purely vertical. 

2.1.2 Partitioning the input Space 

WC can partition the input space into components, each of 
which maps the locator motion to the object motion in a 
different manner. The partition can be explicit, by determining 
in which of several control areas a cursor lies [Chen]. The 
partition can be implicit, by comparing the motion of the 2D 
locator to the orientation of a 3D cursor that is projected to 
input space [Nielson]. Whichever mapping is employed, the 
user must be prepared to change his motion when the input 
space switches context, and must be aware of which mapping is 
being invoked. 

2.1.3 Discarding Input Mappings 

There are several ways to discard a degree of control in order to 
eliminate a dimension from the range of the input mapping. 
For example, two angles determine a position on the unit 2- 
sphere. Rather than specify three Euler angles, we can use the 
locator’s velocity vector to determine a rotation of the unit 2- 
sphere and hence of the 3-space it inhabits. Alternatively, we 
can map the input space to the tangent space at a point on a 
surface [Nielson, Bier, Hanrahan, Smith], in order to control the 
motion of the object by controlling its motion within that 
tangent plane. Of course the locator’s motion becomes less 
sympathetic as the tangent plane deviates from the image plane. 
A more abstract problem is that path-planning can become very 
difficult when it requires a route through successive tangent 
planes to reach a target orientation. A surface in 3-space that 
isn’t cIosed or that isn’t everywhere differentiable may possess a 
Gauss map that does not cover the unit sphere. Such a surface is 
difficult or impossible to orient by controlling it through its 
tangent or normal space. 

2.1.4 Taking a Cross Product of the Input Space 

By using k locators, each with n dcgrccs of freedom, WC permit 
nk degrees of freedom in the input space. These can bc rcalizcd 
either as k physical locators, as one logical locator with a k-way 
selector to map physical-to-logical, or as a hybrid of the two. 
Thus, a single mouse button can sclcct bctwccn two mappings 
of the mouse position into the world [Chen]. 

2.2 Mapping Spaceballs and Joysticks to 4D 
Transformations 

What does the experience of mapping 2D input to 3D 
manipulation suggest for mapping 3D input into 4D 
manipulation? Consider each of the four approaches outlinctl 
above. (1) Overloading the input space can product 
transformations in 4-space as side effects of an attempted 3D 
manipulation - side effects which novice users cannot easily 
undo. (2) Nielson’s method for partitioning a locator’s 2- 
dimensional space extends to 3D for translation, but it dots not 
lend itself to rotations. (3) There are problems with discarding 
one or more dimensions of manipulation. First, mapping a 
velocity vector in 3-space into rotations of the unit 3-sphere in 
4-space is a promising idea, but it is difficult to restrict the 
input so as to rotate the projection of the object within its 
projected 3D subspace. Second, the bigger the dimension of the 
space, the less of it can be visited by excursions in a 2D tangent 
plane to a point on a surface, so exploiting local surface 
properties pays a much smaller dividend than it did in 3-space. 
(4) Using multiple input devices can be inconvenient, 
requiring ten sliders or dials, five mice, four 3D joysticks, or 
two six-degree-of-freedom spaceballs. 

What choice is best? There may be no single optimal technique, 
but multiple input devices at least promise a great deal of 
kinesthetic sympathy if their input space is 3-dimensional. The 
relative novelty of interactive manipulation in 4-space is a 
powerful motivation for designing a sympathetic interface. Not 
many people have developed a sense of how surfaces look as 
they rotate in 4-space. Consequently, we do well to 
approximate that motion as closely as possible by the motion 
of the input device. Of the devices listed above, spaceballs and 
joysticks provide the most degrees of freedom. How then can 
we use them to create sympathetic motion in 4-space? 
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Translations and rotations within an input plane x’y’ can 
sympathetically and uniquely map to motion within an image 
plane defined by the xy plane in world space. But the 
projection from 4-space to the screen will annihilate two 
orthogonal directions z and w, together with the 2- 
dimensional plane they define. This plane will apparently go 
“into” the screen at each point. Translation in the z or w 
directions and rotation in the XW, yw, xz, or yz planes thus 
present a problem. If the input device moves toward the screen, 
we can legitimately map that motion either to z or w. Either 
choice preserves kinesthetic sympathy, but the map is not 
unique. Rotation in the zw plane is also problematic. There is 
no physical rotation of a 3D input device sympathetic to this 
4D rotation, since (in our physical 3-space) such a rotation 
would be confined to the l-dimensional input space z’. The 
sympathetic maps are tabulated below (figure 4). 
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b’igure 4. The mappings of 30 inpuf space fo 40 world space [ha1 
promote kinesthefic sympathy. 

Despite the ambiguities, there are still reasonable ways to 
convert input from a spaceball or a joystick into 4D 
transformations. A spaceball offers six degrees of freedom: three 
translations (x’,y’,z’) and three rotations (x’y’,x’z’.y’z’). To 
extract ten degrees of freedom requires two spaceballs, either 
physically or logically. 

The mapping from input space to object space can be defined as 
follows. Spaceballl assigns (x’.y’.z’) to (x.y.z) for calculating 
translations and rotations. SpacebalI; re-interprets the z’ 
coordinate, assigning it to w instead of to z, Spaceball also 
makes the exception that rotations in its x’y’-plane map to 
rotations in the world’s zw-plane. This rotation is not 
sympathetic, but, as pointed out above, no rotation in input- 
space can be sympathetic to a zw rotation. Note that two 
physical spaceballs compete to produce x and y translations 
under this scheme; it is necessary then to squelch one 
spaceball’s input to these translations. This makes the two- 
spaceball solution somewhat unattractive. 

313 joysticks that use twist (about the joystick axis) as the third 
degree of freedom can map in a similar way to the spaceballs. 
using two joysticks to mimic the mappings of a single 
spaceball. The joystick rotates in each of three planes based at a 
common origin. Two of the rotations feel like translations for a 
short interval: when the joystick is centered, a rotation in its 
x’z’ or y’z’ planes is momentarily a linear translation in the x’ 
or y’ direction (figure 5). We exploit this duality to 
sympathetically map these two motions into either rotation or 
translation in 4-space. Twist is not kinesthetically sympathetic 

to translation, but is at least suggestive of forward motion that 
results from rotating a screw. 

I I 

Figure 5. The 30 joystick rofafes in the x’z’, y’z’, and x’y’ planes, 
which can produce a momentary translation in the x and the y 
directions. In the input space coordinates, x’ is rightward, y’ is forward, 
and z’ iF vertical. 

We need four (physical or logical) joysticks in order to supply 
the ten degrees of freedom necessary in 4-space. We can map 
pairs of (logical) joysticks the same way we map the spaceballs. 
Each pair allocates translations to one joystick and rotations IO 
the other. Since joysticks have a small range of motion, it is 
wise to treat their input as velocity rather than posiCon when 
gross manipulations are desired. 

The two mapping schemes arc summarized in the following 
table (figure 6). The subscripts indicate which logical locator 
supplies the input. 
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Figure 6. The mappings of spaceball and joystick input that promole 
kinesthetic sympalhy in 4D world space. 

It is inconvenient to re-home the hands from one set of 
joysticks to another in the midst of manipulating an object. 
Fourphront therefore uses only two physical joysticks, one for 
each hand, multiplexed as four logical ones. One physical 
joystick functions as a logical pair that always maps (x’,y’,z’) 
to (x.y,z). This physical joystick embodies logical joysticks 1 
and 3 in the table above. The other physical joystick 
(corresponding to logical joysticks 2 and 4 in the table) maps 
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(x’.y’.z’) to (x.y,w 1, with the same caveat that it 
nonsympathetically maps rotations from the x’y’ input plane 
to the zw world plane. A binary state variable (governed by a 
joystick button) determines whether to produce translations or 
rotations. 

It is not uncommon to decouple the positioning and 
orientation operations in the input domain. Experience shows 
that that users also decouple 4D manipulations (the ones that 
involve the w-axis in world space) from 3D manipulations 
[Hoffman] in order to inspect the change that was made to the 
3D projection moving the model in 4-space. So there is some 
justification in this splitting of the joystick control into four 
parts. The other natural decomposition would assign logical 
joysticks 1 and 2 to one device, and joysticks 3 and 4 to the 
other. 

3 Projecting to 3D: Intersections, 
Transparency, and Silhouettes 

The same technique for projecting surfaces from 3-space to 2- 
space applies to projection from 4-space to 3-space. A 
pcrspcctive projection requires an eye point eye4 in 4-space. In 
(non-homogeneous) normalized eye-space coordinates, the 
point (x, y, Z, w) projects to (x/w, y/w, z/w) in the 3-dimensional 
image volume. A second eye point eye3 within that volume 
determines a further projection to the final image plane (figure 
7). 
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Figure 7. The (x y z w)-axes (kft) project in the w-direction to the (x y 
z)-axes (middle), which project in the z-direction to the (x y)-axes of 
the image plane. 

The typical side-effect of projection is that the resulting surface 
intersects itself in 3-space. even if it has no intersection in 4- 
space. Why is that? The self-intersections arise when a ray from 
eye4 strikes the surface twice, since both of the intersection 
points must map to a single point in 3-space. This is the usual 
situation for a closed surface in 4-space, just as it is for a closed 
curve in 3-space: the shadow of a “curvy” space curve exhibits 
self-intersections through most of its orientations . 

A surface is imbedded if it has no self-intersections or 
singularities. An imbedded surfaces locally looks like a 
neighborhood in the plane - no creases, no crossings. If a 
surface imbeds in three dimensions, there’s little need (from the 
standpoint of topology) to study it in four; thus the interesting 
surfaces are generally the ones that contain self-intersections 
when projected to 3-space, because they fail to imbed there. 
None of the one-sided surfaces imbed in 3-space. Happily. all 
tof he topological surfaces have incarnations that imbed in 4- 
SpCC. 

Typically a surface that we transform and rotate on our graphics 
machines is the boundary of a solid object, whether the object 

be a house or a mountain range. Such a surface may be 
geometrically complex, but it dutifully performs a crucial 
topological service: it separates 3-space into an inside and an 
outside. We can tour the surface from the inside (as with a 
building walkthrough) or from the outside (as with a flight 
simulation over rugged earth) until we have developed a 
sufficiently complete mental model of it. We need not cross the 
surface to the other side. 

By contrast, a self-intersecting surface separates 3-space into 
any number of subsets. If the surface is opaque, some or most of 
its pieces remain hidden during a tour of a particular volume 
that it bounds. Rotating the surface in 4-space may reveal a 
patch of surface that was previously hidden, but only at the 
expense of another portion of the surface that is now obscured. 
The fundamental problem of displaying such surfaces is that 
they continually hide their geometry from us. Three popular 
ways to tackle this problem are to use ribboning, clipping, and 
transparency. Overall, transparency is the most helpful, but it 
has certain drawbacks which WC repair in $5. 

3.1 Ribboning 

To reveal the geometry of a self-intersecting surface, we can 
slice it into ribbons [Koqak]. The gaps between ribbons reveal 
parts of the object that would otherwise be obscured. One 
advantage of ribboning is that it can be performed once, at 
model definition time, and then left alone. Some of the 
drawbacks are that (1) any already-existing non-ribboned 
datasets must be remeshed and ribboned, (2) the high-frequency 
edges of thin close ribbons attract the attention of the eye, at 
the expense of the geometric content of the surface, and (3) 
ribbons can produce distracting moird patterns when they 
overlap. 

These drawbacks do not mean that ribboning is a clumsy 
technique. On the contrary, for surfaces that can be foliated by 
l-dimensional curves, ribboning is a very elegant means of 
visualization. The compact surfaces that admit such a foliation 
are the torus and the Klein bottle. Banchoff has made 
productive use of this technique to illustrate the foliation of 
the 3-sphere in 4-space by animating a ribboned torus that 
follows a trajectory through the 3-sphere. 

Surfaces with other topologies do not admit such a simple 
ribboning. We can slice a surface along level cuts as it sits in 4- 
space, but the cuts wilt sometimes produce x-shaped 
neighborhoods in the ribbons. Morse theory determines 
whether a surface can be successfully ribboned: the singularities 
of a Morse function on a surface must all be degenerate with the 
topology of a circle [Milnor, Morse]. 

3.2 Clipping 

Rather than pre-compute sections of the surface to be sliced 
away. we can clip them out dynamically. The chief advantages 
are that (1) many graphics machines implement fast hither- 
clipping as part of their rendering pipeline; (2) no special 
treatment is required for the representation of the model; and 
(3) by clipping the surface as it moves, the user can inspect 
views of it that a single static segmentation cannot anticipate. 

There are drawbacks to clipping. WC usually think of clipping a 
surface against a plane. In fact, clipping is properly a geometric 
intersection of a surface against a 3-dimensional volume whose 
boundary is the clipping plane. In 4-space a plane does not 
bound a volume, just as a line does not bound an area in 3- 
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space. Instead, a 4-dimensional halfspace clips the surface, and 
the boundary of the halfspace is a 3-dimensional flat, or 
hyperplane. It is true that a user could interactively specify the 
position and orientation of the 4D halfspace that does the 
clipping, just as he can control the position and orientation of 
the surface under scrutiny. But consider the problem of 
providing visual feedback to show where that clipping volume 
is. The shape of the clipped surface implicitly defines where the 
boundary of the clipping volume is. In 3-space we can mentally 
reconstruct the orientation of that volume from the clipped 
edges it leaves behind. It is much harder to reconstruct the 
orientation of a clipping volume in 4-space based on the shape 
of the region it clips away. We might indicate the orientation of 
the 4D clipping halfspace by volume-rendering its boundary. 
Unfortunately, that boundary will tend to hide the surface that 
remains after clipping. 

Recall that the immediate problem is to view the component 
pieces of a self-intersecting surface. In particular, to see beyond 
a patch of surface that hides another patch behind it, “behind” 
being in the z-direction of the 3-dimensional space to which 
the surface has been projected. If this is truly the driving 
problem, we can sufficiently address it by clipping in that 3- 
dimensional space, and clipping strictly in the z-direction. This 
amounts to nothing more than hither clipping. To summarize: 
clipping in 4-space is mathematically easy but interactively 
hard. For the purpose of revealing hidden interiors, however, 
hither clipping suffices. 

Figure 8. Clipping info a torus produces a&we-eight contour, Clipping 
reveals infernal geometry, but complex contours can confuse fhe 
shape. 

Hither clipping has other problems. The shape of the surface 
region that gets clipped away can be very complex. A simple 
shape is one that is topologically equivalent (homeomorphic) 
to a disk. In general it is easier to make sense of surfaces whose 
clipped regions have simple shapes rather than complex shapes 
{Francis], but intersections and saddle points on a surface cause 
the clipped regions to look complex (figure 8). Secondly, a 
clipping plane cuts into a concave region of a surface only by 
curling into the neighboring regions as well. This is not 
necessarily the effect a user wants to achieve. Both of these 
shortcomings can be remedied by using more exotic, custom- 
shaped clipping volumes. Thirdly, clipping the frontmost 
p.atchcs of a surface exposes some of the hindmost patches, 
which may be behind the center of rotation for the objects. The 
visible part of the surface then seems to rotate in the direction 
antisympathetic to the input motion. This shortcoming is 
indcpcndent of the shape of the clipping volume. 

3.3 Transparency 

Ribboning and clipping simulate transparency via a binary 
classification. Both classify parts of the surface as completely 
opaque and the other parts as completely transparent. Why not 
USC transparency outright? Ideally a semi-transparent surface 
presents all of its self-intersecting components on the screen so 
that the shape of each layer is discernible. In practice the effect 

is dramatic and helpful for many surfaces. But there are several 
things that can hinder the usefulness of transparency. 

Disappearing intersections. The intersection of two opaque 
surface patches A and B is readily apparent whenever their 
colors differ. On one side of the intersection we have A atop R 
(yielding A’s color); on the other side B atop A (yielding R’s 
color). As the patches become simultaneously more transparent, 
their colors blend and the intersection becomes less 
distinguishable. Intersection curves figure prominently in the 
study of nonimbedded surfaces, so it seems a shame to apply 
transparency at their expense. 

Disappearing silhouettes. A surface with many self- 
intersections may require a great deal of transparency to make 
the deep layers visible, but then the outermost layer becomes 
nearly invisible. In particular, it becomes difficult to see the 
outline, or silhouette, of a very transparent surface, because the 
silhouette includes the rim of the nearly-invisible outermost 
layer. 

Reduced performance. Rotations in 4-space change lhc 
geometry of a surface’s 3D projection. Polygons that wcrc 
disjoint one frame ago now interpenetrate. Polygons that were 
on the outermost side trade places with polygons on the 
innermost. Opaque polygons can be rendered in any order, so 
long as only the nearest polygons (in screen depth) survive the 
rendering process. On the other hand, transparent polygons can 
be rendered from back to front or from front to back, but in any 
case they must be rendered in sorted order. The dynamic 3D 
geometry caused by 4-space rotations prevents us from ordering 
the model by a static data structure in 3-space, such as a binary 
space partition (BSP) tree [Fuchs83]. Dots the BSP tree extend 
to surfaces in 4-space? Alas it does not; a polygon partitions 3- 
space by the plane in which it lies. But a plane dots not separate 
4-space. 

In short, to render transparent polygons we must be prepared to 
sort them dynamically, perhaps even splitting them IO 
eliminate inteTpenetr ations. But that is computationally 
expensive, and hence slow. 

Loss of3D depth cue. It is true that an opaque self-intersecting 
surface hides parts of itself that we want to see, but that opacity 
serves a positive purpose: to disambiguate 3D depth on a 2D 
display. Obscuration is a powerful depth cue. A hidden 
polygon is obviously far.ther away than the visible polygon 
atop it. Transparency reduces or eliminates this depth CIIC, 
leaving us to rely on other cues to recover 3D depth. One 
especially helpful cue is specular reflection. 

Specular highlights reveal surface gcomctry in two ways. The 
shape of a surface is easy to see along its silhouette, but is not so 
apparant in the neighborhoods that are viewed head-on. I’hong 
highlights help exaggerate the curvature, thereby 
distinguishing the shape of a neighborhood. Where two 
transluscent surface patches interpenetrate, the Phong 
highlights can disambiguate which surface is in front, 
especially when we rock the surface back and forth. Morcovcr, 
the highlights can disambiguate the different layers that 
transparency reveals. The benefit diminishes, of course, as the 
number of transparent layers increases, but the effect is 
appreciable through three or four layers. 

Transparency is an essential tool for studying surfaces in 4- 
space, since it reveals the behavior of the patches that intcrscct 
each other, and since any given surface is likely to exhibit self- 
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intersections when it is projected to 3-space. But transparency 
comes with a price. It subdues intersections and silhouettes. It 
makes rendering slower. It makes depth more ambiguous. 

In order to redeem transparency as a tool for rendering surfaces 
in 4-space, we can address these demerits in the following ways. 
(1) Highlight the intersection curves; (2) Highlight the 
silhouette curves. (3) Order the polygons in sub-linear time. (4) 
Apply Phong shading to recover some sense of 3D depth. 

Finding the intersections and silhouettes could be slow, and 
these curves will often change with every frame. In $5 we 
discuss techniques for computing them after the second 
projection, from 3-space to the screen. The algorithms exploit 
the logic-enhanced memory on board Pixel-Planes 5. 
Fourphront uses these techniques in the presence of 
transparency and Phong shading by taking advantage of the 
underlying algorithms on Pixel-Planes: multipass transparency 
and deferred shading. In (back-to-front) multipass transparency, 
the model is sent to the SIMD renderers multiple times. On each 
pass, a pixel processor retains the geometry of the backmost 
polygon that it has not previously retained, then blends the 
shaded result into a temporary frame buffer. This technique 
rcquircs two z-buffer areas per pixel processor. Deferred shading 
extracts the shading operation common to all primitives, and 
posponed applying the operation until after all the primitives 
have been z-buffered. Thus, only the necessary state 
information (e.g., color, reflectivity, normal, transparency) is 
stored per pixel at the time the geometry of the primitive is 
rendered. 

4 Projecting to 3D: Depth Cues 
There are several cues that lend a 3D effect to images on a 
computer screen. Among them are obscuration, shadows, 
illumination, perspective, parallax, stereopsis, focus, and 
texture. These are natural cues that we use every day to derive a 
3D model of our world from the 2D image of it on our retinas. 

But now we confront a serious problem. By projecting the 
image of a surface in 4-space down to a 2-dimensional screen, 
not only do we lose depth information in the z-direction, but 
we lose it in the w-direction as well. What 4-dimensional depth 
cue does our retina employ that we can now supply when we 
render the surface? Evidently there is none. Since both the z 
and the w directions are perpendicular to the screen, we might 
try applying some of the usual z-depth cues as w-depth cues. 
This strategy risks ambiguating the two depths, of course. The 
alternative is to invent w-depth cues that have no basis in OUT 

physical experience. How do the usual z-depth cues extend to 
four dimensions? 

4.1 Obscuration and Shadows 

We can drop down a dimension and liken the situation to 
viewing l-dimensional curves in 3-space. Space curves rarely 
obscure or cast shadows on each other: only at isolated points, 
in general. Similarly, surfaces in 4-space only obscure each 
other or cast shadows on each other along mere isolated curves 
(in general). The result is that these cues are not especially 
helpful for recovering w-depth. 

4.2 Illumination 

Again we consider the lower-dimensional analog to our 
problem. Illumination is ill-defined along a curve in 3-space, 
since a space curve has an entire plane for its normal directions. 

The usual illumination equation does not apply. Several 
researchers have observed that any surface with co-dimension 1 
submits to ordinary lighting techniques, and have jumped 
ahead to illuminating 3-dimensional surfaces in 4-space 
[Burton. Carey]. Burton lets a polygon inherit the normal 
vector of the 3-dimensional volume whose boundary includes 
it. This is like illuminating a polygonal surface in 3-space, but 
only displaying the result on the polygonal mesh. The problem 
with non-orientable surfaces imbedded in 4-space is that they 
do not bound any volume at all. Hansen inflates a surface to a 
small 3-dimensional volume, like wrapping a tube around a 
space curve, and then illuminates that bounding volume in 4- 
space and volume-renders it [Hansen]. The images arc 
satisfying, but the technique is fairly slow, since rendering 
volumes is considerably slower than rendering polygons. 

Illuminating surfaces in 4-space is thus an unresolved problem. 
Fourphront postpones illumination until the surface is 
projected into 3-space. so that shading looks familiar and 
realistic on the projected surface, and so that this strong z- 
depth cue is preserved. This strategy is at least as old as 1880, 
when it was used to shade polygonal faces as though they were 
illuminated in 3-space {Stringham]. The obvious drawback 
with this approach is that the shading in 3-space reveals more 
about the shape of the projected surface than about the shape of 
the surface as it lies in 4-space. 

4.3 Perspective 

A perspective projection from 3-space to 2-space behaves like 
an orthogonal projection where 3-space is pre-warped: plants 
parallel to the image plane are first shrunk or magnified 
according to their distance. A perspective projection from 4- 
space to 3-space has the same general effect. Volumes shrink 
that are distant from, and parallel to, the volume of projection, 
but volumes grow that are close to the center of projection eyed. 
In particular, translating a neighborhood in the w-direction 
causes its projection to shrink and approach the origin. This 
behavior can disambiguate relative w-depth. The ncarcr 
neighborhood changes size faster than the farther one. 

4.4 Stereopsis and Parallax 

Parallax and stereopsis are side-effects of perspective 
projection, and they offer additional w-depth cueing 
[Armstrong]. Consider the effect of translating the eye. Objects 
at various depths in the world change their relative positions 
when the eye shifts in the x or y directions. But which eye 
position (eye4 or eyej). and which depth (z or w)? 

Let us again drop down a dimension and examine the situation. 
Consider a viewpoint eye3 in 3-space, and the image plane to 
which the world projects (figure 10). Within that plane there is 
a second viewpoint eye2 and an image line to which the scent 
projects further. Two spheres A and B in the 3D world project to 
two disks A’ and B’ in the image plane, and then to two 
segments A” and B” in the image line. Suppose A” and B” are 
only slightly separated. If eye2 shifts to the right and A” shifts 
to the right relative to B”, we conclude that A’ is farther away 
than B’. But that does not imply that the source object A is 
farther from eye3 than B. It can be the case that shifting eye3 to 
the right causes A” to shift left instead (relative to B”). 
Translating eye3 and eye2 together couple these behaviors. The 
situation in It-space is the same. We have a choice of where to 
apply a translation. Applying it before the projection from 4- 
space to 3-space produces nonintuitive motion, due to 11~ 
parallax from the w direction: the projcctcd object is no longer 
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rigid under the expected isometries, although the source object, 
of course, still is. 

Figure 10. When there are two eye positions involved in projecting an 
image, eifher of them can produce parallax. In this figure, spheres A 
and B projeci from J-space onlo a 2-dimensional plane as disks. The 
disks project lo a l-dimensional line as segments. By lilting the page 
obliquely, you can see whaf the second eye sees. Moving an eye to the 
righf will make fhefarfher objecf seem fo move fo the right o fhe nearer 
object. Which sphere looks closer? It depends on which eye does the 
measuring. A is closer lo eye3 than B is. But the projection of B is closer 
fo eye2 than the projection of A is. 

4.5 Texture 

The texture applied to a surface can be defined dynamically in 
world space, so that as the surface moves in the w direction, the 
texture changes. One of the simplest textures is color 
modulated according to depth. This texture is well-known as 
intensity depth cueing. In 3-space there is a convenient 
metaphor for an intensity depth cue - the object looks as 
though it were obscured by fog. and the fog’s color prevails as 
the object recedes. In practice, the 4D fog-metaphor is 
considerably less convincing, perhaps because the usual 3D 
interpretation is so much more natural. 

Encoding w-depth by color is nonetheless a useful tool, 
especially for locating level sets according to the color they 
share. The idea is evidently pretty obvious, since there are very 
old examples of its use [Hinton]. A more modem treatment of 
the strategy might be to apply a dynamic texture to a surface, 
where the texture continually flows in the w-direction 
[Freeman, van Wijk]. 

4.6 Focus and Transparency 

The human eye can focus at various depths. Neighborhoods of a 
surface that lie within the focal plane in 3-space appear crisp. 
Neighborhoods that are nearer or farther look increasingly 
blurry. There are various techniques for producing this effect 
during rendering [Haeberli, Mitchell, Potmesil]. 

In 4-space we could define a focal volume at some particular 
distance in w. Neighborhoods within this volume would 
appear crisp, while neighborhoods outside would be 
progressively blurry. In general this is not a fast process, since 
blurry polygons are effectively semitransparent, and hence 
incur some of the cost of computing transparency. But we can 
approximate the effect cheaply by simply modulating 
transparency by w-depth. If the focal volume is at the yen 
distance, transparency will unambiguously determine w-depth. 
Recall that neighborhoods near to eye4 are generally large due 
to perspective, and often enclose the far-away neighborhoods 
that have shrunk toward the origin. If the outermost patches of 
a surface are opaque, they hide the interior geometry. This is the 
motivation for choosing a focal volume at the yon, rather than 
the hither, distance: it is more likely to reveal the interior of a 
self-intersecting surface. Unfortunately, the eye does not 
resolve transparency with a great deal of resolution, so this 
technique is best applied for gross classification of relative 
distances in the w direction. 

5 Finding Silhouettes and Intersections 
During Projection to 2D 

This section describes a screen-oriented technique for locating 
silhouette curves and intersection curves. In $3 we described the 
powerful advantage transparency gives for visualizing self- 
intersecting surfaces, but noted that although transparency lets 
us see more layers of the surface, it strips those layers of some of 
their geometric content. In particular, the intersections and 
silhouettes are less apparent on transparent surfaces. 

We can estimate the amount of computation required for 
calculating the geometry of these curves and for rendering 
semi-transparent surfaces. The conclusion is that even for a 
modest-sized polygonal model, the burden on the traditional 
front end of a graphics system becomes too great. 
Programmable SIMD renderers let us shift some of the 
computation away from the math processors on Pixel-Planes 5, 
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which makes it possible to display silhouettes and intersection 
curves of a dynamic 3D (projected) surface at interactive rates. 

5.1 Calculating in 3-space 

Consider the task of manipulating a surface composed of n = 
2000 triangles (this is a skimpy polygon budget to spend on 
self-intersecting surfaces). The cost of transforming and 
ordering these semi-transparent triangles, along with 
calculating their silhouettes and intersections, is substantial. 
Depending on the particulars of the algorithms we employ, we 
can easily spend U(n log n) floating-point operations sorting 
the polygons (as required for transparency) and computing 
their intersections. Since the geometry is dynamic in 3-space as 
the surface rotates in 4-space. this cost is charged per frame. The 
transformations and projections from 4-space to the screen can 
take another 250n floating-point operations. So we easily face 
over 1.5 million floating-point operations for this meager data 
set. These estimates disregard all other necessary operations; the 
front-end system must sustain well over 30 MFLOPS in order to 
calculate the intersecting geometry at interactive speeds of 
2011~. By using multiple CPUs to achieve this speed, we incur 
substantial communication cost or memory contention. In 
either case, the time complexity is super-linear in the number of 
polygons. The conclusion: avoid sorting and avoid 
analytically computing the intersections in 3-space. 

Pixel-Planes 5 offers programmable SIMD logic-enhanced 
frame-buffers (the renderers) that can offload much of the 
burden from the geometry processors [Ellsworth, Fuchs891. In 
particular, we can use the SIMD renderers to order the 
polygons, to find the silhouettes, and to find the intersections. 
For the case of 2000 triangles, the renderers can relieve the 
geometry processors of over half their floating-point burden 
and reduce their communication cost. 

5.2 Silhouette Curves 

Analytic Solution. There are several ways to define a 
silhouette. In common usage. a silhouette is the boundary of 
the projection of a surface onto the image plane. But a more 
generous definition counts any point on a differentiable 
surface as a silhouette (or contour) point if the eye vector lies 
within the tangent plane to the surface at that point. The second 
choice is preferable fo: self-intersecting surfaces, since we wish 
to highlight the silhouettes of the component patches that nest 
inside a transparent image. A simple way to find a silhouette 
(whose transverse is non-inflecting) is to locate every edge that 
is shared by two polygons, one facing forward and the other 
facing backward from the eye. But if the polygon data is 
distributed among many processors, the processor that owns a 
given polygon will not necessarily hold the neighboring ones, 
even for a mesh that is static in 3-space. Note too that this 
technique only identifies silhouettes along mesh boundaries of 
a polygonal representation of the model, and not in the 
polygons ’ interiors. 

We can analytically compute the silhouette for surface patches 
that are defined parametrically [Schweitzer, Lane], but this does 
not take advantage of the SIMD renderers of Pixel-Planes. 

Screen-based Solution. Consider a screen-oriented approach 
to finding silhouettes. As a routine step in Phong-shading, the 
Pixel-Planes renderers hold the information necessary to locate 
silhouettes, namely, the interpolated surface normals and the 
eye vector. Each renderer covers a region on the screen and 
holds hundreds of bits of information per pixel in the region. 

These pixels are operated on in SIMD fashion. If the normal to a 
point on a polygon is orthogonal to the eye vector, the point 
lies on a silhouette curve. 

We can use the renderers to perform a dot product between the 
normal vector and the eye vector at every pixel, which 
identifies the silhouette if the dot product is zero. (If the eye is 
sufficiently far away, the projection is nearly orthogonal, and it 
sufftces to test just the z-component of the normal.) This yields, 
at best, a l-pixel-thick line on a curved surface; at worst, it 
misses most pixels on the silhouette because of the imperfect 
sampling of the normal vector. We might treat a pixel as a 
silhouette point if the dot product is within some threshold E of 
zero, thereby enlarging the silhouette’s thickness on the screen 
(figure 11). 

But thresholding has problems. As E gets large, false silhouettes 
appear wherever the surface is sufficiently edge-on to the cyc, 
and the silhouette becomes much fatter in some places than in 
others. The false silhouettes are inherent to thresholding since, 
for example, a planar section of the surface, and containing the 
eye, may have an inflection whose tangent lies arbitrarily close 
to the eye vector. The inflection point will appear as a 
silhouette point, even though there may bc no silhouette in its 
vicinity. 

I 
eye 

Figure 11. The surface normal is nearly orthogonaL fo the eye vector in 
the vicinity of a silhouette curve. 

The reason that the thresholded silhouette has varying 
thickness is that the curvature of the surface may vary from 
place to place. A silhouette point with a large magnitude of 
normal curvature in the silhouette’s transverse direction will 
witness its normal vector changing direction quickly along a 
path toward the eye. A large value of E may still produce a thin 
silhouette region. Meanwhile, a silhouette point with a small 
magnitude of normal curvature in the transverse direction will 
witness its normal vector changing direction slowly along a 
path toward the eye. The same value of E produces a thick 
silhouette, since there are points over a large area (even as seen 
from the eye) whose normals are nearly perpendicular to the eye 
vector. 

Note that silhouettes need not bc computed when a polygon 
first enters the pixel’s memory. WC need only look for 
silhouettes on visible polygon fragments that ultimately 
survive z-buffering. WC defer shading until after the polygons 
have been transformed and their z-buffered geometry 
(including normal) has been stored in the pixel memory. Thus 
we incur the expense of silhouette computation only once per 
frame (or, for multipass transparency, only once per pass), rather 
than once per polygon. 

Having found a silhouette, what do we do with it? The question 
concerns visualization in its abstract sense. How can WC 
effectively map the internal state at a pixel onto the available 
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dimension of output (e.g., red, green, and blue)? A simple 
solution is to map silhouettes to a particular color that is 
known to be absent elsewhere in the rendered surface. Such a 
color may not, of course, exist. But assigning a constant color 
on the silhouette of a smoothly shaded surface is often, in 
practice, a sufficient visualization. In the case of a transparent 
image, it can also be effective to assign complete opacity to a 
silhouette in order to make it stand out. In fact, we can relax the 
binary classification of silhouttes in favor of a real-valued 
measure of “silhouetteness.” If the intrinsic opacity of the 
surface at a point is a, let the effective opacity be l-(l-CX)‘ld, 
where d is the dot product of the eye vector and the normal 
vector. Surfaces then become increasingly opaque near their 
silhouettes, which mimics the natural behavior of transparent 
laminas. Viewed away from the normal by an angle whose 
cosine is d, a lamina of width w intercepts a ray through a 
distance wJd. 

5.3 Intersection Curves 

If the projected surface in 3-space were static, we could 
analytically compute the intersection curves [Baraff, Moore] 
once and for all. Since transformations in 4-space make its 3- 
space projection change shape dynamically, we recompute it 
each frame. This can be accomplished easily within the SIMD 
renderers. The straightforward approach to finding intersections 
is to modify the usual z-buffer algorithm. We test the z-value of 
each incoming polygon at each pixel against the contents of 
the z-buffer, retaining the polygon’s state information if the 
polygon is closer. If the new value matches the z-buffer, we 
count it as an intersection. If we have flagged an intersection 
and then a closer polygon comes along, we unset the 
intersection flag. The result is that all the frontmost 
intersections will be flagged. 

The proof of correctness is easy. Let (Pi) be the set of polygons 
that cover a pixel, indexed by the order in which they arrive, 
and let Pj and Pk (j<k) be two of them that participate in the 
front-most intersection at that pixel. The z-buffer must contain 
zj after 9j is processed. Since Pj is frontmost at the pixel, the z- 
buffer still contains Zj when Pk is processed, thereby setting the 
intersection flag. Since Pk is frontmost at the pixel, the flag will 
not be unset. At the end of the pass, we have found an 
intersection. By piggy-backing on the multipass algorithm for 
transparency, we can find all the interior intersections, since 
they will be frontrnost intersections at some particular pass. 

Two polygons that share an edge formally intersect each other 
along it. Polygons whose edges pass through pixel centers will 
“intersect” at those pixels. These are spurious intersections, and 
not the kind of intersection we are trying to show. We could be 
careful not to scan-convert pixels more than once on the 
common boundary of adjacent polygons. This technique 
presents a problem for a machine like Pixel-Planes, which is 
suited to rendering entire polygons as primitives, without 
maintaining connectivity information. But in fact the pixel 
already holds sufficient information to eliminate spurious 
intersections: surface normals. The intersections we wish to 
highlight are those of polygons diving through each other, 
whose normals are different where they interpenetrate. Since the 
SIMD renderers interpolate vertex normals, that information is 
available per pixel. We can thus modify the z-comparison, 
requiring that the dot product of the new normal with the old 
normal be less than unity in magnitude. 

Exact matching against the z-buffer can identify at best a l- 
pixel-wide intersection curve. At worst it misses much of the 

curve due to imperfect sampling (just as is the case with 
silhouette curves). We remedy this problem by thresholding. If 
the incoming pixel is within a of the z-buffer value, we 
consider it an intersection point. This introduces the same 
artifact of variable-width curves on the screen. If two polygons 
intersect each other at a shallow angle, their separation remains 
small over a large area of the screen, and the curve that satisfies 
lZ”W - z,t& < E is many pixels wide. If they intersect each other 
at a steep angle, a short excursion to neighboring pixels will 
find them separated far apart. We can use the interpolated 
normals of the poIygons at pixels near the intersection in order 
to approximate a fixed-width intersection curve. But note that 
the added computation is charged per polygon, and cannot be 
deferred to end-of-pass unless we retain the geometric state of 
both polygons. Also note that most implementations of the z- 
buffer algorithm interpolate reciprocal-z across the polygon. 
Over small extents or for large original values of z, 
thresholding produces nearly the same behavior even when 
using the reciprocal. But for locating intersections across large 
ranges, it is wise to recover the true depth. 

Figure 12. Al fheir common inlerseclion, Iwo polygons share z-values. 
The z-values at-e within some threshold of each other along a thickened 
intersection curve. 

Another artifact of thresholding is that the thickened 
intersection curve gets trimmed near silhouettes, since the 
depth-comparison is strictly within the z-direction rather than 
the normal directions of the participating polygons. This 
artifact is hard to overcome without using pixel-to-pixel 
communication. 

6 Future Work 
There are several research areas that this project has identified. A 
hemi-3-sphere can be mapped to the input space of a spaceball. 
How effective are the induced rotations in 4-space, and can the 
user produce the rigid motion within the 3-space to which a 
surface projects? Surfaces can be clipped in 4-space against 
volumes with 3-dimensional boundaries. Are there effective 
ways to shape, to position, and to display the volume or its 
boundary interactively? Is there an effective algorithm (like 
the BSP tree) for precomputing the rcndcring order for 
polygons projected from 4-space to the screen? IS there a speedy 
and natural way to illuminate surfaces in 4-space? What is the 
best interface for producing uncoupled parallax in either 4- 
space or the 3-space to which it projects? In what ways can 
texture be used as a w-depth cue? A quadric approximation to a 
surface contains curvature information, which can improve 
both the silhouette and intersection calculation for fixed-width 
curves. What are fast ways to produce this second-dcgrce 
approximation and fast ways to use it on a per-pixel basis? Our 
consideration of silhouettes was motivated by the loss of 
geometric content that transparency produces. Hence WC 
discussed silhouettes as seen by eye3. What usefu1 information 
do eye4 silhouettes add to a surface? 
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7 Conclusions 
The shape of surfaces in 4-space can be difficult to comprehend. 
Interactive computer graphics provides an excellent tool for 
making the surfaces seem more real, since we can manipulate 
them ourselves. The effort is full of trade-offs. In order to 
control all the degrees of freedom in 4-space. we need multiple 
input devices in 3-space. We can apply transparency in order to 
reveal the interior of a self-intersecting projection, but then we 
lose the intersections and the silhouettes. We can then highlight 
those special curves, but at the expense of the system’s 
performance or memory. We can steal some of the usual z-depth 
cues and use them as w-depth cues, but that tends to make z- 
depth more ambiguous again. 

This paper has focused on shortcomings of the various 
techniques in order to encourage other people to enter the fray 
and invent solutions. Until the advent of the powerful graphics 
computers we have today, mathematicians could only imagine 
interacting in four dimensions. Experience with Fourphront 
demonstrates that the effort can pay off, that we can open a 
window on the truly “virtual world” of four dimensions. The 
collateral spinoffs are algorithms that can be of service to the 
more pedestrian problems in three dimensions. 
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10 Illustrations 
The surfaces in the color plate section were rendered on Pixel- 
Planes 5. Each surface was transformed, illuminated, and 
rendered on 5 in 0.2 seconds or less, and each has between 4k 
and 10k polygons. There are two light sources: one slightly left 
of the eye, and one above and to the right of the eye. 
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