
Interactive Manipulation and Display of

Two-Dimensional Surfaces in Four-Dimensional Space

David Banks
Department of Computer Science

University of North Carolina at Chapel Hill

Abstract
Surfaces in 4-space generally produce self-intersections when
projected to 3-space. The geometry of the projected surface
changes as the surface rotates rigidly in 4-space. This paper
presents techniques for interacting with such a surface, for
recovering the geometry and depth information that the
projection destroys, for computing the intersections and the
surface when projected to 3-space, and for computing the
silhouettes and the surface when projected to the screen. These
techniques are part of an interactive system called Fourphront,
which uses Pixel-Planes 5 as the graphics engine.

1 Introduction
Versatile high-performance graphics machines let us
interactively manipulate surfaces in four dimensions. The
projective geometry and linear algebra required for the job are
well known [Semple], but surfaces in 4-space present challenges
in designing a user interface and a set of visualization cues. This
paper presents techniques to address these problems, using
Pixel-Planes 5 as the graphics platform. In particular, we present
techniques for gathering 3D input to manipulate a surface in 4-
space, for providing visualization cues, and for applying 4D
depth cues. These techniques are at the heart of an interactive
system called “Fourphront.”

Why study surfaces in 4-space? One reason is that topologists
have yet to classify all the 3-dimensional compact surfaces, but
have succeeded with the 2-dimensional surfaces (k-holed
donuts and their non-orientable counterparts). Many of the 2-
dimensional surfaces require four dimensions in which to
imbcd, and none of the compact 3-dimensional surfaces can
imbed in three dimensions of Euclidean space. It might be
enlightening to examine and compare surfaces that are
topologically equivalent and that inhabit four dimensions of
space. Do they look alike or not?

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
o 1992 ACM O-89791-47f-6/92/0003/0197...$1.50

It is difficult even to illustrate the 3D classification problem
with genuine examples; these are volumes without boundaries,
residing in up to seven dimensions of space. Even the 2-
dimensional surfaces may require four dimensions for their
imbedding. Interactive computer graphics can be of service by
providing a window on these surfaces in 4-space.

Object

User / ;4”:6 \ Lighting
space space
(3-D) (3-D) \ Screen

space
(2-D)

Figure I. A user in 3.space manipulates a surface in I-space, which
projects to 3-spat and then onfn the screen.

The three steps of our task (figure 1) are (92) mapping input
from user space to object space, ($3 and $4) projecting from
object space to illumination space, and ($5) projecting from
illumination space to the screen.

2 Mapping User Input to World
Transformations

The illusion of reality is strongest when the user controls what
scene it is that he views. Dynamic control of the transformation
matrices requires an input device that offers a natural means for
producing the object’s motion. There are ten degrees of
freedom that we wish to control for manipulating objects in 4-
space: four extents of translation in the axial directions (x, y, z,
w). and six Euler angles of rotation within the axial planes (xw,
yw, zw, xz. yz, xy). The 4D rotations look very much like their
3D counterparts, although it bccomcs more appropriate to
think of rotations occurring within a plane rather than
occurring about an axis (figure 2). In 3-space, rotations leave a
l-dimensional subspace fixed; that subspace is the rotation axis.
In 4D, rotations leave a 2-dimensional subspace fixed, while
permuting the points within the 2-dimensional rotation plant
and within the bundle of planes parallel to it. In general, the
rotation matrix A for the XiXj plane (i c i), contains Ihe elements
Uii = Ujj = COS t, Uij = -Uji = (-l)(‘+j) sin 2, and 11lC rcniaining
elements a&l = ~$1. For a more thorough trcatmcnl on Euler
angles in 4-space. and how to specify orientation. see
[Hoffman]. The challenge in assigning the ten dcgrccs of
freedom in 4-space to input devices that exist physically in 3-
space is to promote kinesthetic sympathy: Ihe similarity of
input-motion to object-motion [Gauch].

197

Figure 2. These are three of the six axial planes in xyzw-space,
dejined by the a&pairs xw, yw, and zw. The other three axtal planes
(xz, yz, and xy) lie in the jl-dimensional xyz-subspace.

2.1 Mapping 2D Input to 3D Transformations

The fact that an input device is constrained within a physical 3-
dimensional world will impair kinesthetic sympathy. The
question is, how much? This problem is very familiar in a
different guise, namely, how to affect direct 3D manipulations
with a 2D locator such as a mouse. In this case there are six
degrees of freedom (three Euler angles and three orthogonal
translations) to associate with a 2-dimensional input space. The
popular techniques are to overload the input space, to partition
the input space, to discard a dimension of control, or to create a
cross-product of the input space by using multiple locators. The
following is a highly compressed review of these techniques.

2.1 .I Overloading the Input Mapping

We can overload the input space (x’, y’, z’) by extracting x’ and
y’ components of the locator’s velocity, and assigning the
magnitude of circular acceleration to the z’ component
[Evans]. Converting these components into translations in x, y.
and z preserves sympathy for x and y. and naturally suggests a
screw-translation for z. An important drawback to mapping the
input space this way is that the locator’s velocity and
acceleration are not decoupled. If the user wants to change the
direction of the locator’s motion, that change necessarily
produces a circular acceleration and hence a z-translation in
worId space (figure 3).

Figure 3. At the bottom point of this circular trajectory, the mouse’s
velocity is purely horizontal, while its acceleration is purely vertical.

2.1.2 Partitioning the input Space

WC can partition the input space into components, each of
which maps the locator motion to the object motion in a
different manner. The partition can be explicit, by determining
in which of several control areas a cursor lies [Chen]. The
partition can be implicit, by comparing the motion of the 2D
locator to the orientation of a 3D cursor that is projected to
input space [Nielson]. Whichever mapping is employed, the
user must be prepared to change his motion when the input
space switches context, and must be aware of which mapping is
being invoked.

2.1.3 Discarding Input Mappings

There are several ways to discard a degree of control in order to
eliminate a dimension from the range of the input mapping.
For example, two angles determine a position on the unit 2-
sphere. Rather than specify three Euler angles, we can use the
locator’s velocity vector to determine a rotation of the unit 2-
sphere and hence of the 3-space it inhabits. Alternatively, we
can map the input space to the tangent space at a point on a
surface [Nielson, Bier, Hanrahan, Smith], in order to control the
motion of the object by controlling its motion within that
tangent plane. Of course the locator’s motion becomes less
sympathetic as the tangent plane deviates from the image plane.
A more abstract problem is that path-planning can become very
difficult when it requires a route through successive tangent
planes to reach a target orientation. A surface in 3-space that
isn’t cIosed or that isn’t everywhere differentiable may possess a
Gauss map that does not cover the unit sphere. Such a surface is
difficult or impossible to orient by controlling it through its
tangent or normal space.

2.1.4 Taking a Cross Product of the Input Space

By using k locators, each with n dcgrccs of freedom, WC permit
nk degrees of freedom in the input space. These can bc rcalizcd
either as k physical locators, as one logical locator with a k-way
selector to map physical-to-logical, or as a hybrid of the two.
Thus, a single mouse button can sclcct bctwccn two mappings
of the mouse position into the world [Chen].

2.2 Mapping Spaceballs and Joysticks to 4D
Transformations

What does the experience of mapping 2D input to 3D
manipulation suggest for mapping 3D input into 4D
manipulation? Consider each of the four approaches outlinctl
above. (1) Overloading the input space can product
transformations in 4-space as side effects of an attempted 3D
manipulation - side effects which novice users cannot easily
undo. (2) Nielson’s method for partitioning a locator’s 2-
dimensional space extends to 3D for translation, but it dots not
lend itself to rotations. (3) There are problems with discarding
one or more dimensions of manipulation. First, mapping a
velocity vector in 3-space into rotations of the unit 3-sphere in
4-space is a promising idea, but it is difficult to restrict the
input so as to rotate the projection of the object within its
projected 3D subspace. Second, the bigger the dimension of the
space, the less of it can be visited by excursions in a 2D tangent
plane to a point on a surface, so exploiting local surface
properties pays a much smaller dividend than it did in 3-space.
(4) Using multiple input devices can be inconvenient,
requiring ten sliders or dials, five mice, four 3D joysticks, or
two six-degree-of-freedom spaceballs.

What choice is best? There may be no single optimal technique,
but multiple input devices at least promise a great deal of
kinesthetic sympathy if their input space is 3-dimensional. The
relative novelty of interactive manipulation in 4-space is a
powerful motivation for designing a sympathetic interface. Not
many people have developed a sense of how surfaces look as
they rotate in 4-space. Consequently, we do well to
approximate that motion as closely as possible by the motion
of the input device. Of the devices listed above, spaceballs and
joysticks provide the most degrees of freedom. How then can
we use them to create sympathetic motion in 4-space?

198

Translations and rotations within an input plane x’y’ can
sympathetically and uniquely map to motion within an image
plane defined by the xy plane in world space. But the
projection from 4-space to the screen will annihilate two
orthogonal directions z and w, together with the 2-
dimensional plane they define. This plane will apparently go
“into” the screen at each point. Translation in the z or w
directions and rotation in the XW, yw, xz, or yz planes thus
present a problem. If the input device moves toward the screen,
we can legitimately map that motion either to z or w. Either
choice preserves kinesthetic sympathy, but the map is not
unique. Rotation in the zw plane is also problematic. There is
no physical rotation of a 3D input device sympathetic to this
4D rotation, since (in our physical 3-space) such a rotation
would be confined to the l-dimensional input space z’. The
sympathetic maps are tabulated below (figure 4).

:,:,:: .::,.j
,‘izr

x’y’z’ Input Space
Translation Direction Translation Direction

..,.,..
.:.:,

,,. X’ X :.:.:. . .-:,:::
Y’ ,: :: .:;: Y : .I

:_ :. : 2’ z or w .:>.
.: .: ,F..,
j::::. ,:: ::::
..: .: .,... ,,.... .,.,A . . . ______I______c_ ..:.........................,_.,_.,__) .,. .,,,: 1::;:;
:, ,:+ . .,. ::,:,:, ::. x’y’z’ Input Space - xyzw World Space j:_jj::

:: :. ::. Rotation Plane Rotation Plane ,ijijij;
-

j .j :.:.:.
x'y'

,,:.:,.
XY :.:... ,P.,.. .

x'zl
. _: ,:. .._

ALL
::.j xz or xw ,.:.,: ,,:.:,.
,:>,.
,:::, yz or yw I:?::
.c/,., ..I...

q;
i .:.

:.:. . . ZW ‘:::‘,:,:,::,::,:,::,‘:~:,‘.~:“~::~:~:~::::::::~~....‘.‘.. :.‘. . .
b’igure 4. The mappings of 30 inpuf space fo 40 world space [ha1
promote kinesthefic sympathy.

Despite the ambiguities, there are still reasonable ways to
convert input from a spaceball or a joystick into 4D
transformations. A spaceball offers six degrees of freedom: three
translations (x’,y’,z’) and three rotations (x’y’,x’z’.y’z’). To
extract ten degrees of freedom requires two spaceballs, either
physically or logically.

The mapping from input space to object space can be defined as
follows. Spaceballl assigns (x’.y’.z’) to (x.y.z) for calculating
translations and rotations. SpacebalI; re-interprets the z’
coordinate, assigning it to w instead of to z, Spaceball also
makes the exception that rotations in its x’y’-plane map to
rotations in the world’s zw-plane. This rotation is not
sympathetic, but, as pointed out above, no rotation in input-
space can be sympathetic to a zw rotation. Note that two
physical spaceballs compete to produce x and y translations
under this scheme; it is necessary then to squelch one
spaceball’s input to these translations. This makes the two-
spaceball solution somewhat unattractive.

313 joysticks that use twist (about the joystick axis) as the third
degree of freedom can map in a similar way to the spaceballs.
using two joysticks to mimic the mappings of a single
spaceball. The joystick rotates in each of three planes based at a
common origin. Two of the rotations feel like translations for a
short interval: when the joystick is centered, a rotation in its
x’z’ or y’z’ planes is momentarily a linear translation in the x’
or y’ direction (figure 5). We exploit this duality to
sympathetically map these two motions into either rotation or
translation in 4-space. Twist is not kinesthetically sympathetic

to translation, but is at least suggestive of forward motion that
results from rotating a screw.

I I

Figure 5. The 30 joystick rofafes in the x’z’, y’z’, and x’y’ planes,
which can produce a momentary translation in the x and the y
directions. In the input space coordinates, x’ is rightward, y’ is forward,
and z’ iF vertical.

We need four (physical or logical) joysticks in order to supply
the ten degrees of freedom necessary in 4-space. We can map
pairs of (logical) joysticks the same way we map the spaceballs.
Each pair allocates translations to one joystick and rotations IO
the other. Since joysticks have a small range of motion, it is
wise to treat their input as velocity rather than posiCon when
gross manipulations are desired.

The two mapping schemes arc summarized in the following
table (figure 6). The subscripts indicate which logical locator
supplies the input.

-. . .._..._...__.. . .._..._..._... . .._. . .; ,:: ~.~.:..,.,.,...,.,.................-~-.,-..~...:, ,.
~,~_~,~_.,.,.,.,.,.,,,.,,,,,, .;;,, .;,, :, ,...,.~,.::::::::::?:C::;;;:l:::: .I.

..: :::,::.,.~:. :Y:::::::::::::,j:::.:.:.......,.,.:.:.:.:.:.,.,. .._......_.._,, ,, ,.... ., :.,:x+:. :.
. _..._......:::: :... .,...............:

.:.

./.,..

.i..
>..:..

..,.,..

. ../.: . .

.c..... Spaceball Joystick
$$ Translation Rotation -

World -‘:ii
Translation .$

.:: Direction Plane ::.. Direction jl_‘,
,:::::, :. ,,. . ..i.. ,::::: :, : :.>:.

Xl’ X,klg X . . ,.:.:.: ,:::::, :. .:
,111 :.:.:. .A.. ..)... Yl Y,‘Z,’ y ,.I:; :,.
:..: :::.

Zl’ x,‘y,’
.A.. :.:.: Z ,.:_:. ,.::;

.:
,/...
.c...., X

I.... .I....
.iir X2’ x2’?2’I. .:,::. .I Y2’ Y2ki y :;:;::
..::. :.... :..... .,. ..I 22’ .\.I X2’Y 2’

,:,::.:
W :..... ,.:.::,

.,. ,. ,. ,\...,.,\.,_,. ,_,.,.,. :
_...’ : ::

j.:j. . ._ Spaceball Joystick . ../ World 7’:.
3.: Rotation Rotation --- : : Plane Plane

Translation I::;,
. ..P. :.:.:. Direction : : .A.. .A... : ::

fj >:.: . : : : :.>>
::: ,P.., Xl’Y 1’ x3*y3’ XY :.: I I .A.. . . Xl Zl XgsZj* xz :. ;.
:.:. :.:.:
. .
:.... ..: ..,.. y,‘z,’ Ys’Z3’ yz ;I:;
.::j,.
.:. X2’Y2’ Q’Y4’ zw :... ..: ,,
>>;
::j.j:: .,.,.. X2’Z2’ x4’z4’ xw .:,
;.I::. ,.,
j:;;; . . . Y2’Z2’ Y4’Z4’

.
.A..,. .A...

YW :;:jjl.
. . . . /.’\..\~......... .,:.:,

I “““““““” “““““““““““““““““““““““.“‘.“‘.““””””””’, ” “.)‘,‘,““““” .
Figure 6. The mappings of spaceball and joystick input that promole
kinesthetic sympalhy in 4D world space.

It is inconvenient to re-home the hands from one set of
joysticks to another in the midst of manipulating an object.
Fourphront therefore uses only two physical joysticks, one for
each hand, multiplexed as four logical ones. One physical
joystick functions as a logical pair that always maps (x’,y’,z’)
to (x.y,z). This physical joystick embodies logical joysticks 1
and 3 in the table above. The other physical joystick
(corresponding to logical joysticks 2 and 4 in the table) maps

199

(x’.y’.z’) to (x.y,w 1, with the same caveat that it
nonsympathetically maps rotations from the x’y’ input plane
to the zw world plane. A binary state variable (governed by a
joystick button) determines whether to produce translations or
rotations.

It is not uncommon to decouple the positioning and
orientation operations in the input domain. Experience shows
that that users also decouple 4D manipulations (the ones that
involve the w-axis in world space) from 3D manipulations
[Hoffman] in order to inspect the change that was made to the
3D projection moving the model in 4-space. So there is some
justification in this splitting of the joystick control into four
parts. The other natural decomposition would assign logical
joysticks 1 and 2 to one device, and joysticks 3 and 4 to the
other.

3 Projecting to 3D: Intersections,
Transparency, and Silhouettes

The same technique for projecting surfaces from 3-space to 2-
space applies to projection from 4-space to 3-space. A
pcrspcctive projection requires an eye point eye4 in 4-space. In
(non-homogeneous) normalized eye-space coordinates, the
point (x, y, Z, w) projects to (x/w, y/w, z/w) in the 3-dimensional
image volume. A second eye point eye3 within that volume
determines a further projection to the final image plane (figure
7).

Y Y

X X

Z
z

W

* @Ii@

y x

Figure 7. The (x y z w)-axes (kft) project in the w-direction to the (x y
z)-axes (middle), which project in the z-direction to the (x y)-axes of
the image plane.

The typical side-effect of projection is that the resulting surface
intersects itself in 3-space. even if it has no intersection in 4-
space. Why is that? The self-intersections arise when a ray from
eye4 strikes the surface twice, since both of the intersection
points must map to a single point in 3-space. This is the usual
situation for a closed surface in 4-space, just as it is for a closed
curve in 3-space: the shadow of a “curvy” space curve exhibits
self-intersections through most of its orientations .

A surface is imbedded if it has no self-intersections or
singularities. An imbedded surfaces locally looks like a
neighborhood in the plane - no creases, no crossings. If a
surface imbeds in three dimensions, there’s little need (from the
standpoint of topology) to study it in four; thus the interesting
surfaces are generally the ones that contain self-intersections
when projected to 3-space, because they fail to imbed there.
None of the one-sided surfaces imbed in 3-space. Happily. all
tof he topological surfaces have incarnations that imbed in 4-
SpCC.

Typically a surface that we transform and rotate on our graphics
machines is the boundary of a solid object, whether the object

be a house or a mountain range. Such a surface may be
geometrically complex, but it dutifully performs a crucial
topological service: it separates 3-space into an inside and an
outside. We can tour the surface from the inside (as with a
building walkthrough) or from the outside (as with a flight
simulation over rugged earth) until we have developed a
sufficiently complete mental model of it. We need not cross the
surface to the other side.

By contrast, a self-intersecting surface separates 3-space into
any number of subsets. If the surface is opaque, some or most of
its pieces remain hidden during a tour of a particular volume
that it bounds. Rotating the surface in 4-space may reveal a
patch of surface that was previously hidden, but only at the
expense of another portion of the surface that is now obscured.
The fundamental problem of displaying such surfaces is that
they continually hide their geometry from us. Three popular
ways to tackle this problem are to use ribboning, clipping, and
transparency. Overall, transparency is the most helpful, but it
has certain drawbacks which WC repair in $5.

3.1 Ribboning

To reveal the geometry of a self-intersecting surface, we can
slice it into ribbons [Koqak]. The gaps between ribbons reveal
parts of the object that would otherwise be obscured. One
advantage of ribboning is that it can be performed once, at
model definition time, and then left alone. Some of the
drawbacks are that (1) any already-existing non-ribboned
datasets must be remeshed and ribboned, (2) the high-frequency
edges of thin close ribbons attract the attention of the eye, at
the expense of the geometric content of the surface, and (3)
ribbons can produce distracting moird patterns when they
overlap.

These drawbacks do not mean that ribboning is a clumsy
technique. On the contrary, for surfaces that can be foliated by
l-dimensional curves, ribboning is a very elegant means of
visualization. The compact surfaces that admit such a foliation
are the torus and the Klein bottle. Banchoff has made
productive use of this technique to illustrate the foliation of
the 3-sphere in 4-space by animating a ribboned torus that
follows a trajectory through the 3-sphere.

Surfaces with other topologies do not admit such a simple
ribboning. We can slice a surface along level cuts as it sits in 4-
space, but the cuts wilt sometimes produce x-shaped
neighborhoods in the ribbons. Morse theory determines
whether a surface can be successfully ribboned: the singularities
of a Morse function on a surface must all be degenerate with the
topology of a circle [Milnor, Morse].

3.2 Clipping

Rather than pre-compute sections of the surface to be sliced
away. we can clip them out dynamically. The chief advantages
are that (1) many graphics machines implement fast hither-
clipping as part of their rendering pipeline; (2) no special
treatment is required for the representation of the model; and
(3) by clipping the surface as it moves, the user can inspect
views of it that a single static segmentation cannot anticipate.

There are drawbacks to clipping. WC usually think of clipping a
surface against a plane. In fact, clipping is properly a geometric
intersection of a surface against a 3-dimensional volume whose
boundary is the clipping plane. In 4-space a plane does not
bound a volume, just as a line does not bound an area in 3-

200

space. Instead, a 4-dimensional halfspace clips the surface, and
the boundary of the halfspace is a 3-dimensional flat, or
hyperplane. It is true that a user could interactively specify the
position and orientation of the 4D halfspace that does the
clipping, just as he can control the position and orientation of
the surface under scrutiny. But consider the problem of
providing visual feedback to show where that clipping volume
is. The shape of the clipped surface implicitly defines where the
boundary of the clipping volume is. In 3-space we can mentally
reconstruct the orientation of that volume from the clipped
edges it leaves behind. It is much harder to reconstruct the
orientation of a clipping volume in 4-space based on the shape
of the region it clips away. We might indicate the orientation of
the 4D clipping halfspace by volume-rendering its boundary.
Unfortunately, that boundary will tend to hide the surface that
remains after clipping.

Recall that the immediate problem is to view the component
pieces of a self-intersecting surface. In particular, to see beyond
a patch of surface that hides another patch behind it, “behind”
being in the z-direction of the 3-dimensional space to which
the surface has been projected. If this is truly the driving
problem, we can sufficiently address it by clipping in that 3-
dimensional space, and clipping strictly in the z-direction. This
amounts to nothing more than hither clipping. To summarize:
clipping in 4-space is mathematically easy but interactively
hard. For the purpose of revealing hidden interiors, however,
hither clipping suffices.

Figure 8. Clipping info a torus produces a&we-eight contour, Clipping
reveals infernal geometry, but complex contours can confuse fhe
shape.

Hither clipping has other problems. The shape of the surface
region that gets clipped away can be very complex. A simple
shape is one that is topologically equivalent (homeomorphic)
to a disk. In general it is easier to make sense of surfaces whose
clipped regions have simple shapes rather than complex shapes
{Francis], but intersections and saddle points on a surface cause
the clipped regions to look complex (figure 8). Secondly, a
clipping plane cuts into a concave region of a surface only by
curling into the neighboring regions as well. This is not
necessarily the effect a user wants to achieve. Both of these
shortcomings can be remedied by using more exotic, custom-
shaped clipping volumes. Thirdly, clipping the frontmost
p.atchcs of a surface exposes some of the hindmost patches,
which may be behind the center of rotation for the objects. The
visible part of the surface then seems to rotate in the direction
antisympathetic to the input motion. This shortcoming is
indcpcndent of the shape of the clipping volume.

3.3 Transparency

Ribboning and clipping simulate transparency via a binary
classification. Both classify parts of the surface as completely
opaque and the other parts as completely transparent. Why not
USC transparency outright? Ideally a semi-transparent surface
presents all of its self-intersecting components on the screen so
that the shape of each layer is discernible. In practice the effect

is dramatic and helpful for many surfaces. But there are several
things that can hinder the usefulness of transparency.

Disappearing intersections. The intersection of two opaque
surface patches A and B is readily apparent whenever their
colors differ. On one side of the intersection we have A atop R
(yielding A’s color); on the other side B atop A (yielding R’s
color). As the patches become simultaneously more transparent,
their colors blend and the intersection becomes less
distinguishable. Intersection curves figure prominently in the
study of nonimbedded surfaces, so it seems a shame to apply
transparency at their expense.

Disappearing silhouettes. A surface with many self-
intersections may require a great deal of transparency to make
the deep layers visible, but then the outermost layer becomes
nearly invisible. In particular, it becomes difficult to see the
outline, or silhouette, of a very transparent surface, because the
silhouette includes the rim of the nearly-invisible outermost
layer.

Reduced performance. Rotations in 4-space change lhc
geometry of a surface’s 3D projection. Polygons that wcrc
disjoint one frame ago now interpenetrate. Polygons that were
on the outermost side trade places with polygons on the
innermost. Opaque polygons can be rendered in any order, so
long as only the nearest polygons (in screen depth) survive the
rendering process. On the other hand, transparent polygons can
be rendered from back to front or from front to back, but in any
case they must be rendered in sorted order. The dynamic 3D
geometry caused by 4-space rotations prevents us from ordering
the model by a static data structure in 3-space, such as a binary
space partition (BSP) tree [Fuchs83]. Dots the BSP tree extend
to surfaces in 4-space? Alas it does not; a polygon partitions 3-
space by the plane in which it lies. But a plane dots not separate
4-space.

In short, to render transparent polygons we must be prepared to
sort them dynamically, perhaps even splitting them IO
eliminate inteTpenetr ations. But that is computationally
expensive, and hence slow.

Loss of3D depth cue. It is true that an opaque self-intersecting
surface hides parts of itself that we want to see, but that opacity
serves a positive purpose: to disambiguate 3D depth on a 2D
display. Obscuration is a powerful depth cue. A hidden
polygon is obviously far.ther away than the visible polygon
atop it. Transparency reduces or eliminates this depth CIIC,
leaving us to rely on other cues to recover 3D depth. One
especially helpful cue is specular reflection.

Specular highlights reveal surface gcomctry in two ways. The
shape of a surface is easy to see along its silhouette, but is not so
apparant in the neighborhoods that are viewed head-on. I’hong
highlights help exaggerate the curvature, thereby
distinguishing the shape of a neighborhood. Where two
transluscent surface patches interpenetrate, the Phong
highlights can disambiguate which surface is in front,
especially when we rock the surface back and forth. Morcovcr,
the highlights can disambiguate the different layers that
transparency reveals. The benefit diminishes, of course, as the
number of transparent layers increases, but the effect is
appreciable through three or four layers.

Transparency is an essential tool for studying surfaces in 4-
space, since it reveals the behavior of the patches that intcrscct
each other, and since any given surface is likely to exhibit self-

201

intersections when it is projected to 3-space. But transparency
comes with a price. It subdues intersections and silhouettes. It
makes rendering slower. It makes depth more ambiguous.

In order to redeem transparency as a tool for rendering surfaces
in 4-space, we can address these demerits in the following ways.
(1) Highlight the intersection curves; (2) Highlight the
silhouette curves. (3) Order the polygons in sub-linear time. (4)
Apply Phong shading to recover some sense of 3D depth.

Finding the intersections and silhouettes could be slow, and
these curves will often change with every frame. In $5 we
discuss techniques for computing them after the second
projection, from 3-space to the screen. The algorithms exploit
the logic-enhanced memory on board Pixel-Planes 5.
Fourphront uses these techniques in the presence of
transparency and Phong shading by taking advantage of the
underlying algorithms on Pixel-Planes: multipass transparency
and deferred shading. In (back-to-front) multipass transparency,
the model is sent to the SIMD renderers multiple times. On each
pass, a pixel processor retains the geometry of the backmost
polygon that it has not previously retained, then blends the
shaded result into a temporary frame buffer. This technique
rcquircs two z-buffer areas per pixel processor. Deferred shading
extracts the shading operation common to all primitives, and
posponed applying the operation until after all the primitives
have been z-buffered. Thus, only the necessary state
information (e.g., color, reflectivity, normal, transparency) is
stored per pixel at the time the geometry of the primitive is
rendered.

4 Projecting to 3D: Depth Cues
There are several cues that lend a 3D effect to images on a
computer screen. Among them are obscuration, shadows,
illumination, perspective, parallax, stereopsis, focus, and
texture. These are natural cues that we use every day to derive a
3D model of our world from the 2D image of it on our retinas.

But now we confront a serious problem. By projecting the
image of a surface in 4-space down to a 2-dimensional screen,
not only do we lose depth information in the z-direction, but
we lose it in the w-direction as well. What 4-dimensional depth
cue does our retina employ that we can now supply when we
render the surface? Evidently there is none. Since both the z
and the w directions are perpendicular to the screen, we might
try applying some of the usual z-depth cues as w-depth cues.
This strategy risks ambiguating the two depths, of course. The
alternative is to invent w-depth cues that have no basis in OUT

physical experience. How do the usual z-depth cues extend to
four dimensions?

4.1 Obscuration and Shadows

We can drop down a dimension and liken the situation to
viewing l-dimensional curves in 3-space. Space curves rarely
obscure or cast shadows on each other: only at isolated points,
in general. Similarly, surfaces in 4-space only obscure each
other or cast shadows on each other along mere isolated curves
(in general). The result is that these cues are not especially
helpful for recovering w-depth.

4.2 Illumination

Again we consider the lower-dimensional analog to our
problem. Illumination is ill-defined along a curve in 3-space,
since a space curve has an entire plane for its normal directions.

The usual illumination equation does not apply. Several
researchers have observed that any surface with co-dimension 1
submits to ordinary lighting techniques, and have jumped
ahead to illuminating 3-dimensional surfaces in 4-space
[Burton. Carey]. Burton lets a polygon inherit the normal
vector of the 3-dimensional volume whose boundary includes
it. This is like illuminating a polygonal surface in 3-space, but
only displaying the result on the polygonal mesh. The problem
with non-orientable surfaces imbedded in 4-space is that they
do not bound any volume at all. Hansen inflates a surface to a
small 3-dimensional volume, like wrapping a tube around a
space curve, and then illuminates that bounding volume in 4-
space and volume-renders it [Hansen]. The images arc
satisfying, but the technique is fairly slow, since rendering
volumes is considerably slower than rendering polygons.

Illuminating surfaces in 4-space is thus an unresolved problem.
Fourphront postpones illumination until the surface is
projected into 3-space. so that shading looks familiar and
realistic on the projected surface, and so that this strong z-
depth cue is preserved. This strategy is at least as old as 1880,
when it was used to shade polygonal faces as though they were
illuminated in 3-space {Stringham]. The obvious drawback
with this approach is that the shading in 3-space reveals more
about the shape of the projected surface than about the shape of
the surface as it lies in 4-space.

4.3 Perspective

A perspective projection from 3-space to 2-space behaves like
an orthogonal projection where 3-space is pre-warped: plants
parallel to the image plane are first shrunk or magnified
according to their distance. A perspective projection from 4-
space to 3-space has the same general effect. Volumes shrink
that are distant from, and parallel to, the volume of projection,
but volumes grow that are close to the center of projection eyed.
In particular, translating a neighborhood in the w-direction
causes its projection to shrink and approach the origin. This
behavior can disambiguate relative w-depth. The ncarcr
neighborhood changes size faster than the farther one.

4.4 Stereopsis and Parallax

Parallax and stereopsis are side-effects of perspective
projection, and they offer additional w-depth cueing
[Armstrong]. Consider the effect of translating the eye. Objects
at various depths in the world change their relative positions
when the eye shifts in the x or y directions. But which eye
position (eye4 or eyej). and which depth (z or w)?

Let us again drop down a dimension and examine the situation.
Consider a viewpoint eye3 in 3-space, and the image plane to
which the world projects (figure 10). Within that plane there is
a second viewpoint eye2 and an image line to which the scent
projects further. Two spheres A and B in the 3D world project to
two disks A’ and B’ in the image plane, and then to two
segments A” and B” in the image line. Suppose A” and B” are
only slightly separated. If eye2 shifts to the right and A” shifts
to the right relative to B”, we conclude that A’ is farther away
than B’. But that does not imply that the source object A is
farther from eye3 than B. It can be the case that shifting eye3 to
the right causes A” to shift left instead (relative to B”).
Translating eye3 and eye2 together couple these behaviors. The
situation in It-space is the same. We have a choice of where to
apply a translation. Applying it before the projection from 4-
space to 3-space produces nonintuitive motion, due to 11~
parallax from the w direction: the projcctcd object is no longer

202

rigid under the expected isometries, although the source object,
of course, still is.

Figure 10. When there are two eye positions involved in projecting an
image, eifher of them can produce parallax. In this figure, spheres A
and B projeci from J-space onlo a 2-dimensional plane as disks. The
disks project lo a l-dimensional line as segments. By lilting the page
obliquely, you can see whaf the second eye sees. Moving an eye to the
righf will make fhefarfher objecf seem fo move fo the right o fhe nearer
object. Which sphere looks closer? It depends on which eye does the
measuring. A is closer lo eye3 than B is. But the projection of B is closer
fo eye2 than the projection of A is.

4.5 Texture

The texture applied to a surface can be defined dynamically in
world space, so that as the surface moves in the w direction, the
texture changes. One of the simplest textures is color
modulated according to depth. This texture is well-known as
intensity depth cueing. In 3-space there is a convenient
metaphor for an intensity depth cue - the object looks as
though it were obscured by fog. and the fog’s color prevails as
the object recedes. In practice, the 4D fog-metaphor is
considerably less convincing, perhaps because the usual 3D
interpretation is so much more natural.

Encoding w-depth by color is nonetheless a useful tool,
especially for locating level sets according to the color they
share. The idea is evidently pretty obvious, since there are very
old examples of its use [Hinton]. A more modem treatment of
the strategy might be to apply a dynamic texture to a surface,
where the texture continually flows in the w-direction
[Freeman, van Wijk].

4.6 Focus and Transparency

The human eye can focus at various depths. Neighborhoods of a
surface that lie within the focal plane in 3-space appear crisp.
Neighborhoods that are nearer or farther look increasingly
blurry. There are various techniques for producing this effect
during rendering [Haeberli, Mitchell, Potmesil].

In 4-space we could define a focal volume at some particular
distance in w. Neighborhoods within this volume would
appear crisp, while neighborhoods outside would be
progressively blurry. In general this is not a fast process, since
blurry polygons are effectively semitransparent, and hence
incur some of the cost of computing transparency. But we can
approximate the effect cheaply by simply modulating
transparency by w-depth. If the focal volume is at the yen
distance, transparency will unambiguously determine w-depth.
Recall that neighborhoods near to eye4 are generally large due
to perspective, and often enclose the far-away neighborhoods
that have shrunk toward the origin. If the outermost patches of
a surface are opaque, they hide the interior geometry. This is the
motivation for choosing a focal volume at the yon, rather than
the hither, distance: it is more likely to reveal the interior of a
self-intersecting surface. Unfortunately, the eye does not
resolve transparency with a great deal of resolution, so this
technique is best applied for gross classification of relative
distances in the w direction.

5 Finding Silhouettes and Intersections
During Projection to 2D

This section describes a screen-oriented technique for locating
silhouette curves and intersection curves. In $3 we described the
powerful advantage transparency gives for visualizing self-
intersecting surfaces, but noted that although transparency lets
us see more layers of the surface, it strips those layers of some of
their geometric content. In particular, the intersections and
silhouettes are less apparent on transparent surfaces.

We can estimate the amount of computation required for
calculating the geometry of these curves and for rendering
semi-transparent surfaces. The conclusion is that even for a
modest-sized polygonal model, the burden on the traditional
front end of a graphics system becomes too great.
Programmable SIMD renderers let us shift some of the
computation away from the math processors on Pixel-Planes 5,

203

which makes it possible to display silhouettes and intersection
curves of a dynamic 3D (projected) surface at interactive rates.

5.1 Calculating in 3-space

Consider the task of manipulating a surface composed of n =
2000 triangles (this is a skimpy polygon budget to spend on
self-intersecting surfaces). The cost of transforming and
ordering these semi-transparent triangles, along with
calculating their silhouettes and intersections, is substantial.
Depending on the particulars of the algorithms we employ, we
can easily spend U(n log n) floating-point operations sorting
the polygons (as required for transparency) and computing
their intersections. Since the geometry is dynamic in 3-space as
the surface rotates in 4-space. this cost is charged per frame. The
transformations and projections from 4-space to the screen can
take another 250n floating-point operations. So we easily face
over 1.5 million floating-point operations for this meager data
set. These estimates disregard all other necessary operations; the
front-end system must sustain well over 30 MFLOPS in order to
calculate the intersecting geometry at interactive speeds of
2011~. By using multiple CPUs to achieve this speed, we incur
substantial communication cost or memory contention. In
either case, the time complexity is super-linear in the number of
polygons. The conclusion: avoid sorting and avoid
analytically computing the intersections in 3-space.

Pixel-Planes 5 offers programmable SIMD logic-enhanced
frame-buffers (the renderers) that can offload much of the
burden from the geometry processors [Ellsworth, Fuchs891. In
particular, we can use the SIMD renderers to order the
polygons, to find the silhouettes, and to find the intersections.
For the case of 2000 triangles, the renderers can relieve the
geometry processors of over half their floating-point burden
and reduce their communication cost.

5.2 Silhouette Curves

Analytic Solution. There are several ways to define a
silhouette. In common usage. a silhouette is the boundary of
the projection of a surface onto the image plane. But a more
generous definition counts any point on a differentiable
surface as a silhouette (or contour) point if the eye vector lies
within the tangent plane to the surface at that point. The second
choice is preferable fo: self-intersecting surfaces, since we wish
to highlight the silhouettes of the component patches that nest
inside a transparent image. A simple way to find a silhouette
(whose transverse is non-inflecting) is to locate every edge that
is shared by two polygons, one facing forward and the other
facing backward from the eye. But if the polygon data is
distributed among many processors, the processor that owns a
given polygon will not necessarily hold the neighboring ones,
even for a mesh that is static in 3-space. Note too that this
technique only identifies silhouettes along mesh boundaries of
a polygonal representation of the model, and not in the
polygons ’ interiors.

We can analytically compute the silhouette for surface patches
that are defined parametrically [Schweitzer, Lane], but this does
not take advantage of the SIMD renderers of Pixel-Planes.

Screen-based Solution. Consider a screen-oriented approach
to finding silhouettes. As a routine step in Phong-shading, the
Pixel-Planes renderers hold the information necessary to locate
silhouettes, namely, the interpolated surface normals and the
eye vector. Each renderer covers a region on the screen and
holds hundreds of bits of information per pixel in the region.

These pixels are operated on in SIMD fashion. If the normal to a
point on a polygon is orthogonal to the eye vector, the point
lies on a silhouette curve.

We can use the renderers to perform a dot product between the
normal vector and the eye vector at every pixel, which
identifies the silhouette if the dot product is zero. (If the eye is
sufficiently far away, the projection is nearly orthogonal, and it
sufftces to test just the z-component of the normal.) This yields,
at best, a l-pixel-thick line on a curved surface; at worst, it
misses most pixels on the silhouette because of the imperfect
sampling of the normal vector. We might treat a pixel as a
silhouette point if the dot product is within some threshold E of
zero, thereby enlarging the silhouette’s thickness on the screen
(figure 11).

But thresholding has problems. As E gets large, false silhouettes
appear wherever the surface is sufficiently edge-on to the cyc,
and the silhouette becomes much fatter in some places than in
others. The false silhouettes are inherent to thresholding since,
for example, a planar section of the surface, and containing the
eye, may have an inflection whose tangent lies arbitrarily close
to the eye vector. The inflection point will appear as a
silhouette point, even though there may bc no silhouette in its
vicinity.

I
eye

Figure 11. The surface normal is nearly orthogonaL fo the eye vector in
the vicinity of a silhouette curve.

The reason that the thresholded silhouette has varying
thickness is that the curvature of the surface may vary from
place to place. A silhouette point with a large magnitude of
normal curvature in the silhouette’s transverse direction will
witness its normal vector changing direction quickly along a
path toward the eye. A large value of E may still produce a thin
silhouette region. Meanwhile, a silhouette point with a small
magnitude of normal curvature in the transverse direction will
witness its normal vector changing direction slowly along a
path toward the eye. The same value of E produces a thick
silhouette, since there are points over a large area (even as seen
from the eye) whose normals are nearly perpendicular to the eye
vector.

Note that silhouettes need not bc computed when a polygon
first enters the pixel’s memory. WC need only look for
silhouettes on visible polygon fragments that ultimately
survive z-buffering. WC defer shading until after the polygons
have been transformed and their z-buffered geometry
(including normal) has been stored in the pixel memory. Thus
we incur the expense of silhouette computation only once per
frame (or, for multipass transparency, only once per pass), rather
than once per polygon.

Having found a silhouette, what do we do with it? The question
concerns visualization in its abstract sense. How can WC
effectively map the internal state at a pixel onto the available

204

dimension of output (e.g., red, green, and blue)? A simple
solution is to map silhouettes to a particular color that is
known to be absent elsewhere in the rendered surface. Such a
color may not, of course, exist. But assigning a constant color
on the silhouette of a smoothly shaded surface is often, in
practice, a sufficient visualization. In the case of a transparent
image, it can also be effective to assign complete opacity to a
silhouette in order to make it stand out. In fact, we can relax the
binary classification of silhouttes in favor of a real-valued
measure of “silhouetteness.” If the intrinsic opacity of the
surface at a point is a, let the effective opacity be l-(l-CX)‘ld,
where d is the dot product of the eye vector and the normal
vector. Surfaces then become increasingly opaque near their
silhouettes, which mimics the natural behavior of transparent
laminas. Viewed away from the normal by an angle whose
cosine is d, a lamina of width w intercepts a ray through a
distance wJd.

5.3 Intersection Curves

If the projected surface in 3-space were static, we could
analytically compute the intersection curves [Baraff, Moore]
once and for all. Since transformations in 4-space make its 3-
space projection change shape dynamically, we recompute it
each frame. This can be accomplished easily within the SIMD
renderers. The straightforward approach to finding intersections
is to modify the usual z-buffer algorithm. We test the z-value of
each incoming polygon at each pixel against the contents of
the z-buffer, retaining the polygon’s state information if the
polygon is closer. If the new value matches the z-buffer, we
count it as an intersection. If we have flagged an intersection
and then a closer polygon comes along, we unset the
intersection flag. The result is that all the frontmost
intersections will be flagged.

The proof of correctness is easy. Let (Pi) be the set of polygons
that cover a pixel, indexed by the order in which they arrive,
and let Pj and Pk (j<k) be two of them that participate in the
front-most intersection at that pixel. The z-buffer must contain
zj after 9j is processed. Since Pj is frontmost at the pixel, the z-
buffer still contains Zj when Pk is processed, thereby setting the
intersection flag. Since Pk is frontmost at the pixel, the flag will
not be unset. At the end of the pass, we have found an
intersection. By piggy-backing on the multipass algorithm for
transparency, we can find all the interior intersections, since
they will be frontrnost intersections at some particular pass.

Two polygons that share an edge formally intersect each other
along it. Polygons whose edges pass through pixel centers will
“intersect” at those pixels. These are spurious intersections, and
not the kind of intersection we are trying to show. We could be
careful not to scan-convert pixels more than once on the
common boundary of adjacent polygons. This technique
presents a problem for a machine like Pixel-Planes, which is
suited to rendering entire polygons as primitives, without
maintaining connectivity information. But in fact the pixel
already holds sufficient information to eliminate spurious
intersections: surface normals. The intersections we wish to
highlight are those of polygons diving through each other,
whose normals are different where they interpenetrate. Since the
SIMD renderers interpolate vertex normals, that information is
available per pixel. We can thus modify the z-comparison,
requiring that the dot product of the new normal with the old
normal be less than unity in magnitude.

Exact matching against the z-buffer can identify at best a l-
pixel-wide intersection curve. At worst it misses much of the

curve due to imperfect sampling (just as is the case with
silhouette curves). We remedy this problem by thresholding. If
the incoming pixel is within a of the z-buffer value, we
consider it an intersection point. This introduces the same
artifact of variable-width curves on the screen. If two polygons
intersect each other at a shallow angle, their separation remains
small over a large area of the screen, and the curve that satisfies
lZ”W - z,t& < E is many pixels wide. If they intersect each other
at a steep angle, a short excursion to neighboring pixels will
find them separated far apart. We can use the interpolated
normals of the poIygons at pixels near the intersection in order
to approximate a fixed-width intersection curve. But note that
the added computation is charged per polygon, and cannot be
deferred to end-of-pass unless we retain the geometric state of
both polygons. Also note that most implementations of the z-
buffer algorithm interpolate reciprocal-z across the polygon.
Over small extents or for large original values of z,
thresholding produces nearly the same behavior even when
using the reciprocal. But for locating intersections across large
ranges, it is wise to recover the true depth.

Figure 12. Al fheir common inlerseclion, Iwo polygons share z-values.
The z-values at-e within some threshold of each other along a thickened
intersection curve.

Another artifact of thresholding is that the thickened
intersection curve gets trimmed near silhouettes, since the
depth-comparison is strictly within the z-direction rather than
the normal directions of the participating polygons. This
artifact is hard to overcome without using pixel-to-pixel
communication.

6 Future Work
There are several research areas that this project has identified. A
hemi-3-sphere can be mapped to the input space of a spaceball.
How effective are the induced rotations in 4-space, and can the
user produce the rigid motion within the 3-space to which a
surface projects? Surfaces can be clipped in 4-space against
volumes with 3-dimensional boundaries. Are there effective
ways to shape, to position, and to display the volume or its
boundary interactively? Is there an effective algorithm (like
the BSP tree) for precomputing the rcndcring order for
polygons projected from 4-space to the screen? IS there a speedy
and natural way to illuminate surfaces in 4-space? What is the
best interface for producing uncoupled parallax in either 4-
space or the 3-space to which it projects? In what ways can
texture be used as a w-depth cue? A quadric approximation to a
surface contains curvature information, which can improve
both the silhouette and intersection calculation for fixed-width
curves. What are fast ways to produce this second-dcgrce
approximation and fast ways to use it on a per-pixel basis? Our
consideration of silhouettes was motivated by the loss of
geometric content that transparency produces. Hence WC
discussed silhouettes as seen by eye3. What usefu1 information
do eye4 silhouettes add to a surface?

205

7 Conclusions
The shape of surfaces in 4-space can be difficult to comprehend.
Interactive computer graphics provides an excellent tool for
making the surfaces seem more real, since we can manipulate
them ourselves. The effort is full of trade-offs. In order to
control all the degrees of freedom in 4-space. we need multiple
input devices in 3-space. We can apply transparency in order to
reveal the interior of a self-intersecting projection, but then we
lose the intersections and the silhouettes. We can then highlight
those special curves, but at the expense of the system’s
performance or memory. We can steal some of the usual z-depth
cues and use them as w-depth cues, but that tends to make z-
depth more ambiguous again.

This paper has focused on shortcomings of the various
techniques in order to encourage other people to enter the fray
and invent solutions. Until the advent of the powerful graphics
computers we have today, mathematicians could only imagine
interacting in four dimensions. Experience with Fourphront
demonstrates that the effort can pay off, that we can open a
window on the truly “virtual world” of four dimensions. The
collateral spinoffs are algorithms that can be of service to the
more pedestrian problems in three dimensions.

8 Acknowledgements
Fourphront is a descendant of interactive applications that were
written for Pixel-Planes by Trey Greer (Front), Howard Good
(Pphront), and Vicki Interrante (Xphront), all based on a
PHIGS-like library developed for Pixel-Planes. Many people
had a hand in improving its function and performance. Among
them are Greg Turk (debugging), Howard Good (callback
functions, one-sided picking), Brice Tebbs (algorithm designs).
David Ellsworth (animated cursor. parallel pick), Andrew Bell
(multipass transparency), Marc Olano (conditional executes,
parallel pick), and Carl Mueller (frame dumps). Greg Turk was
instrumental in creating the prototype on Pixel-Planes 4. Jeff
Weeks (University of Minnesota) was the first to suggest using
the flat imbedding of the torus in 4-space. Nelson Max
(Lawrence Livermore National Labs) suggested displaying
intersection curves. Robert Bryant (Duke University) and
James Stasheff pointed out connections to Morse Theory.
Oliver Steele (Apple Computer) helped devise certain
parametric models in 4-space. Fred Brooks provided the initial
support for this project, and Stephen Pizer currently directs it.
Thanks also go to the reviewers, who proposed visualizing
silhouetteness by mapping it to opacity.

9 References
William Armstrong and Robert Burton, “Perception Cues for n

Dimensions,” Computer Graphics World (Mar 1985), pp.
1 l-28.

David Baraff, “Curved Surfaces and Coherence for Non-
penetrating Rigid Body Simulation,” SIGGRAPH ‘90 Proc.
(1990), pp, 19-28.

Eric Bier, “Skitters and Jacks: Interactive 3D Positioning
Tools,” Proc. 1986 Workshop on interactive Graphics,
(1986) pp. 183-196.

Robert Burton, “Raster Algorithms for Cartesian Hyperspace
Graphics,” Journal of Imaging Technology (15:2 Apr 1989),
pp. 89-95.

Scott Carey, Robert Burton., and Douglas Campbell, “Shades of
a Higher Dimension,” Computer Graphics World (Ott
1987), pp. 93-94.

Michael Chen, Joy Mountford. and Abigail Seller-r. “A Study in
Interactive 3-D Rotation Using 2-D Control Devices,”
SIGGRAPH ‘88 Proc. (1988). pp. 121-130.

David Ellsworth. Howard Good, and Brice Tcbbs.
“Distributing Display Lists on a Multicomputer,” Proc.
1990 Symp Interactive 30 Graphics. (1990).

Kenneth Evans, Peter Tanner, and Marceli Wein, “Tablet-based
Valuators that Provide One, Two, or Three Degrees of
Freedom,” SIGGRAPII ‘8I Proc. (1981) pp. 91-97.

George Francis, A Topological Picturebook, Springer-Verlag
(1987).

William Freeman, Edward Adelson, and David Heegar,
“Motion Without Movement,‘” Proc. 1991 Symp Interactive
30 Graphics. (1991) pp. 27-30.

Henry Fuchs, Greg Abram, and Eric Grant, “Near Real-Time
Shaded Display of Rigid Objects,” SIGGRAPH ‘83 Proc.
(1983) pp. 65-69.

Henry Fuchs ef al.. “Pixel-Planes 5: A Heterogeneous
Multiprocessor Graphics System Using Processor-Enhanced
Memories,” SIGGRAPH ‘89 Proc. (1989) pp. 79-88.

Susan Gauch. Rich Hammer, Dals Krams, Teresa McBennett,
and Dabby Saltzman, “An Evaluation of Factors Affecting
Rotation Tasks in a Three-Dimensional Graphics System”
TR87-002 Dept Comp. Sci. LJNC-Chapel Hill (1987).

Paul Haeberli and Kurt Akely, “The Accumulation Buffer:
Hardware Support for High-Quality Rendering,”
SIGGRAPH ‘90 Proc. (1990), pp. 309-318.

Pat Hanrahan and Paul Hacberli, “Direct WYSIWYG Painting
and Texturing on 3D Shapes,” SIGGRAPM ‘90 Proc.
(1990), pp. 215-224.

Andrew Hansen and P. Heng, “Visualizing the Fourth
Dimension using Fcometry and Light” Visualization ‘91.
(1991).

Charles Hinton, The Fourth Dimension [Frontispiecs], London
and New York, 1904.

Christoff Hoffman and Jianhua Zhou, “Visualizing Surfaces in
Four-Dimensional Space,” Technical Report CSD-TR-960,
Computer Sciences Department, Purdue University (Mar
1990).

Htiseyin Kocak, Frederic Bisshopp, Thomas Banchoff, and
David Laidlaw, “Topology and Mechanics with Computer
Graphics: Linear Hamiltonian Systems in Four Dimensions,”
Advances in Applied Mathematics 7 (1986). pp. 282-308.

I. Lane, Loren Carpenter, Turner Whitted. and Jim Blinn, “Scan
Line Methods for Displaying Parametrically Defined
Surfaces,” Communications of the ACM 23:l (Jan 1980).
pp. 23-34.

J. Levine, “Imbedding and Immersion of Real Projective
Spaces” Proc. Amer. Math. Sot. 14 (1963).

Don Mitchell, “Spectrally Optimal Sampling for Distribution
Ray Tracing,” SIGGRAPH ‘91 Proc. (1991) pp. 157-164.

John Milnor, Morse Theory, (Annals of Mathematical Studies
51). Princeton University Press (1969).

206

Matthew Moore and Jane Wilhelms, “Collision Detection and
Response for Computer Animation,” SIGGRAPH ‘88 Proc.
(1988), pp. 289-298.

Marsden Morse, The Calculus of Variations in the Large,
American Mathematical Society (1934).

Gregory Nielson and Dan Olsen, “Direct Manipulation
Techniques for 3D Objects Using 2D locator Devices,” Proc.
1986 Workshop on Interactive Graphics, (1986) 175182.

A. Nell, “A Computer Technique for Displaying n-dimensional
Hyperobjects” Comm. ACM 10 (1967).

Michael Potmesil and Indranil Chakravarty, “Synthetic Image
Generation with a Lens and Aperture Camera Model,” ACM
Transactions on Graphics (Apr 1982).

Dino Schweitzer and Elizabeth Cobb, “Scanline Rendering of
Parametric Surfaces,” SIGGRAPH ‘82 PROC. (1982) pp.
265-271.

J. Semple and G. Kneebone, Algebraic Projective Geometry,
Clarendon Press, Oxford (1952).

David Smith, “Virtus Walkthrough” [Macintosh application
and user manual].

S tringham, “Regular Figures in n-Dimensional Space,”
American Journat of Mathematics (1880).

Jarke van Wijk, “Spot Noise-Texture Synthesis for Data
Visualization,” SIGGRAPH ‘91 PROC. (1991) pp. 309-
318.

Hassler Whitney, “The Singularities of a Smooth n-manifold in
(2n- I)-space” Ann. of Math. 45 (1944).

10 Illustrations
The surfaces in the color plate section were rendered on Pixel-
Planes 5. Each surface was transformed, illuminated, and
rendered on 5 in 0.2 seconds or less, and each has between 4k
and 10k polygons. There are two light sources: one slightly left
of the eye, and one above and to the right of the eye.

207

Proceedings
1992 Symposium on Interactive 3D Graphics

Cambridge, Massachusetts
29 March - 1 April 1992

Program Co-Chairs

Marc Levoy Edwin E. Catmull
Stanford University Pixar

Symposium Chair

David Zeltzer
MIT Media Laboratory

Sponsored by the following organizations:

Office of Naval Research
National Science Foundation

USA Ballistic Research Laboratory
Hewlett-Packard
Silicon Graphics

Sun Microsystems
MIT Media Laboratory

In Cooperation with ACM SIGGRAPH

Proceedings
1992 Symposium on Interactive 3D Graphics

Cambridge, Massachusetts
29 March - 1 April 1992

Program Co-Chairs

Marc Levoy Edwin E. Catmull
Stanford University Pixar

Symposium Chair

David Zeltzer
MIT Media Laboratory

Sponsored by the following organizations:

Office of Naval Research
National Science Foundation

USA Ballistic Research Laboratory
Hewlett-Packard
Silicon Graphics

Sun Microsystems
MIT Media Laboratory

In Cooperation with ACM SIGGRAPH

