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Abstract

In continuous wave (CW) electron paramagnetic resonance imaging (EPRI), high quality of reconstruction in a limited acquisition
time is a high priority. It has been shown for the case of 3D EPRI, that a uniform distribution of the projection data generally enhances
reconstruction quality. In this work, we have suggested two data acquisition techniques for which the gradient orientations are more
evenly distributed over the 4D acquisition space as compared to the existing methods. The first sampling technique is based on equal
solid angle partitioning of 4D space, while the second technique is based on Fekete points estimation in 4D to generate a more uniform
distribution of data. After acquisition, filtered backprojection (FBP) is applied to carryout the reconstruction in a single stage. The sin-
gle-stage reconstruction improves the spatial resolution by eliminating the necessity of data interpolation in multi-stage reconstructions.
For the proposed data distributions, the simulations and experimental results indicate a higher fidelity to the true object configuration.
Using the uniform distribution, we expect about 50% reduction in the acquisition time over the traditional method of equal linear angle
acquisition.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Electron paramagnetic resonance imaging (EPRI) is a
noninvasive technique that is capable of detecting and
imaging free radicals [1]. Due to its ability for direct detec-
tion and characterization of both endogenous and intro-
duced free radicals, EPRI has a distinct advantage in
many biological applications [2–7]. However, the long
acquisition time, especially for 4D spectral-spatial imaging,
can be a bottle-neck for many in vivo biological applica-
tions. It has been shown for the 3D case [8] that uniformity
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of the data distribution can improve the reconstruction
quality for a given acquisition time. In this work, we inves-
tigate uniform data distributions and their impact on 4D
spectral-spatial imaging.

Most of the EPR experiments are conducted in continu-
ous wave (CW) domain since the technical challenges asso-
ciated with the pulsed EPR [9] limit its broad use. In CW
EPRI, the data are acquired in the form of projections
[10], and filtered backprojection (FBP) [11] or Fourier-
based direct reconstruction techniques [12] are commonly
applied to reconstruct the image from the acquired projec-
tions. The quality of the reconstructed image depends on
a number of factors including number of acquired
projections, signal-to-noise ratio (SNR), field homogeneity,
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linewidth of the paramagnetic species under study, and the
reconstruction technique itself. Generally, the reconstruc-
tion quality can be improved by acquiring more projec-
tions. This, however, is not a viable solution because
projection acquisition can be a time-consuming process
[13]. Hence, increasing the number of acquired projections
beyond a certain limit may not be practical, especially for
in vivo biological applications. Hence, it is highly desirable
to improve the reconstruction quality from a limited num-
ber of projections.

The EPRI can be performed in purely spatial domain to
obtain one-, two-, or three-dimensional (1D, 2D, or 3D)
images of free radical distribution in objects. It is impor-
tant to mention that purely spatial 3D EPRI provides
unambiguous distribution of free radicals under the
assumption that spectral shape is space-invariant. Thus,
for samples having variable linewidths or multiple radical
species, it is not possible to obtain an accurate map of
the spin distribution using purely spatial EPRI. Besides,
the information obtained by purely spatial EPRI is limited
to the spin density and not the nature of the spins at each
spatial volume element (voxel). To overcome this limitation
an additional dimension, the spectral dimension, is
required to capture the spectral shape function at each
voxel. The imaging technique that includes a spectral
dimension along with one or more spatial dimensions is
termed as spectral-spatial imaging [14]. While the spatial
information is captured by collecting projections along dif-
ferent orientations of the gradient vector, the spectral
information is encoded by varying the gradient strength.
The spectral-spatial imaging can be performed in 1, 2 or
3 spatial dimensions giving rise to 2, 3, or 4D spectral-spa-
tial images, respectively. While the information provided
by the additional spectral dimension is immensely useful
in many biological applications, it requires additional hard-
ware capability, manageable experimental conditions, and
additional acquisition time. The potential application of
the spectral-spatial technique has been recognized in per-
forming EPRI oximetry [15] that is based on the effect of
oxygen-induced broadening of the lineshape.

It is beneficial to take advantage of any symmetry or
redundancy in the object configuration to reduce the num-
ber of acquired projections. A few adaptive acquisition
techniques have been presented [8,16] where a more infor-
mative set of projections is acquired. This strategy is
advantageous only where the object configuration is highly
anisotropic in a way that the information depicted in a
small number of projections is sufficient to reasonably
characterize the object configuration. In cases where the
object does not possess any exploitable configuration or
there is not enough information available about the object
configuration, an uniform sampling of the data over the
object space generates consistent results. Equal solid angle
(ESA)-based sampling for 3D EPRI has been presented
earlier [8] which results in an estimated reduction of 30%
in the acquisition time over equal linear angle (ELA)-based
sampling. A further improvement in the reconstruction has
been observed [17] by obtaining a more uniform distribu-
tion of the gradient.

Although ESA-based distribution designed for 3D has
been applied to 4D imaging [18], the resulting distribution
has an improved uniformity only in the 3D spatial domain
and the overall sampling in 4D domain is still not uniform.
In addition, since the set of selected gradient orientations is
identical for each applied gradient strength, there is a high
redundancy in the collected data. The first technique pre-
sented here is an extension of the 3D ESA-based distribu-
tion [19] while the second proposed technique is an
estimation of Fekete points [20] in 4D which generally
results in more uniform distribution of the data. We expect
about 50% reduction in the acquisition time over ELA-
based distribution and about 25% reduction over the previ-
ously proposed sampling technique where ESA approxima-
tion holds only in the 3D spatial domain [18]. Since the
reconstruction is carried out in a single stage without the
necessity of interpolation, the spatial resolution does not
degrade. The computation time, however, can be longer
as compared to multistage reconstruction where nD EPR
image is reconstructed through (n � 1) stages of 2D back-
projection operations [21]. By limiting the size of the recon-
structed image and by breaking the reconstruction into
subsets, the processing time for 4D single-stage reconstruc-
tion can be deemed manageable.
2. Theory

In CW EPRI, a projection is generally acquired by mea-
suring the absorption signal as a function of magnetic field
in the presence of a static gradient. The orientation of the
acquired projection is determined by the direction of the
magnetic field gradient which is a vector sum of three inde-
pendent and mutually orthogonal field gradients in the x, y,
and z directions. In 4D, Radon transform [21] of an object
f(x,y,z, s) is expressed as

pðq; g;/; hÞ ¼
Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1
f ðx; y; z; sÞ

� dðx cos g sin / sin hþ y sin g sin / sin h

þ z cos / sin hþ s cos h� qÞdxdydzds ð1Þ

where q defines the distance of a particular line of integration
from the origin, h represents the spectral angle defined by Eq.
(2), angles / (90� � elevation) and g (azimuth) define the 3D
spatial domain, and p(q,g,/,h) represents an acquired pro-
jection along the orientation defined by hyperspherical
coordinates g, /, and h. The distribution of g, /, and h
determines the distribution of projection data in 4D space.

tan h ¼ G
DL
DB

ð2Þ

where G is the gradient strength, DL and DB are spatial
field of view (FOV) and spectral window, respectively.

Once a sufficient number of projections are acquired, the
image can be reconstructed by the FBP method which is
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based on the inverse Radon transform. The FBP method
requires that the gradient orientations for the projection
data are uniformly distributed over the acquisition space
that, for 4D EPRI, is simply S3 which is defined as

Sd :¼ f~r 2 Rdþ1 j~r �~r ¼ 1g ð3Þ

where ‘‘Æ’’ represents inner product on Rdþ1.
If the projections are not uniformly distributed, an

appropriate weighting can be used to satisfy the require-
ment of the FBP

f ðx; y; z; sÞ ¼
Z p

0

Z p

0

Z p

0

pfðx cos g sin / sin h

þ y sin g sin / sin hþ z cos / sin h

þ s cos h; g;/; hÞðsin / sin2 hÞdgd/dh ð4Þ

where pf represents filtered projection.

pfðq; g;/; hÞ ¼ IFTðP ðq; g;/; hÞ j vj3Þ ð5Þ

where IFT stands for the inverse Fourier transform, P rep-
resents the Fourier transform (FT) of projection p, and v
represents radial distance from the origin of Fourier do-
main. See Appendix A for derivation of Eqs. (4) and (5).
For a limited number of projections N, Eq. (4) can be
approximated numerically by selecting a suitable distribu-
tion of sampling points.

~f ðx; y; z; sÞ ¼ 1

N

XN

i¼1

pfðx cos gi sin /i sin hi þ y sin gi

� sin /i sin hi þ z cos /i sin hi þ s

� cos hi; gi;/i; hiÞ � wi ð6Þ

where wi the weight associated with the ith projection, and
its value depends on the data distribution. The error of
approximation ðf� ~f Þ depends on the number of projec-
tions (N) and the distribution of the projections. Generally,
a projection distribution which is more uniform over the
sphere (hypersphere) results in smaller approximation
errors because there is a connection between better unifor-
mity of data distribution and more accurate integration
[22].

2.1. Equal linear angle sampling in 4D (ELA4)

In the traditional acquisition technique, the projection
angles g, /, and h are sampled at a constant interval as
shown in Fig. 1a. The reconstruction from a limited num-
ber of such projections is described by Eq. (7).

~f ðx;y;z;sÞ¼ 1

M3

XM

m¼1

sin2ðmDhÞ
XM

n¼1

sinðnD/Þ

�
XM

k¼1

pfðxcosðkDgÞsinðnD/ÞsinðmDhÞ

þ y sinðkDgÞsinðnD/ÞsinðmDhÞþ zcosðnD/Þ
� sinðmDhÞþ scosðmDhÞ;kDg;nD/;mDhÞ ð7Þ
where M is the number of projections corresponding to
h = 90�, / = 90�. An equal increment of g, /, and h results
in a nonuniform distribution of the data over S3. The ac-
quired data becomes highly concentrated when / or h
approaches 0� or 180�. The weighting term sin2(mDh)
sin(nD/) in Eq. (7) effectively compensates for the nonuni-
formity of the data, but nevertheless reduces the acquisi-
tion efficiency. In addition, the sampling of data on a
rigid latitude–longitude grid can lead to more pronounced
reconstruction artifacts, because in such cases streak-arti-
fact from various projections, if they get aligned to an edge
of the object, may get added constructively.

2.2. Equal solid angle sampling in spatial domain (ESA3)

A distribution based on ESA approximation in S2,
applied to S3, is shown in Fig. 1b. In the 3D spatial
domain, the solid angle associated with gradient orienta-
tion is proportional to D/Dg sin/, and the ESA span [19]
can be approximated by keeping D/ constant and incre-
menting Dg in proportion to 1/sin/. This way, the number
of azimuth samples for each / is determined as

Kn ¼ roundðM sinðnD/ÞÞ ð8Þ

Therefore, as / changes, the number of points also changes
accordingly, which results in a more uniform distribution
of the gradient directions over S2 representing the spatial
domain. Consequently, for ESA3 Eq. (7) can be modified
as

~f ðx; y; z; sÞ ¼ 1

M2

XM

m¼1

sin2ðmDhÞ
XM

n¼1

sinðnD/Þ
Kn

�
XKn

k¼1

pfðx cosðgkÞ sinðnD/Þ sinðmDhÞ

þ y sinðgkÞ sinðnD/Þ sinðmDhÞ þ z cosðnD/Þ
� sinðmDhÞ þ s cosðmDhÞ; gk; nD/;mDhÞ ð9Þ

Since sin(nD/)/Kn � 1/M, it is evident from Eq. (9) that all
the projections are weighted approximately by sin2(mDh)
instead of sin2(mDh) sin(nD/) as was for ELA4. This
weighting reflects a distribution that avoids nonuniformity
around / = 0� or / = 180� but still suffers from data con-
gestion around h = 0� or h = 180�. In other words, the data
from the resulting sampling pattern is crowded for lower
gradient strengths and sparse for higher gradient strengths.
The reconstruction results for 4D EPRI using ESA3 based
distributions has been reported recently [18].

2.3. Equal solid angle sampling in 4D (ESA4)

In S3, the solid angle associated with the gradient orien-
tation is proportional to DhD/Dg sin2h sin/ which can be
computed from the Jacobian of the transformation
(between hyperspherical and Cartesian coordinate systems)
equations. The equal solid angle span for S3 can be approx-
imated by keeping Dh constant and incrementing D/ in



Fig. 1. The distribution of data points in 4D spectral-spatial domain. The dots locations on the sphere represent the gradient orientation in the spatial
domain while the color represents the spectral angle. (a) Thousand data points (along with the antipodal points) generated using equal linear angle (ELA4)
acquisition. Here, Dh = D/ = Dg=18�. (b) Eleven hundred fifty-two data points generated using equal solid angle in 3D (ESA3). Here, Dh = D/=15�, and
Dg is varied in proportion to 1/sin/. (c) Six hundred sixty-four data points generated by equal solid angle in 4D (ESA4). Here, Dh = 12.8�, D/ is varied in
proportion to 1/sinh and Dg is 1/(sin/ sinh). (d) Six hundred five data points with the uniform distribution defined by Fekete points (UF4). For ELA4 and
ESA3, since the data distribution over spatial domain (defined by g and /) is replicated for all selected values of h, the dots of different colors overlap at
each spatial location. Therefore, only red dots are visible for (a) and (b). For ESA4 shown in (c), the data distributions over spatial domain for mD h and
180� � mDh are identical. Therefore, the data residing only in the second half of h are visible. (For interpretation of the references in color in this figure
legend, the reader is referred to the web version of this article.)
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proportion to 1/sinh and incrementing Dg in proportion to
1/(sinh sin/). This way, the number of samples along /
and g are, respectively, determined as

J m ¼ roundðM sinðmDhÞÞ ð10Þ
Kj ¼ roundðJ m sinð/jÞÞ ð11Þ

where /j = j(180�/Jm). The reconstruction from 4D equal
solid angle acquisition is represented as

~f ðx; y; z; sÞ ¼ 1

M

XM

m¼1

sinðmDhÞ
J m

XJm

j¼1

sinðmDhÞ sinð/jÞ
Kj

�
XKj

k¼1

pfðx cosðgkÞ sinð/jÞ sinðmDhÞ þ y sinðgkÞ

� sinð/jÞ sinðmDhÞ þ z cosð/jÞ sinðmDhÞ
þ s cosðmDhÞ; gk;/j;mDhÞ ð12Þ
This distribution avoids concentrating data when / or h
approaches 0� or 180� and hence improves the overall uni-
formity of data in S3. A distribution based on ESA4 in
shown in Fig. 1c.

Since projections corresponding to higher gradient have
lower SNR, it is a common practice to spend more
acquisition time for those projections to partially improve
their SNR. If the acquisition time of a projection is
made proportional to 1/cosh, the additional percent-
age reduction R in the acquisition time associated with
ESA4 is

R¼ 1�
PM

m¼1 sin2ðmDh�Dh=2Þ= j cosðmDh�Dh=2Þ jPM
m¼11= j cosðmDh�Dh=2Þ j

 !
�100

ð13Þ
where
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Dh ¼ 180�

M
ð14Þ

The value of R for M = 18 (with missing angle region
85�–95�) is 23% and for M = 10 (with missing angle of
81�–99�) is 26%. These savings are in addition to the 30%
savings offered by ESA3 method [18]. As a result, net sav-
ings offered by ESA4 over ELA4 for M = 18 and M = 10
are 46% and 48%, respectively.
2.4. Uniform sampling based in Fekete points in 4D (UF4)

The problem of uniformly distributing a large number
of points over S2 has been studied extensively [20,23–25].
Several studies have suggested methods for efficient powder
averaging [26] where a discrete set of crystallite orientations
are used to simulate the NMR spectra. Bak et al. [27] has
numerically analyzed the performances of various powder
averaging methods to compare their insensitivities to the
orientation of the object from which the spectra is observed
and reported that the performance of so called REPUL-
SION technique, which is similar to the one presented here,
is on par or superior to the other popular techniques. More
importantly, most of these other methods are only valid for
S2 and their extension to S3 is not obvious, which is also
the case for the distribution based on two successive Fibo-
nacci numbers, whose feasibility for 3D spatial EPRI has
been recently reported [17]. In recent years, spherical
designs [28] have received a great deal of attention because
they generate optimal distributions (in terms of zero inte-
gration error) for any integrand that can be approximated
by a polynomial of limited degree. For EPRI, however, a
direct application of most of these methods is prohibited
since they do not offer the flexibility to account for addi-
tional restrictions such as antipodal symmetry, missing
angle regions, and a large number of data points to be dis-
tributed. Another popular way to generate uniform distri-
butions is via optimization with respect to a suitable
criterion such as generalized energy [29], and the bounds
on the corresponding separation radius, star discrepancy
[30], and integration error have also been reported
[31,32]. The main advantage of this approach for 4D spec-
tral-spatial EPRI is its ability to accommodate the above
mentioned EPRI related constraints. The energy U for a
distribution x1,x2, . . . ,xN is defined as

Uðt;xN Þ ¼
1

2

X
16j<k<N

j xj � xkj�t ð15Þ

The objective to find xN that denotes a generic subset of S2

(or S3 in our case) with N elements x�1; x
�
2; . . . ; x�N for which

energy U is minimized. For t = 1, this represents the elec-
trostatic potential energy of N charged particles that repel
each other according to the Coulomb’s law. Such points
are called Fekete points. Extensive computations for opti-
mal configurations and their corresponding extremal ener-
gies have been reported in a number of articles. Most deal
with the Coulomb case (t = 1) [33,34]. It has been observed
that for a large N there are many local minima in the en-
ergy minimization problem. Further, these local minima
have energies very close to the global minimum, which
makes it very difficult to determine the precise minimum.

In this work, the Fekete points over S3 were estimated
using gradient descent. The basic idea comes from electro-
statics, which dictates how the charged particles over the
surface of a sphere (hypersphere) can move to reach a con-
figuration xN with minimum potential energy (or very close
to it) along with static stable equilibrium. The repulsive
force F, which is the negative of the potential gradient
(�$U) is calculated on each particle due to the influence
of the rest. In every iteration, particles are moved in the
direction d to reduce the net U of the system.

xiþ1
N ¼ xi

N þ bd ð16Þ
d ¼ ðF T

1 ; F
T
2 ; . . . ; F T

N Þ ð17Þ

where F T
i is the tangential component of force acting on the

ith particle due to the rest of the particles, and b is a con-
stant controlling the amount of displacement for the
particles. The antipodal symmetry introduced in the initial-
ization was kept intact during the gradient descent by tying
the antipodal points together and moving them in pairs. A
distribution based on UF4 in shown in Fig. 1d.

After accounting for the EPRI related constraints, the
energy U and the standard deviation of the Voronoi cell
size [35] are calculated for all four sampling patterns and
are shown in Fig. 2. The computation of Voronoi cells, also
used to assign relative weight to each projection before
applying the FBP, over S3 is similar to a previously
reported procedure for S2 [17].

2.5. Missing angle problem and single-stage reconstruction

For spectral-spatial imaging, h = 90� corresponds to
acquiring projection data at an infinite magnetic field gra-
dient strength. Since hardware limitations and SNR put a
restriction on the maximum applicable gradient, the projec-
tion data corresponding to higher gradients cannot be
acquired. If hm is the missing angle

hm ¼ 90� � hmax ð18Þ

hmax 6 hG ¼ tan�1 j Gmax j
DL
DB

� �
ð19Þ

where hG is the spectral angle associated with the maximum
applicable gradient strength Gmax and hmax is the spectral
angle corresponding the maximum gradient reached by a
sampling method.

This problem is generally termed as ‘‘missing angle
tomography.’’ Although there are alternative reconstruc-
tion techniques [36] that can handle this problem
seamlessly, the computation cost associated with such tech-
niques especially for 4D render them impractical. For FBP,
a few techniques such as projection–reprojection [37] have
been proposed to handle this problem. Therefore, one sim-
ple solution would be to estimate the Fekete distribution
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over S3, remove the data points appearing in the ‘‘forbid-
den’’ region, and perform the reconstruction using projec-
tion–reprojection. The resulting reconstruction, however,
yields poor resolution since there are an insufficient number
of high gradient projections that are vital for the recon-
struction quality.

In this work, the missing angle problem is tackled by
introducing a slight discrepancy in the distribution of data
along the spectral angle. For all methods except UF4, the
spectral angle sampling interval Dh is chosen such that
the missing angle region around h = 90� is avoided alto-
gether. On the other hand, for UF4, where there is no fixed
sampling interval, the discrepancy is only locally intro-
duced during the iterative process to generate Fekete
points. In each iteration, points appearing in the region
hmax ± hm are set equal to hmax, and points appearing in
the region 180� � hmax ± hm are set equal to 180� � hmax.
Although the introduced discrepancy may degrade the
reconstruction quality, our experience with the simulation
data shows that this technique is considerable superior to
the projection–reprojection technique because in this case
we have a large number of projections acquired at the max-
imum gradient strength. Further, for UF4 the loss of
reconstruction quality due to the adjustments made in the
data distribution is far less pronounced than it is for
ELA4, ESA3, or ESA4. This is because the adjustments
for UF4 are restricted to the 90� ± 2hm region, while for
ELA4, ESA3, and ESA4 the effect of the adjustment made
to tackle the missing angle problem trickle down the entire
distribution. More importantly, for ELA4, ESA3, and
ESA4, the calculated step size Dh for a given number of
projections may be considerably greater than 2hm. There-
fore, the resulting hmax = hG � (Dh/2 � hm) can be consid-
erably lesser than hG, which would expand the missing
angle region beyond the limits imposed by the hardware
or SNR. For UF4, the equality hmax = hG can be attained
for any number of projections.

All calculations were performed using Matlab 7.0
(MathWorks, Massachusetts) on a Pentium IV computer
equipped with 1 GB RAM and 3.2 GHz of clock speed.
For a 64 · 64 · 64 · 64 reconstruction from 1000 projec-
tions, with each projection having a size of 95 points, the
approximate computation times are: Radon transform:
18 min, inverse Radon transform: 82 min, and nonlinear
least-square fitting at each voxel using Matlab command
lsqnonlin: 90 ms. The projection acquisition process was
carried out in multiple stages using partial Radon trans-
form [38] to reduce the computation time. For single-stage
reconstruction, four matrices X, Y, Z, and S, each of size
64 · 64 · 64 · 64 were generated and plugged in the recon-
struction equation to directly calculate ~f ðx; y; z; sÞ. The
large sizes of the matrices posed a serious limitation on
the computer memory. To avoid this problem each of the
four matrices were divided into two halves The resulting
16 subsets of the reconstruction space were reconstructed
one by one and then put together to generate the final
image without scarifying any reconstruction quality. Since
both the FBP and curve-fitting are easy to parallelize, using
multiple processor nodes to further speed up the recon-
struction is a viable option.

3. Results

3.1. Simulations

To demonstrate the performance of 4D uniform sam-
pling, the reconstruction results from the four acquisition
techniques are compared using a digital phantom of size
64 · 64 · 64 · 64. The phantom consists of four rows and
four columns of cylindrical tubes as shown in Fig. 3a.
Two different intensities and linewidths are used in the
phantom. The outer 12 tubes simulate a normalized inten-
sity of 1 and a peak-to-peak linewidth of 0.27 G while the
central 4 tubes simulate a normalized intensity of 0.7 and a
peak-to-peak linewidth of 0.18 G. The imaging parameters,
chosen to simulate EPRI experiments at L-band (1.2 GHz),
were as follows: spatial FOV DL: sphere inscribed in
2 · 2 · 2 cm3 cube, spectral window DB: 2.5 G, data points
per projection: 95, maximum gradient strength: 12 G/cm
(hG = 84�), scan speed: 1.85 G/s. To partially suppress
noise at high gradient strengths, acquisition time for each
projection was made proportional to DB/cosh. After



Fig. 3. Simulation results displaying the reconstructions based on the
different sampling patterns. The first column represents spin density
(obtained by integrating the 4D object along the spectral axis) while the
second column represents peak-to-peak linewidth at each spatial location
given in the first column. (a) A simulated phantom consisting of 16 tubes
with two different linewidths and spin densities. The normalized spin
densities for outer 12 and inner 4 tubes are 1.0 and 0.7, respectively, and
the linewidths for outer 12 and inner 4 tubes are 0.27 and 0.18 G,
respectively. (b) Reconstruction based on 1000 projections collected by
ELA4. (c) Reconstruction based on 948 projections collected by ESA3. (d)
Reconstruction from 664 projections acquired using ESA4. (e) Recon-
struction from 605 projections acquired using UF4.

Table 1
Number of projections for each acquisition technique and corresponding
acquisition time for the simulation and experimental data

ELA4 ESA3 ESA4 UF4

Simulation

Number of projections 1000 948 664 605
hmax 81� 82.4� 82.5� 84�
Number of projections

corresponding to hmax

188 158 219 162

Acquisition time (min) 84 85 83 84

Experiment

Number of projections 1728 1512 1036 1000
hmax 82.5� 82.5� 83.6� 84.3�
Number of projections

corresponding to hmax

288 252 290 259

Acquisition time (min) 190 175 175 160

Here, hmax is the maximum gradient angle achieved by the sampling
pattern.

Fig. 4. The phantom used to obtain the experimental data. There are a
total of 18 capillaries arranged on a 6 · 3 grid. True normalized spin
densities for two outer columns (1st and 3rd) and middle column (2nd) are
1.0 and 0.67, respectively, and the linewidths for two outer columns (1st
and 3rd) and middle column (2nd) are 0.25 and 0.18 G, respectively.
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partial suppression, the additive noise was assumed to be
white Gaussian with intensity proportional to 1/cosh.
The SNR, defined as the ratio of peak signal amplitude
(for the projection with minimum peak-to-peak amplitude)
and standard deviation of the additive white noise, was 30.
The total number of projections and the corresponding
acquisition time for each sampling technique is given in
Table 1. Fig. 3 shows the reconstructed images from the
four sampling techniques.

3.2. EPRI experiment

An experimental phantom as shown in Fig. 4 was con-
structed using eighteen 100 lL capillary tubes. The capil-
lary tubes were arranged in three columns with each
column containing six capillaries. Two different triarylm-
ethyl free radical (TAM) probes were used. TAM in aque-
ous solution exhibits a single narrow EPR spectrum which
is suitable for imaging purposes. Twelve capillaries, consti-
tuting the 1st and 3rd columns, were filled with 2 mM
Ox063 (methyl-tris[8-carboxy-2,2,6,6-tetrakis[2-hydroxy-
ethyl]benzo[1,2-d;4,5-d 0]bis[1,3]dithiol-4-yl]-, trisodium salt,
MW 1427) while six capillaries in the middle column were
filled with 1 mM Ox031 (methyl-tris[8-carboxy-2,2,6,6-tet-
rakis[(2-hydroxyethoxy)methyl]benzo[1,2-d:4,5-d 0]bis[1,3]-
dithiol-4-yl]-, trisodium salt, MW 1787.1) up to a height of



Fig. 5. Experimental results displaying the reconstructions based on the
different sampling patterns. The first column represents spin density
(obtained by integrating the 4D object along the spectral axis) while the
second column represents peak-to-peak linewidth at each spatial location
given in the first column. (a) Reconstruction based on 1728 projections
collected by ELA4. (b) Reconstructed based on 1512 projections collected
by ESA3. (c) Reconstruction from 1036 projections acquired using ESA4.
(d) Reconstruction from 1000 projections acquired using UF4.
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10 mm. For Ox063 and Ox031, the respective room air
peak-to-peak linewidths, measured at X-band, were 0.25
and 0.18 G while the signal intensities were approximately
3:2. The overall sample dimensions were
10.2 · 10 · 5.2 mm3.

The phantom was imaged using an L-Band (1.2 GHz)
EPRI system with a reentrant resonator with cylindrical
sample volume with a diameter of 12.6 mm and useable
height of 12 mm. The spectrometer settings were: incident
microwave power: 4 mW, spectral window DB: 1.8 G, spa-
tial FOV DL: sphere inscribed by 1.8 · 1.8 · 1.8 cm3 cube,
modulation amplitude: 70 mG, maximum gradient
strength: 10 G/cm (hG = 84.3�), time constant of lock-in
amplifier: 20 ms. A total of four datasets (one for each sam-
pling method) were acquired. The number of projections
and the acquisition time for each dataset are reported in
Table 1. For each projection 1024 data points were col-
lected which were later downsampled to 95 for faster recon-
struction. No correction for B1 field inhomogeneities was
applied. To suppress noise for high gradient projections,
the acquisition time for each projection was made propor-
tional to DB/cosh which implies that the scan speed across
all projections was kept constant at 1.38 G/s. The mea-
sured SNR was 12. The measured lineshapes for both
Ox031 and Ox063 were reasonable approximations of a
Lorentzian function with fit error <7%. Fig. 5 displays
the reconstructed images from the four acquisition
techniques.

4. Discussion

The simulation and experimental results suggest that the
distribution of projection data contributes to the recon-
struction quality. The distributions which are more uni-
form tend to capture more distinct information in each
projection which results in high fidelity images that possess
more information about the object. ELA4 and ESA3-based
distributions repeat the same spatial distribution of gradi-
ent directions for each spectral angle which results in
enhanced redundancy in the acquired data. In addition, if
any edge of the object gets aligned with the sampling pat-
tern, the streak-artifact from the edge may get added con-
structively that can consequently degrade the image
quality.

Fig. 2a displays the standard deviation of the Voronoi
cell size for the four distributions with UF4 exhibiting con-
siderably lower variations in the Voronoi cell size which is
also used to find proper weighting for the acquired projec-
tions before performing the FBP. The energy U associated
with the distributions is displayed in Fig. 2b. Among all the
distributions, UF4 and ELA4 possess the minimum and
maximum value of U, respectively.

The simulation results are presented in Fig. 3. The quan-
tification of the results is provided in Table 2. Since the
FBP-based reconstruction from a limited number of pro-
jections generate strong background artifacts, the voxels
reflecting a spin density (obtained by integration of 4D
object along spectral axis) less than 25% of the maximum
spin density were set to zero to make for a better 3D visu-
alization. However, caution should be observed in applica-
tions where voxels with weak and strong spin densities
coexist in a single object because discarding the part of
such an object based on the intensity may result in loss
of important information. To quantify the linewidth, data
at each voxel were fit with a Lorentzian function with
allowable linewidth of 0.7LWmin to 1.3LWmax. Here,
LWmin and LWmax are the minimum and maximum line-
widths, respectively, present in the sample. The quantifica-
tion of spin densities and linewidths was done for all the
voxels where spin density of the input phantom was non-
zero. For better visualization of the parameters, input



Table 2
Quantification of simulation and experimental results

ELA4 ESA3 ESA4 UF4

Simulation

Mean intensity of outer 12 tubes 0.789 (±0.162) 0.791 (±0.099) 1.000 (±0.229) 1.000 (±0.223)
Mean intensity of inner 4 tubes 1.000 (±0.220) 1.000 (±0.050) 0.740 (±0.130) 0.704 (±0.132)
Mean linewidth of outer 12 tubes 0.126 (±0.011) 0.113 (±0.002) 0.229 (±0.045) 0.284 (±0.038)
Mean linewidth of inner 4 tubes 0.113 (±0.000) 0.112 (±0.000) 0.152 (±0.018) 0.201 (±0.024)

Experiment

Mean intensity of 1st and 3rd column 1.000 (±0.284) 1.000 (±0.202) 1.000 (±0.279) 1.000 (±0.261)
Mean intensity of 2nd column 0.694 (±0.187) 0.948 (±0.156) 0.774 (±0.178) 0.704 (±0.154)
Mean linewidth 1st and 3rd column 0.163 (±0.017) 0.114 (±0.002) 0.243 (±0.032) 0.257 (±0.033)
Mean linewidth of 2nd column 0.125 (±0.008) 0.113 (±0.000) 0.234 (±0.038) 0.207 (±0.034)

For simulations, true normalized spin densities for outer 12 and inner 4 tubes are 1.0 and 0.7, respectively, and the true linewidths for outer 12 and inner 4
tubes are 0.27 and 0.18 G, respectively. For experimental data, true normalized spin densities for two outer columns (1st and 3rd) and middle column (2nd)
are 1.0 and 0.67, respectively, and the linewidths for two outer columns (1st and 3rd) and middle column (2nd) are 0.25 and 0.18 G, respectively.
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and reconstructed images were cropped 33% along the axis
of tubes.

For ELA4 and ESA3, a fixed sampling interval along h,
which is decided by the total number of projections to be
acquired, restricts us from applying the maximum permis-
sible gradient, which translates to a lower resolution. It is
this inability of ELA4 and ESA3 to utilize the maximum
gradient allowed by the hardware along with the relatively
lesser number of high gradient projections that has resulted
in extremely poor resolution for objects with fine spatial
structures like the ones used in this work. For the simula-
tion results shown in Fig. 3, value of hmax and the corre-
sponding number of projections are given in Table 1.
Further, since the distribution of the data is structured,
the reconstruction is sensitive to the alignment of the sam-
pling grid and the distribution of information content.
Therefore, the reconstruction may possess an orientational
bias, and rotating the object for a given sampling may
change the reconstruction quality considerably [17]. As a
result, the reconstruction quality may vary with the num-
ber of acquired projections, configuration of the object to
be imaged, and the orientation of the sampling grid relative
to the phantom. On the other hand, the improved unifor-
mity of ESA4 and especially of UF4 ensures that the results
are relatively insensitive to the object content [27]. By our
simulation experience (results not shown), we have further
observed that for objects which lack fine structure, the dif-
ference in the reconstruction quality of uniform and non-
uniform sampling patterns may not be that drastic
because high gradient data may not carry same importance
for such objects. Finally, for UF4 it is possible to acquire
any number of projections, while for other three methods
there are only discrete values that can be acquired.

The experimental results provided in Fig. 5 and Table 2
are consistent with the simulation findings. Since ESA4
seems to resolve all the 18 tubes, the nonzero voxels in
ESA4 based reconstruction are used to define the true spa-
tial structure of the phantom. Hence for quantifying the
reconstruction results of all the four sampling patterns,
the spin densities and linewidths only at these nonzero vox-
els are taken into consideration.

5. Conclusions

The uniform coverage of 4D space is important for an
improved reconstruction quality. A poor approximation of
the uniform distribution, on the other hand, may result in
pronounced artifacts in the reconstructed image which can
degrade the reconstruction quality to an unacceptable level.
Although data distribution based on ESA3 provides an
improvement over ELA4, it is still not uniform in the 4D
acquisition space. The distributions based on ESA4 and
especially UF4 provide a tangible improvement over ELA4
and ESA3. Besides, by breaking down the reconstruction
into subsets, single-stage reconstruction can be realized with-
out special computing resources. Since computation time for
the single-stage backprojection is comparable to the acquisi-
tion time, real time reconstruction is also feasible.
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Appendix A

A.1. Fourier Slice Theorem in 4D

If ~c ¼ ½ cosg sin / sin h sin g sin / sin h cos/ sin h cosh �T

~k ¼ ½ kx ky kz ks �T

~r ¼ ½ x y z s �T

ðA1Þ
for a 4D object f ð~rÞ, the Fourier transform F ð~kÞ can be
written as

F ð~kÞ ¼
Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1
f ð~rÞ � e�j2pð~k�~rÞdxdydzds ðA2Þ
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where ~k �~r is the inner product of the two vectors. If v

represents the radial distance from the center of F ð~kÞ and
q defines the distance in~r of a particular line of integration
from the origin then for a line ~k ¼ v~c

F ðv~cÞ¼
Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1
f ð~rÞdðq�~c �~rÞdxdydzds

� e�j2pvqdq

¼
Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1
f ð~rÞdðq�~c �~rÞdxdydzds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} �e

�j2pvqdq

projection

ðA3Þ

Fðv~cÞ ¼
Z 1

�1
pðq; g;/; hÞ � e�j2pvqdq

¼ FT½pðq; g;/; hÞ� ðA4Þ
A.2. Filtered backprojection in 4D

Inverse Fourier transform in 4D

f ð~rÞ ¼
Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1
F ð~kÞ � ej2pð~k�~rÞdkxdkydkzdks ðA5Þ

which can be also written in hyperspherical coordinate
system that can be easily computed from the determinant
of the Jacobian matrix o(kx,ky,kz,ks)/o(v,g,/,h)

fð~rÞ¼
Z p

0

Z p

0

Z 2p

0

Z 1

0

Fðv~cÞ � ej2pðv~c�~rÞ � v3 sin/sin2 hdvdgd/dh

fð~rÞ¼
Z p

0

Z p

0

Z p

0

Z 1

0

Fðv~cÞ � ej2pvð~c�~rÞ � v3 sin/sin2 hdvdgd/dh

þ
Z p

0

Z p

0

Z 2p

p

Z 1

0

Fðv~cÞ � ej2pvð~c�~rÞ � v3 sin/sin2 hdvdgd/dh

ðA6Þ

which after some manipulation can be written as

fð~rÞ ¼
Z p

0

Z p

0

Z p

0

Z 1

0

Fðv~cÞ � ej2pvð~c�~rÞv3

� sin / sin2 hdvdgd/dhþ
Z p

0

Z p

0

Z p

0

�
Z 0

�1
Fðv~cÞ � ej2pvð~c�~rÞð�v3Þ

� sin / sin2 hdvdgd/dh ðA7Þ

Therefore,

fð~rÞ ¼
Z p

0

Z p

0

Z p

0

Z 1

�1
j vj3|{z}
filter

Fðv~cÞ � ej2pvð~c�~rÞ

� sin / sin2 hdvdgd/dh ðA8Þ

From Eqs. (A4) and (A8)

fð~rÞ¼
Z p

0

Z p

0

Z p

0

Z 1

�1
j vj3

Z 1

�1
pð~q;g;/;hÞ � e�j2pv~qd~q � ej2pvqdv|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

filtered projection pf in spatial domain

sin/sin2 hdgd/dh

ðA9Þ
fð~rÞ ¼
Z p

0

Z p

0

Z p

0

pfð~c �~r; g;/; hÞ sin / sin2 hdgd/dh

ðA10Þ
or equivalently,

fð~rÞ ¼
Z p

0

Z p

0

Z p

0

Z 1

�1
pfðq; g;/; hÞ � dðq�~c �~rÞ

� sin / sin2 hdqdgd/dh ðA11Þ
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