
ORTHOGONALPOLYHEDRAASGEOMETRICBOUNDSIN
CONSTRUCTIVESOLIDGEOMETRY

A. Aguilera
Universidad de las Amkricas-Puebla

Puebla, Mkxico
antonio@udlapvms.pue.udlap.mx

aguilera@goliat .upc.es

Abstract

Set membership classification and, specifically, the eval-
uation of a CSG tree, are problems of a certain complex-
ity. Several techniques to speed up these processes have
been proposed. This include Active Zones, Geometric
Bounds and the Extended Convex Differences Tree.

Boxes are the most commonly studied geometric
bounds, although other bounds such as spheres, convex
hulls and prisms have also been proposed.

On the other hand, there is an extended bibliography
dealing with convex polyhedra and solving problems for
this class of polyhedra. Orthogonal polyhedra are also
a class of polyhedra and several problems have been
solved for them.

In this work we propose orthogonal polyhedra as ge-
ometric bounds in the CSG model. CSG primitives
are approximated by orthogonal polyhedra, and the or-
thogonal bound of the object is obtained by applying
the corresponding boolean algebra. A specific model
for orthogonal polyhedra is presented that facilitates
a simple and robust boolean operations algorithm be-
tween orthogonal polyhedra. This algorithm has linear
complexity (is based on a merging process) and avoids
floating-point computation.

D. Ayala
Universitat Politknica de Catalunya

Barcelona, Spain
ayala@lsi.upc.es

1 Introduction

Constructive Solid Geometry (CSG) is a non-ambiguous
3D model that allows complicated shapes to be built up
from simple ones. This model is represented by a tree
in which internal nodes represent boolean regularized
operations and leaf nodes represent simple shapes or
primitives [151.

Set membership classification [22] and, specifically,
the boundary evaluation of a CSG tree, are problems
of a certain complexity. Up to now, several accelerating
techniques have been proposed to speed up geometric
computations in CSG including Active Zones [18], [4]
the Extended Convex Differences Tree [14] and Approx-
imating Shapes or Geometric Bounds [8], [5].

The most extensively used geometric bounds are the
well-known bounding boxes, although other shapes such
as spheres and convex hulls have also been proposed and
studied [5].

On the other hand, in several disciplines such as Solid
Modeling and Computational Geometry, it is very com-
mon to start studying problems with simpler classes
of polyhedra rather than the general case. The most
commonly chosen class is that of the convex polyhedra.
Convexity enables the use of efficient and simple algo-
rithms [13], [6]. Orthogonal polyhedra are a less used
simple class. Nevertheless, some works have been pub-
lished dealing with this simpler class [lo], [9], [3]. The
restricted class of both convex and orthogonal polyhe-
dra, i.e., orthogonal boxes, have been widely used in
many applications [13], [8], [19].

In this work we propose orthogonal polyhedra as geo-
metric bounds in CSG. We define a specific model - the
Extreme Vertices (EV) Model - to represent this class of
polyhedra. Then, in order to compute the orthogonal
bound for a CSG object, we have developed a robust
algorithm for regularized boolean operations. This al-
gorithm has linear complexity (it is based on a merging
process) and avoids floating-point computations.

56

The paper is arranged as follows. Sections 2 and 3
deal respectively with geometric bounds and orthogonal
polyhedra, and analyze related work on both disciplines.
Section 4 defines the Extreme Vertices, EV, model while
section 5 describes the corresponding boolean opera-
tions algorithm. Section 6 discusses the advantages and
drawbacks of using orthogonal polyhedra instead of clas-
sical boxes. Finally, section 7 summarizes conclusions
and also shows possible directions for future work.

2 Geometric Bounds

A=< xAmrYAm,ZAm,xAM,YAMrZAM >=

{(x,Y,Z)lx~~ Ix 5 XAM,YA~ L Y L YAM,ZA~ I z I

ZAM}

And the corresponding operators are defined as [ll]:
C=AUB
where,

XCm = min(xAm, XBm)

XCM = max(xAMr XBM)

YCm = mi+Arn, !&?a)

?/CM = maX(YAM, YBM)

A common way of reducing the complexity of geomet-
ric computations in CSG is to use geometric bounds or
approximating shapes. After fixing a class C of approx-
imating shapes, the process to be carried out consists of
PI:

ZCrn = min(ZAm , ZBm)

ZCM = maX(ZAM, ZBM)

and
C=AnB

1. All the primitives p in the tree are approximated
with their corresponding approximating shape,
P --) WP)~ C

where
XCm = ma2(zArny XBm)

XCM = min(zAM, XBM)

2. A postorder tree traversal is carried out by applying
the following rules:

(a) if T = Tl U T2 + AS(T) = AS(AS(T1) U

AS(T2)) = AS(T1) U AS(T2)

(b) if T = Tl f~ T2 + AS(T) = AS(AS(T1) f~
AS(T2)) = AS(T1) n AS(T2)

(c) if T = Tl - T2 + AS(T) = AS(T1)

Hence, the approximating shapes for all the internal
nodes and for the root representing the object are de-
termined.

The symbols U and n refer to operators equivalent to
the boolean operations but closed within the C class.

In [4] the S-bound theory is introduced and formally
developed in [5]. A class of totally consistent bound-
ing functions is defined and the initial principle working
with geometric bounds is extended by the application
of the so-called upward and downward rules:

upward rule : the same as the above mentioned pos-
torder tree traversal

downward rule : the geometric bound of each node is
refined by intersecting it with the geometric bound
of its father.

AS(T) = AS(T) I-I AS(T.father)

Both rules are continuously applied until convergence
is reached. For a detailed discussion concerning S-
bounds, see [5].

Based on these inequalities, in [ll] the authors show
that the bounding box size of a CSG depends on the
form of its algebraic expression and that the smallest
bounding box is obtained when this algebraic expres-
sion is in the normal disjunctive form (DF) or union of
intersections form (UOI). The authors also show that,
in general, this technique produces better bounds than
the S-bounds technique. In [7] an algorithm is presented
that converts a CSG expression into its DF.

In [16] other advantages of DF are shown:

Boxes are the most widely used geometric bounds. A 1. DF only requires a stack of depth 1 and so it can
box is defined as: be used for evaluating CSG trees in parallel.

YCm = maX(YA,, YRm)

YCM = min(YAM j YB.44)

ZCrn = maX(zAm, ZUm)

ZCM = min(zAM 1 ZBM)

We can easily observe that while the operator n coin-
cides with the intersection, the U operator does not cor-
respond to the union operation. The operators U and
n over the class bounding boxes are a non-distributive
lattice instead of a boolean algebra [ll].

An order relation can be defined in a lattice such that:

aAbHanb=a

and, from lattice theory, the following distributive in-
equalities are obtained:

(a u b) n c >_ (U n C) u (b n C)

(U n b) u c 5 (a u C) n (b u C)

57

2. When CSG primitives are halfspaces, intersections
are convex polyhedra and so the CSG object can
be represented as the union of convex polyhedra.

3. We can avoid visiting all the primitives of all in-
tersections. When the intersection currently being
visited contains a combination of primitives that
resulted in empty bounds for a previously visited
intersection, we can state that this current intersec-
tion is empty without visiting its remaining terms.
This fact is referred to as culling up empty inter-
sections.

Nevertheless, the size of the DF grows exponentially
in the number of primitives of the original tree. So, in
order to alleviate the need for storing such a large tree,
an algorithm is presented in [16] that processes the DF
directly from the initial tree.

3 Orthogonal Polyhedra

Orthogonal polyhedra (OP) are polyhedra with all their
faces oriented in three orthogonal directions. In this
work we will consider only two-manifold OP.

This class of polyhedra implies a restriction of the
general case concerning the geometry. In an OP, all
planes and lines are parallel to three orthogonal axes
and the number of incident edges for any vertex can
be only three, four or six [9]. These geometric charac-
teristics make OP a more restricted class than convex
polyhedra. However, in terms of topology, OP do not
imply any restrictions. OP allow any number of rings
on faces, holes (they can be of any genus) and shells.
Thus, they represent a radically different class of poly-
hedra from the convex class.

There is a large amount of work concerning convex
polyhedra whose study is not the purpose of the present
work.

OP are a less-used simple class though some studies
have been published dealing with or using them. In [lo]
a B-Rep to CSG conversion algorithm is presented that
works for a restricted class of OP. The obtained CSG
expression is a Peterson-style formula and the restricted
class is the acyclic OP. In [9] the same author extends
the domain for a certain class of cyclic OP. In [12] an
octree to B-Rep conversion algorithm is presented and
an OP is obtained. In [3] an algorithm that simplifies
geometry is presented for the particular case of OP; a
more complex algorithm is needed for the general case
of polyhedra [2].

Boxes, which are both convex and orthogonal, have
been widely used in many applications [13], [8], [19] and
have been used as approximations, as was explained in
the previous section.

As mentioned in this section, in an OP the number
of edges incident on a vertex can be three, four or six.

From now on we will refer to them as V3, V4 or V6.
Moreover, Vertices V3 present two possible configura-
tions depending on the way in which three halfspaces
can be arranged to generate a V3 vertex (see Figure 1).
Let hi, h2 and h3 be the supporting halfspaces of all
three faces incident to a V3 vertex. In configuration A
the vertex enclosing region is represented by hl n h2 fl h3
or by hl U hz U h3 whereas in configuration B the vertex
enclosing region is represented by (hl U h2) n ha or by
(h n hz) u h3 191.

4 Extreme Vertices Model for
Orthogonal Polyhedra

In this section we present a model for two-manifold OP.
We consider that all the OP, as well as their geometric
elements (faces and edges) with which we operate, are
in the same iso-oriented coordinate system.

The Extreme Vertices model, EV, represents OP in
a complete and compact way. The model is complete
because we can infer from it all the topological and ge-
ometric information of the polyhedron.

Splitting and boolean set operations can be done on
EV in linear time. Although input data (i.e., vertices co-
ordinates) are floating-point values, no time-consuming
floating-point arithmetic is ever performed and so there
are no propagation errors. All results are obtained by
merely classifying the vertices coordinates of the initial
data.

Other operations such as computing the perimeter,
area and volume of OP, as well as conversion algorithms
between EV and hierarchical B-Rep and Classical Oc-
trees, have also been developed [l].

hl h2

Figure 1: Configutation A and B for V3 vertices.

Definition 4.1 A brink is the longest uninterrupted
segment built out of a sequence of collinear and con-
tiguous two-manifold edges of an OP.

Every edge belongs to a brink, whereas every brink
consists of one or more edges and contains as many ver-

58

tices as the number of edges plus one (see Figure 2 be-
low),

Edges meeting at a V3 vertex are all linearly inde-
pendent, whereas edges meeting at V4 or V6 vertices
are not. Edges meeting at a V4 (V6) vertex belong
to two (three) perpendicular directions, that is, they
are members of two (three) perpendicular brinks and,
hence, they appear as two (three) couples of collinear
edges (see Figure 2 above). Furthermore, every V4 or
V6 incident edge has a neighbour in the brink corre-
sponding to its direction.

v3 v4 V6

Figure 2: Above) Edges meeting at a V3, V4 and V6
vertex. Below) Example of a brink containing four edges
and five vertices. These vertices are respectively V3
(Configuration B), V6, V6, V4 and V3 (Configuration
A). Edges (a, b) and (c, d) are collinear but are not
contiguous and thus (a, b) is a brink and (c, d) is another
brink.

Lemma 4.1 In a brink both ending vertices are V3 and
the remaining (interior) are VJ or V6.

Proof: Every edge meeting at vertices V4 or V6 has a
neighbour in the same brink, thus such vertices cannot
appear at the end of any brink. Moreover, any edge
meeting at vertices V3 has no neighbour in the same
brink and therefore such vertices must appear only at
the end of a brink. •I

Definition 4.2 We will call Extreme Vertices (EV) of
an OP the ending vertices of all the OP brinks, i.e., the
V3 vertices of the polyhedron,

Definition 4.3 We define the EV model for OP as a
model that only stores all EV (V3) vertices.

Lemma 4.2 Let P be an OP and OH(P) be its isoori-
ented orthogonal hull or minimum bounding box. Then,

only a subset of V3 vertices of P lies on the boundary
of OH(OP) and, therefore, all if4 and V6 vertices lie in
the interior of OH(P).

Proof: The proof comes from the well-known concept
of supportability [21]. I n an OP, V3 vertices are locally
or complementary supportable and vertices V4 and V6
are non-supportable [9]. Only supportable vertices of
an OP can lie on its minimum bounding box. 0

Let VX = {x1,22,. . . , x,,} be the ordered set of dif-
ferent values for the x coordinate of every V3 vertex, nx
being the total number of different x values (and VY
and VZ analogously for their y and z coordinates, with
sizes ny and nz).

Lemma 4.3 For every vertex V4 or V6 with coordi-
nates (Xi, yi, Zi), Xi E (X2, X3,. . . , X,,-1) = VX -
{XI, x,,} (and analogously for its y and z coordinates).

Proof: Vertices V4 (V6) are in the interior of 2 (3)
perpendicular brinks (they are in fact the intersection
of these brinks) and so their coordinates can be obtained
from the coordinates of the V3 ending vertices of these
brinks. Thus xi E VX. However, from lemma 4.2,
xi < xi < xnZ, and therefore V4 and V6 are in the
interior of the bounding box of their OP. 0

Theorem 4.1 The EV model for orthogonal polyhedra
is a valid B-Rep model.

Proof: To prove this theorem we must prove that all
the geometry, topology and correct orientation of the
OP boundary can be obtained from the EV model. Con-
cerning with geometry, from lemma 4.3, all coordinates
of vertices V4 and V6 appear as coordinates of vertices
V3. Then, although vertices V4 and V6 do not appear
in the model, they can be inferred from it. Concerning
with topology and orientation, in [l] a conversion algo-
rithm from the EV model to B-Rep is presented that
proves this theorem. •I

5 Boolean Operations in the EV
model

Our approach computes an orthogonal bound for a CSG
tree. We consider CSG trees without geometric trans-
formations.

First, all the primitives are approximated by their
bounding boxes and then a postorder tree traversal is
carried out applying the corresponding operations. In
our case the operations are the classical operations of
boolean algebra and so the orthogonal bound of the
CSG does not depend on the form of the CSG algebraic
expression as occurred with boxes (see section 2).

59

Nevertheless, the advantage of the DF form con-
cerning with culling up empty intersections, also men-
tioned in section 2, can be applied to our approach and,
therefore, the tree traversal is carried out by using the
method proposed in [16]. Furthermore, since the CSG
primitives are boxes, the intersections are also boxes
(when they are not empty) and so the CSG bound is
represented as the union of boxes.

In this section the boolean operations algorithm for
OP is presented. The algorithm basically performs a
geometric merge between OP represented in a sorted
EV model. The algorithm computes a sequence of 2D
sections from the 3D model and the same algorithm
is recursively applied to each of these 2D sections to
obtain 1D sections. Then 1D boolean operations are
performed on these 1D sections. The recursion upwards
by converting the resulting sequence of sections into an
EV model thus produces the corresponding result.

5.1 Operations on the EV model

Definition 5.1 An ABC-sorted EV model is an EV
model where vertices V3 are sorted first by coordinate
A, then by B and then by C.

EV models can be sorted in six different ways: XYZ,
XZY, YXZ, YZX, ZXY and ZYX. In a ZXY-sorted EV
model, for instance, its vertices are arranged in planes
perpendicular to the Z axis (i.e., with the same z coor-
dinate). In each such plane they are arranged in lines
parallel to the Y axis (i.e., with the same z coordinate).
Finally, they appear as y intervals (see Figure 3).

Let us consider an ABC-sorted EV model,

Definition 5.2 A plane of vertices of an OP is the set
of vertices lying on a plane perpendicular to the A axis.
We will also refer to the set of vertices lying on a line
parallel to the C axis within a plane of vertices as a line
of vertices.

Definition 5.3 A strip is the region between two con-
secutive planes (lines) of vertices.

Definition 5.4 A section is the polygon resulting from
the intersection between an OP and an orthogonal plane
perpendicular to the A axis which does not coincide with
any plane of vertices.

All the orthogonal planes intersecting an OP in the
same strip give the same section. Hence, every strip is
represented by a section. Furthermore, as an OP can
be interpreted as a sequence of strips, we can define the
sequence of sections for an OP.

All these concepts related to sections can also be de-
fined in 2D. A section is also a 1D polygon resulting
from the intersection between a 2D orthogonal polygon

and an orthogonal line perpendicular to both the A and
B axes which does not coincide with any line of vertices.

A sorted-EV model is a sequence of planes (lines) of
vertices. The number of elements of this sequence, np,
is the number of different A coordinates in the model.
The number of sections is ns = np+ 1 because the empty
sections Se and Snp are also considered. Figure 4 shows
the sections and planes of vertices for an OP.

An ABC-sorted EV model can represent n-
dimensional OP (n 5 3) by taking into account the last
n coordinates. Thus, the planes and lines of vertices of
an OP will also be represented in this model. Moreover,
as a section is actually an OP, 1D and 2D sections will
also be represented in this model.

Then, we define the ABCsorted type with the follow-
ing operations:

FUNCTION IniEv (> RETURN ABCsorted
(Returns an empty EV model3

PROCEDURE Put (INPUT plv: ABCsorted,
I/O P: ABCsorted,
INPUT dim:INTEGER)

{Appends a plane (dim=2) or a line
(dim=i) to an EV model, P)

FUNCTION Read (P: ABCsorted,
dim:INTEGER)
RETURN ABCsorted

(Extracts the next plane (dim=2) or
line (dim=l) from an EV model, P3

FUNCTION End (P: ABCsorted)
RETURN BOOLEAN

(Returns TRUE if the end of P has
been reached)

FUNCTION MergeXor (P, 9: ABCsorted;
dim: INTEGER)
RETURN ABCsorted

{Applies the Exclusive OR operation
the vertices of P and l7j and returns
resulting set3

to
the

PROCEDURE SetCoord (I/O P: ABCsorted,
INPUT Coord: REAL,
INPUT dim: INTEGER)

{Sets the A (dim=2) or the B (dim=11
coordinate to Coord on every vertex
of the plane (line) of vertices P3

FUNCTION GetCoord (P: ABCsorted,
dim:INTEGER) RETURN REAL

(Gets the common A (dim=21 or B (dim=11
coordinate of the plane (line> of vertices P3

60

X

a

Figure 3: ZXY-sorted EV model. a) A hidden line representation of an OP with one V6, one V4 and 26 V3s. b) Its
corresponding wire-frame representation. c) This representation shows the order number for each V3 vertex and the
three planes of vertices of the model (with different marks).

b

2 8
I

7

23 c

Figure 4: This OP is represented in an XZY-sorted EV model. It has 5 planes of vertices, Xi to X5. Each of them
corresponds to the set of vertices with the same coordinate X. The shaded-in polygons represent the four sections
S1, Ss, Ss and S4. There are two more empty sections, Sc and 5’5.

61

5.2 Computing sections from planes
(lines) of vertices and vice versa

A section Si is computed by carrying out an exclusive
OR between its previous section Si-r and its previous
plane (line) of vertices Pi:

so = 0

Si = Si-1 @ Pj, tli E [l, np]

@ corresponds to the exclusive OR operation.
From this recurrence relation it follows that S,, = 0.
Then, we define the corresponding function GetSec-

tion:

FUNCTION G&Section (S: ABCsorted,
plv: ABCsorted,
dim: INTEGER)
RETURN ABCsorted

{returns the next section of an OP whose
previous section is S. This function works
for dimension 2 or 1. If dim=2 (dim=i),
plv is the previous plane (line>
of vertices and S is a 2D (ID) section)

RETURN (MergeXor(S, plv, dim))
ENDFUNCTION

An algorithm that computes the sequence of sections
of an OP from its EV model using functions IniEv and
GetSection is presented in [l].

A plane (line) of vertices Pi of an OP is computed by
carrying out an exclusive OR between its previous Si-r
and next Si section:

Pi=Si-i@Sj,ViE[l,np]

Then, we define the corresponding function GetPlv:

FUNCTION GetPlv (Si: ABCsorted,
Sj : ABCsorted,
dim: INTEGER)
RETURN ABCsorted

{This function also works for dimensions
2 or I. If dim=2 (dim=l), Si and Sj are 2D
(ID) consecutive sections and returns the
plane (line) of vertices between Si and Sj)

RETURN (MergeXor (Si, Sj, dim)
ENDFUNCTION

Actually, this function performs the same computa-
tions as the GetSection function, i.e., an exclusive OR
between two sets of vertices although, as they are con-
ceptually different, we will use both of them.

An algorithm that computes the EV model from a
sequence of sections of an OP is also presented in [l].

5.3 Boolean Operations algorithm

Now, we are able to present the boolean operations al-
gorithm. The algorithm merges two OP, say P and Q,
represented in the same ABC-sorted EV model, in such
a way that the corresponding planes of vertices are also
merged. We consider all the resulting strips. Some of
them will correspond to untouched strips of P or Q and
only one section will have to be considered. However,
some other strips will correspond to a part of a P strip
and a part of a & strip with their corresponding sec-
tions. The algorithm considers these sections as 2D OP
and operates them in the same way.

We can explain the algorithm as follows. The se-
quence of sections for objects P and Q are computed.
Then, these sections are merged in order to compute
the sequence of sections of the R resulting object. Fi-
nally, from this sequence of sections, the EV model of
the resulting object R is obtained. Nevertheless, the
implemented algorithm does not work in this sequen-
tial form; it actually works in a wholly merged form
and only needs to store one section for each of the P
and Q operands and two consecutive sections for the
result R. Thus, the algorithm is Q(n) as merging-like
algorithms are, being n the total number of vertices of
P and Q. This conclusion is based on the fact that
Ci nPLVi M Ci nSi, i.e., the total number of extreme
vertices of all planes of vertices (which is the number
of extreme vertices of the OP) is approximatelly equal
to the total number of extreme vertices of all the sec-
tions of the OP. Figure 5 shows the boolean operations
algorithm.

Function OpBoollD performs 1D boolean operations
between P and Q that are now collinear lines of vertices.

Procedure GetPlane obtainss the next plane (line) of
vertices plvi of P or Q, with its common coordinate
coord, and shows to which of these objects obj it be-
longs. The plane (line) of vertices is obtained using
function Read and its common coordinate using func-
tion GetCoord (see section 5.1). This procedure works
as in a merging process.

Functions GetSection and GetPiv perform an exclu-
sive OR between the sets of vertices of their operands
(see subsection 5.2).

OpBool works for 3D OP (dim=3) and for 2D or-
thogonal polygons (dim=2). The recursive case of this
procedure is a merging-like algorithm.

When the end of one of the objects is reached, the
main iteration finishes and the remaining planes (lines)
of vertices of the other object are either appended or
not to the resulting object depending on the boolean
operation considered. Procedure PutBool performs this
boolean operation based appending process.

Figure 6 shows a 2D running example and Figure 7
shows a 3D example.

62

TYPE Object = ENUM (P, Q) ENDTYPE

FUNCTION OpBool (P, Q: ABCsorted, <the input objects)
dim: INTEGER, {dimension of P and Q)
op: BoolOp) (the Boolean operation)
RETURN ABCsorted

VAR
s[P..Q]: ABCsorted (s[P], s[Q]: current sections of P, Q)
sRprevious, sRcurrent: ABCsorted (sections of the result, R3
plvi, plvo: ABCsorted {input and output planes (lines) of vertices)
obj: Object (the current selected object)
coord: REAL <The common coordinate of a plane (line) of vertices)

ENDVAR

IF dim = I THEN
RETurn (OpB00liD(P, Q, 0p>>

ELSE
dim:= dim - I
sCPl:= IniEvO
s[Q]:= IniEv()
sRcurrent:= IniEv()

GetPlane(P, Q, dim, plvi, coord, obj)
WHILE NOT End(P) AND NOT End(Q) DO

S[obj]:= GetSection(plvi, SCobjl, dim)
sRprevious:= sRcurrent
sRcurrent:= OpBool(s [PI, s[Ql, dim, op>
plvo:= GetPlv(sRprevious, sRcurrent, dim)
SetCoord(plvo, coord, dim)
Put(plvo, R, dim)
GetPlane(P, Q, dim, plvi, coord, obj)

ENDWHILE

WHILE NOT End(P) DO
PutBool(plvi, R, op)
plvi:= Read(P, dim)

ENDWHILE
WHILE NOT End(Q) DO

PutBool(plvi, R, op)
plvi:= Read(Q, dim)

ENDWHILE
RETURN (R)

ENDIF
ENDFUNCTION

Figure 5: The boolean operation algorithm.

63

SPl SP2 93 SP4 SP5
* . -

Pl : P2 : P3 : r4: P5 : P6 P7 P8 * . * :
-.- -. - . . . -
. * - . - f . . .

cj1: cj2: 63:

SQl SQ2 SQ3

81 I$? I$3 l$4 I$5 I$6
. t . r .

L
plvi
Pl
P2

t;l;
Q2

;i

;i
P6
P7
P8

SPI
SPl = Pl

SP2
SP3
SP3
SP3
SP4
SP4
SP5
SP5

SR4jSR5jS

d&l
0
0
0

SQl = Ql
S&2
SQ2
SQ3
S&3

S&4 = 0

R8 R9 R!O RI1

&anterior
0

SPl
SP2
SP3
SR4
SR5
SR6
SR7
SR8

sRactua1
SPl
SP2
SP3

SR4 = SP3 U SQl
SR5 = SP3 u SQ2
SR6 = SP4 u SQ2
SR7 = SP4 u SQ3
SR8 = SP5 U S&3
SR9 = SP5 u S&4

Figure 6: Boolean Operations running example. End(Q TRUE when Q4 is selected. I

since SP4 U SQ2 = SP4 U S&3, thus making R7 = Q)

p1vo
Rl = Pl
R2 = P2
R3 = P3

R4
R5
R6

R7= 0
R8
R9

RlO = P6
Rll = P7
R12 = P8

We can observe that SR6=SR7

64

L

Figure 7: Boolean Operations: 3D example. (a),(b) T wo OP. (c),(d) Sections of these OP. (e) OP in overlapping
position and the corresponding overlapping sections. (f),(g),(h) Th e resulting sections and OP (wireframe and HLR).
(i),(j) The resulting OP (HLR and shaded).

65

6 Comparison between geomet-
ric bounds

In this work we propose the EV Model as a new model
for representing valid OP in a compact way.

We have also developed classification algorithms for
OP. In [l] an O(n) splitting algorithm and an O(lgn)
point classification algorithm are proposed.

We want now to compare OP with simple boxes as
geometric bounds. Boolean operations on boxes are
of constant complexity, whereas boolean operations on
OP are O(n). Cl assification algorithms are also more
complex for OP than for boxes (since boxes are of con-
stant complexity). So, our approach will be more time-
consuming than boxes-based approaches when the CSG
geometric bound is computed and when classification
tests are performed on it. Nevertheless, OP are tighter
than boxes and so classification tests will be more de-
terministic.

Moreover, the bounding OP used for a primitive is
merely its bounding box and we will traverse the CSG
tree in its DF using the method presented in [16] i.e.,
performing unions of intersections. Thus, when per-
forming intersections our method also deals with boxes
and has constant complexity. Obviously, the method
must finally perform unions between the intersection re-
sults and so complexity is O(n).

7 Conclusions and F’uture work

In this work we have proposed the use of OP as geo-
metric bounds in CSG. The proposal is based on the
fact that a simple boolean operations algorithm can be
applied for OP. This boolean operations algorithm is a
merging-like algorithm and runs in O(n).

Although input data (i.e., vertices coordinates) are
floating-point values, no time-consuming floating-point
arithmetic is ever performed and so there are no propa-
gation errors. All results are obtained by simply classi-
fying vertices coordinates of the initial data. Moreover,
round-off errors in the input data can be avoided by
performing a space discretization based on the primi-
tive bounding boxes.

Working with OP instead of boxes as geometric
bounds is more time-consuming when computing the
bound and when classification algorithms are applied.
However, OP are tighter than boxes and so classifica-
tion tests will be more deterministic.

In the future we intend to compare these theoreti-
cal results with experimental ones. We will also per-
form a rigorous study of the complexity of the pre-
sented algorithm. Furthermore, we are extending the
EV model and the corresponding operations for pseu-
domanifold OP. A psedomanifold polyhedron [20] is an

r-set with non-manifold boundary [17]. Finally, we will
study other applications of OP.

8 Acknowledgments

The present work has been partially supported by CI-
CYT grants TIC-95-630-C03.

The authors would like to thank P. Brunet and R.
Joan-Arinyo for their valuable comments and sugges-
tions.

References

PI

PI

[31

PI

[51

PI

[71

PI

PI

PO1

A. Aguilera and D. Ayala. The Extreme Ver-
tices Model model EVM for Orthogonal Polyhe-
dra. Technical Report LSI-97-6-R, LSI-Universitat
Politecnica de Catalunya, 1997.

C. Andtijar, D. Ayala, P. Brunet, R. Joan-Arinyo,
and J. Sole. Automatic generation of multiresolu-
tion boundary representations. volume 15. EURO-
GRAPHICS’96, 1996.

D. Ayala, C. Andtijar, and P. Brunet. Auto-
matic simplification of orthogonal polyhedra. In
D. Fellner, editor, Modeling, Virtual Worlds, Dis-
tributed Graphics: Proceedings of the International
MVD’96 Workshop. Infix, 1995.

S. Cameron and J.R. Rossignac. Relationship be-
tween S-bounds and Active Zones in Constructive
Solid Geometry. Proceedings of the International
Conference on the Theory and Practice of Geomet-
ric Modelling. FRG, 1988.

S. Cameron and C. Yap. Refinement methods for
geometric bounds in Constructive Solid Geome-
try. ACM Transactions on Graphics, 11(1):12 -
39, 1992.

H. Edelsbrunner. Algorithms in Combinatorial Ge-
ometry. Springer Verlag, 1987.

J. Goldfeather, S. Molnar, G. Turk, and H. Fuchs.
Near real-time CSG rendering using tree normal-
ization and geometric pruning. IEEE Computer
Graphics & Applications.

C. M. Hoffmann. Geometric and Solid Modeling.
Morgan Kauffmann Publishers, Inc., 1989.

R. Joan-Arinyo. Domain extension of isothetic
polyhedra with minimal CSG representation. Com-
puter Graphics Forum, (5):281 - 293, 1995.

R. Juan-Arinyo. On Boundary to CSG and Ex-
tended Octrees to CSG conversions. In W. Strasser,
editor, Theory and Practice of Geometric Modeling,
pages 349-367. Springer-Verlag, 1989.

66

[ll] M. Mazzetti and L. Ciminiera. Computing CSG-
tree boundaries as algebraic expressions. CAD,
26(6):417 - 425, 1994.

[12] C. Montani and R. Scopigno. Graphics Gems II,
chapter IV.7 Quadtree/Octree to boundary conver-
sion, pages 202 - 218. Academic Press, Inc, 1991.

[13] F.P. Preparata and MI. Shamos. Computational
Geometry: an Introduction. Springer-Verlag, 1985.

[14] A. Rappoport. The n-dimensional Extended Con-
vex Differences Tree (ECDT) for representing poly-
hedra. In J. Rossignac and J. Turner, editors,
Symposium on Solid Modeling Foundations and
CAD/CAM Applications, 1991.

[15] A. Requicha. Representations for rigid solids: The-
ory, methods, and systems. Computing Surveys of
the ACM, 12:437-464,198O.

[16] J. Rossignac. Proceesing disjunctive forms directly
from CSG grafs. In CSG 94. Set-theoretic Solid
Modelling Techniques and Applications, pages 55 -
70. Information Geometers Ltd, 1994.

[17] J. R. Rossignac and A. A. G. Requicha. Contruc-
tive Non-Regularized Geometry. Computer-aided
design, 23(1):21 - 32, 1991.

[18] J. R. Rossignac and H. B. Voelcker. Active zones
in CSG for accelerating boundary evaluation, re-
dundancy elimination, interference detection and
shading algorithms. ACM Transactions on Graph-
ics, 8(1):51 - 87, 1989.

[19] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison Wesley Publ., Reading, MA,
1989.

[20] K. Tang and T. Woo. Algorithmic aspects of alter-
nating sum of volumes. Part 1: Data structure and
difference operation. CAD, 23(5):357 - 366, 1991.

[21] K. Tang and T. Woo. Algorithmic aspects of al-
ternating sum of volumes. Part 2: Nonconvergence
and its remedy. CAD, 23(6):435 - 443, 1991.

[22] R. B. Tilove. Set membership classification: a uni-
fied approach to geometric intersection problems.
IEEE Transactions on Computers, 29(10):874 -
883, 1980.

67

