INDEX OF TABLES²

CHAPTER 1	Introduction	
TABLE 1.1	Sphere's plane intersections with <i>Flatland</i> .	15
TABLE 1.2	Slicing the cone and generating the conic sections.	16
CHAPTER 2	Geometry of the Four-Dimensional Space	
TABLE 2.1	The hypercube's volumes	40
TABLE 2.2	The hypercube's 24 faces and their incident volumes.	42
TABLE 2.3	The hypercube's coordinates.	43
TABLE 2.4	Obtaining the properties of a point, a segment, a square, a cube and	
	a hypercube.	44
TABLE 2.5	Defining the 4D hypercube's vertices coordinates.	48
TABLE 2.6	The kD elements of the tetrahedron built as a "pyramid".	52
TABLE 2.7	The vertices' coordinates for the 4D simplex.	52
TABLE 2.8	The vertices' coordinates for the 4D cross polytope.	56
TABLE 2.9	Correspondences between elements on the 4D hypercube and cross	
	polytope's boundaries.	58
TABLE 2.10	The possible four 0/1-Polygons with three vertices.	60
TABLE 2.11	The two 0/1-Polygons.	61
TABLE 2.12	The twelve 0/1-Polyhedra.	62
TABLE 2.13	Some 4D 0/1-Polytopes composed by five vertices: simplexes.	63
TABLE 2.14	Defining the rotation plane for rotations in 2D, 3D and 4D space.	73
CHAPTER 3	Techniques for Visualizing the Four-Dimensional Space	
TABLE 3.1	Unraveling the cube.	90
TABLE 3.2	The hypercube's coordinates.	92
TABLE 3.3	The hypercube's volumes.	93
TABLE 3.4	Applied transformations to the adjacent volumes.	94
TABLE 3.5	Associated transformations to satellite volume.	96
TABLE 3.6	Unraveling the hypercube.	98
TABLE 3.7	Analogies between the unravelings of the square, the cube and the	
	hypercube.	100
TABLE 3.8	Unraveling the 3D simplex.	103
TABLE 3.9	The 4D simplex coordinates.	105
TABLE 3.10	The 4D simplex's boundary volumes.	106
TABLE 3.11	Applied transformations to the adjacent volumes.	108
TABLE 3.12	Unraveling the 4D simplex.	109
TABLE 3.13	The unravelings for the 5D simplex.	111

 $^{^{2}}$ <u>A NOTE TO THE READER</u>: Some of the tables in this document are referred as color ones. However, depending of the printed version, it is possible that they cannot be appreciated as originally intended. According to the case, we recommend to consult the electronic version of this work.

CHAPTER 4	Four-Dimensional Orthogonal Polytopes	
TABLE 4.1	Possible configurations (a to f) for 2D-OPP's.	126
TABLE 4.2	Possible configurations (a to v) for 3D-OPP's.	128
TABLE 4.3	Configurations 3 to 8 for 4D-OPP's.	131
TABLE 4.4	Counting the edge and vertex adjacencies in 2D-OPP's	
	configurations.	132
TABLE 4.5	Counting the face, edge and vertex adjacencies in 3D-OPP's	
	configurations.	133
TABLE 4.6	2D configurations where all the rectangles are incident to a vertex.	135
TABLE 4.7	Resume of adjacency analysis for each configuration and vertex	
	classification.	136
TABLE 4.8	3D configurations where all the boxes are incident to an edge.	136
TABLE 4.9	Resume of adjacency analysis for each configuration and edge	
	classification.	137
TABLE 4.10	4D configurations where all the <i>hyper-boxes</i> are incident to a face.	138
TABLE 4.11	Resume of adjacency analysis for each configuration.	141
TABLE 4.12	Vertices present in 3D-OPP's	143
TABLE 4.13	Edges present in 4D-OPP's	145
TABLE 4 14	3D-OPP's vertices classification	148
TABLE 4 15	4D-OPP's edges classifications and their analogy with 3D-OPP's	110
INDEE 1.15	vertices	151
TABLE 4 16	Vertex analysis for 2D configurations on the main planes in 3D	101
	configurations b to k	157
TABLE 4.17	Determining the 3D configurations on the main hyperplanes in 4D	107
	configurations 3 to 6	159
TABLE 4.18	Edges analysis for 3D configurations on the main hyperplanes in	107
	4D configurations 3 to 6	160
TABLE 4 19	The 4D-OPP's edges classifications and their analogy with 3D-	100
	OPP's vertices	161
TABLE 4 20	Vertices present in 4D-OPP's described in terms of their incident	101
	extreme and non-extreme edges	163
	externe and non externe edges.	105
CHAPTER 5	Determining the Configurations for the nD-OPP's $(n > 4)$	
TABLE 5.1	Comparing the number of configurations with the number of	
INDEE 5.1	combinations for the nD-OPP's	172
TABLE 5.2	Extrusion of 2D configuration e and the obtained 3D	1/2
IADLE 5.2	configurations	173
TARIE 53	The three configurations for 1D-OPP's	174
TABLE 5.5 TABLE 5.4	Extruding 2D configurations in the same direction and obtaining	1/7
TADLE J.4	their 3D analogous	175
TABLE 5 5	Obtaining new configurations through 3D configuration f and a	175
TABLE 5.5	"Test-Boy"	176
TARIE 56	Configurations' distribution for 5D OPD's	170
TABLE 3.0	Configurations' distribution for 6D ODD's	180
TABLE 3.7	The adjacencies in the 10D configuration with 1024 hoves	18/
TABLE 5.0	The adjacencies in the 10D configuration with 1022 horas	104
IADLE J.Y	The aujacencies in the 10D configuration with 1025 doxes.	10/

TABLE 5.10	Counts of the permutation tree's levels for generating the configurations for the 2D-OPP's	190
TABLE 5.11	Counts of the permutation tree's levels for generating the	170
	configurations for the 3D-OPP's.	192
TABLE 5.12	Using the function $E^{2}(i,n)$ for determining the counts of the	
	permutation tree's levels for generating the configurations for the 3D-OPP's.	193
TABLE 5.13	Correspondences between bits' positions in a 3D configuration's	
	binary string and their octants.	201
TABLE 5 14	Octants occupied by the boxes indicated in a 3D configuration's	201
	hinary string	201
TARIE 5 15	Correspondences between bits' positions in a 4D configuration	201
TADLE 5.15	binary string and their hyper octants	204
	Using and then hyper-octains.	204
IADLE J.10	Hyper-octants occupied by the <i>hyper-boxes</i> indicated in a 4D	205
	configuration's binary string.	205
TABLE 5.17	The adjacencies between the six hyper-boxes of a 4D	
	configuration.	207
TABLE 5.18	Examples of 4D combinations Cn_1 and Cn_2 and the transformations	
	to apply such that $Cn_1 \equiv T^n(Cn_2)$.	210
TABLE 5.19	Examples of 4D combinations Cn_1 and Cn_2 and the transformations	
	to apply in their respective array representation, such that	
	$C_n = T^n (C_n)$	010
	$Cn_1 = 1$ (Cn_2).	212
TABLE 5.20	The 4D space's hyper-octants and their corresponding points.	214
TABLE 5.21	The points associated to the occupied <i>hyper-octants</i> of a 4D	
	configuration.	215
TABLE 5.22	Main rotations around 90° and reflections in the 4D space.	215
TABLE 5.23	Applying geometric transformations to the points associated to the	
	occupied hyper-octants in a 4D configuration.	216
TABLE 5.24	The distribution for the 402 Hill's Configurations in the 4D-OPP's.	216
TABLE 5.25	Six 4D combinations with 6 hyper-boxes' whose adjacencies	
	counting is the same.	217
	6	
CHAPTER 6	Some Schemes for the Modeling of n-Dimensional	
•••••	Polytones	
TARIE 6 1	Listing a voyal's eight vertices	230
TADLE 0.1	The Declean operations between two 4D hypercubes	230
TADLE 0.2	Listing a negative signation operations	239
TABLE 0.3	Listing a rexel's sixteen vertices.	255
CILADTED 7	Eutone Warls	
CHAPIER /		
TABLE /.1	Six Hill's configurations that supposedly belong to a same Aguilera	250
	& Pérez's configuration.	258
TABLE 7.2	The possible conversion of four Hill's configurations into two	. .
	Aguilera & Pérez's configurations.	262
TABLE 7.3	Vertices in the 3D-OPP's and their relation with brinks.	264
TABLE 7.4	The configurations from the nD-OPP's $(1 \le n \le 3)$ that describe	
	Extreme Vertices.	265

TABLE 7.5	The Boolean regularized operations between two 1D-OPP's and	
	their possible cases.	286
TABLE 7.6	Two 4D-OPP's A & B and their corresponding sections since the	
	3D case until the 1D case.	287
TABLE 7.7	Boolean Operations Between 1D Sections of two 4D-OPP's and the	
	resultant 4D-OPP's.	290
TABLE 7.8	Computing the frames for an animation represented through a	
	3D-OPP and the EVM.	296
TABLE 7.9	Two color 1D-images and their extrusion to the 3D colorspace.	314
TABLE 7.10	Performing the intersection between prisms in H_a and H_b through	
	their corresponding main diagonals.	315
TABLE 7.11	The results of the intersection between the extrusions of two color	
	1D-images.	316