INDEX

Chapter 1: Introduction	1
1.1 Historical Overview	1
1.2 Theoretical Physics and Hyperdimensional Geometry	4
1.3 Methods for Visualizing 4D Polytopes	12
1.3.1 Polytope's Visualization Related Works	17
1.4 Dimensional Analogies	19
1.5 The Concepts of Dimension	22
1.6 Objectives	24
1.6.1 Problem's Definition	24
1.6.2 General Objectives	25
1.6.3 Specific Objectives	25
1.6.4 Organization	26
Chapter 2: Geometry of the Four-Dimensional Space	29
2.1 Definitions	29
2.1.1 Polyhedra	29
2.1.2 Pseudo-Polyhedra	31
2.1.3 Four-Dimensional Polytopes	32
2.1.4 Four-Dimensional Pseudo-Polytopes	34
2.1.5 The n-Dimensional Polytopes	35
2.2 Some Polytopes' Families	37
2.2.1 The Hypercube	37
2.2.1.1 Obtaining a Segment, a Square, a Cube and a	
Hypercube	37
2.2.1.2 The 4D Hypercube Properties	40
2.2.1.3 Counting the Number of Lower Dimensional Elements	
in a nD Hypercube	43
2.2.1.4 Coordinates for the nD Hypercube	46
2.2.2 The Simplex	48
2.2.3 The Cross Polytope	52
2.2.4 The 0/1-Polytopes	59
2.3 The 4D Geometric Transformations	64
2.3.1 The 3D Geometric Transformations as Extension of the	
2D Geometric Transformations	64
2.3.1.1 Translations	64
2.3.1.2 Scaling	65
2.3.1.3 Rotations	66
2.3.2 The 4D Geometric Transformations as Extension of the	
3D Geometric Transformations	68
2.3.2.1 Translations in the 4D and nD Spaces	68
2.3.2.2 Scaling in the 4D and nD Spaces	70
2.3.3 Rotations in 4D Space	71
2.3.4 Rotations in the nD Space	72

Chapter 3: Techniques for Visualizing the Four-Dimensional Space	75
3.1 Polytopes' Projection	75
3.1.1 The 3D-2D Projection	75
3.1.2 The 4D-3D Projection	78
3.1.3 The $nD - (n-1)D$ Projection	81
3.2 The 4D Polytopes' Unravelings and Unfoldings	85
3.2.1 Unraveling the 4D Hypercube	85
3.2.1.1 The Hypercube's Unravelings	85
3.2.1.2 Cube's Unraveling Methodology	88
3.2.1.3 Hypercube's Unraveling Methodology	91
3.2.1.4 Visualizing the Hypercube's Unraveling Process	97
3.2.1.5 The n-Dimensional Hyper-Tesseract	99
3.2.2 Unraveling the 4D Simplex	102
3.2.2.1 Introduction	102
3.2.2.2 The 3D Simplex (Tetrahedron) Unraveling	
Methodology	102
3.2.2.3 The 4D Simplex's Unraveling Methodology	104
3.2.2.4 Visualizing The 4D Simplex's Unraveling Process	110
3.2.2.5 The Stellated n-Dimensional Simplex	110
3.3 Polytope's Intersection with Three-Dimensional Space	111
3.3.1 The Intersections Between a 4D Hypercube and the	
3D Space	112
3.3.2 Visualizing the 4D Hypersphere	117
Chapter 4: Four-Dimensional Orthogonal Polytopes	123
4.1 Definition	124
4.2 Adjacency Analysis For 2D, 3D And 4D-OPP's	125
4.2.1 Adjacency Analysis for 2D-OPP's	125
4.2.2 Adjacency Analysis for 3D-OPP's	126
4.2.3 Adjacency Analysis for 4D-OPP's	129
4.2.4 Determining the Sum of Adjacencies for Configurations	
in nD-OPP's	132
4.3 The Π_{n-2} Analysis for 2D, 3D and 4D-OPP's	134
4.3.1 The Π_0 (Vertex) Analysis for 2D-OPP's	134
4.3.2 The Π_1 (Edge) Analysis for 3D-OPP's	136
4.3.3 The Π_2 (Face) Analysis for 4D-OPP's	138
4.3.4 Classifying the Π_{n-2} 's in nD-OPP's	141
4.4 The Π_{n-3} Analysis for 3D and 4D-OPP's	141
4.4.1 The Π_0 (Vertex) Analysis for 3D-OPP's	142
4.4.2 The Π_1 (Edge) Analysis for 4D-OPP's	144
4.4.3 Classifying the Π_0 in Polyhedra Through its Cones of Faces	146
4.4.4 Classifying the Π_1 in 4D Polytopes Through its Hyper-Cones	110
of Volumes	149
4.4.5 Classifying the Π_{n-3} in nD Polytopes Through its	117
nD Hyper-Cones of Π_{n-1} 's	152
in hyper-cones of Π_{n-1} s	152

4.4.6 The Eight Types of Π_{n-3} 's in n-Dimensional Orthogonal	
Pseudo-Polytopes	153
4.5 Extreme Edges in the 4D-OPP's	154
4.5.1 Extreme Vertices in the 3D-OPP's	154
4.5.2 The 2D Analysis for Vertices in 3D-OPP's	156
4.5.3 The 3D Analysis for Edges in 4D-OPP's	158
4.5.4 The Vertices in 4D-OPP's Described in Terms of Extreme and	
Non-Extreme Edges	162
4.5.5 The Extreme and Non-Extreme (n-1), (n-2) and	
(n-3)-Dimensional Elements	166
Chapter 5: Determining the Configurations for the nD-OPP's $(n \ge 4)$	171
5.1 The Problem of Determining the Configurations for nD-OPP's $(n > 4)$	171
5.2 The "Test-Box" Heuristic for Obtaining Configurations for nD-OPP's	173
5.2.1 Extruding Configurations	173
5.2.2 Obtaining the Configurations Through a "Test-Box"	174
5.3 "Test-Box" Heuristic's Results and Complexity	178
5.4 Some Formulations for the Configurations in the nD-OPP's	181
5.5 Some Properties of the "Test-Box" Heuristic	187
5.6 Binary Representation for the Configurations in the nD-OPP's	200
5.6.1 Binary Representation for the Configurations in the 3D-OPP's	200
5.6.2 Representing n-dimensional Configurations	203
5.7 The Hill vs. Aguilera & Pérez's Configurations for the 4D-OPP's	208
5.7.1 Obtaining the Hill's Configurations for the 4D-OPP's	209
5.7.2 Obtaining the Aguilera & Pérez's Configurations for the	017
4D-OPP's	217
Chapter 6: Some Schemes for the Modeling of n-Dimensional Polytopes	221
6.1 Solid Modeling	221
6.2 Regularized Boolean Operations	223
6.3 Some Schemes for the Modeling of Solids	224
6.3.1 Boundary Representations	224
6.3.2 Spatial Partitioning Representations	227
6.3.2.1 Cell Decomposition	228 228
6.3.2.2 Spatial Occupancy Enumeration 6.3.2.3 Classical OctTrees	228
6.4 Polytopes Modeling	230
6.4.1 The n-Dimensional Boundary Representations	232
6.4.2 The n-Dimensional Simplexation of Convex Polytopes	233
6.4.2.1 Definitions	240
6.4.2.2 The Algorithm for the nD Simplexation of Convex	270
Polytopes	242
6.4.3 Hypervoxelization	248
6.4.4 The HexTrees and 2^{n} -trees (Hyperoctrees)	253

Chapter 7: Future Work	257
7.1 Future Work: Towards the Determination of the Equivalencies Between	
Hill's Configurations and Aguilera & Pérez's Configurations for the	
4D-OPP's through a New Geometric Transformation.	257
7.2 The Extreme Vertices Model	263
7.2.1 Brinks and Extreme Vertices in the 3D-OPP's	263
7.2.2 Extended Faces and Extended Edges	266
7.2.3 Slices	268
7.2.4 Sections	269
7.2.5 Computing the Extended Faces Through Sections	269
7.2.6 Computing the Sections Through the Extended Faces	270
7.2.7 Virtual Extended Faces	271
7.2.8 Future Work: Towards the Extreme Vertices Model in the 4D	
and 5D Spaces	271
7.3 Application 1: Handling and Processing Animation Frames using the EVM	291
7.3.1 Black & White 2D Animation Using the EVM-3D	291
7.3.1.1 Collision Detection	298
7.3.2 Representing Color 2D-Animations Through 4D-OPP's and	
Their Extreme Vertices.	298
7.4 Application 2: Comparing Color 2D-Images Through Their Extrusions to	
the 5D Colorspace	309
7.4.1 Extruding color 2D-images towards the 5D colorspace	310
7.4.2 Computing the 5D hypervolume of extruded images	310
7.4.3 Determining if two color 2D-images are "initially similar"	311
7.4.4 Computing the intersection between two extruded images	313
7.4.5 Determining if two color 2D-images are similar	317
7.4.6 The Algorithm and Application	319
Conclusions	321
References	323
Appendix A - 4D Configurations	A-1
Appendix B - Comparison of the Configurations in the 4D-OPP's Defined by	
Hill and Aguilera & Pérez	B-1
Appendix C - Vertices in the 4D-OPP's defined in terms of Manifold and	
Non-Manifold Edges and Their Corresponding 4D	
Configurations	C-1
Appendix D - Vertices in the 4D-OPP's defined in terms of Extreme and	
Non-Extreme Edges and Their Corresponding 4D Configurations	D-1
Appendix E - Articles Published During the Period August 2002 - May 2003	E-1
Presenting Methods for Unraveling the First Two Regular 4D Polytopes	
(4D Simplex and the Hypercube).	E-1
Classifying Edges and Faces as Manifold or Non-Manifold Elements in 4D	
Orthogonal Pseudo-Polytopes.	E-3

	Presenting the 'Test-Box' Heuristic for Determining the Configurations for	
	the n-Dimensional Orthogonal Pseudo-Polytopes	E-5
	Extreme Edges: A New Characterization for 1-Dimensional Elements in 4D	
	Orthogonal Pseudo-Polytopes	E-7
	Characterizing the (n-3)-Dimensional Elements as Manifold or Non-Manifold	
	in n-Dimensional Orthogonal Pseudo-Polytopes	E-9
	Presentando una Metodología para la Visualización del Desenvolvimiento de	
	un Hipercubo 4D.	E-11
Appen	ndix F - An Application for the Comparison of Popocatépetl	
	Volcano's Fumaroles	F-1
	F.1 Image Based Reasoning	F-1
	F.1.1 Images Storing	F-1
	F.1.2 Image's Retrieval	F-2
	F.1.3 The Process of the Image Based Reasoning	F-3
	F.2 Other Options for Retrieval in Image Based Reasoning	F-4
	F.3 Application's Description	F-6
	F.3.1 Preprocessing and Storing Images in the Cases Base	F-6
	F.3.2 Implementation	F-10
	F.3.2.1 Java Classes	F-10
	F.3.2.2 The Graphical User Interface	F-12
	F.3.2.3 Querying the System	F-14