INDEX OF FIGURES ${ }^{1}$

CHAPTER 1 Introduction
FIGURE 1.1 Strings as fundamental objects. 7
FIGURE 1.2 Procedure for creating an hologram for storing a 3D object's information into a 2D plate 11
FIGURE 1.3 Projecting a cube on a plane. 12
FIGURE 1.4 Hypercube's central projection onto the 3D space. 13
FIGURE 1.5 Unraveling the cube. 13
FIGURE 1.6 The tesseract. 14
FIGURE 1.7 A 4D hypersphere seen in our 3D space. 16
FIGURE $1.8 \quad$ A.Square seen by a three-dimensional being. 20
FIGURE 1.9 Possible visualization by a 4D being of a human cranium. 21
CHAPTER 2 Geometry of the Four-Dimensional Space
FIGURE 2.1 A pseudo-polyhedron and its topological considerations. 32
FIGURE 2.2 Generation and final 1D unit segment C_{1}. 38
FIGURE 2.3 Generation and final 2D unit square C_{2}. 38
FIGURE 2.4 Generation and final 3D unit cube C_{3}. 39
FIGURE 2.5 Generation and final 4D unit hypercube C_{4}. 39
FIGURE 2.6 Viewing the cube's boundary faces. 41
FIGURE 2.7 Viewing the hypercube's boundary volumes. 41
FIGURE 2.8 The 0D simplex. 48
FIGURE 2.9 Generation and final 1D simplex, a segment. 49
FIGURE 2.10 Generation and final 2D simplex, a triangle. 49
FIGURE 2.11 Generation and final 3D simplex, a tetrahedron. 49
FIGURE 2.12 Generation and final 4D simplex. 50
FIGURE 2.13 Viewing the 4D simplex's five boundary volumes. 51
FIGURE 2.14 The 0D cross polytope. 53
FIGURE 2.15 Generation and final 1D cross polytope, a segment. 53
FIGURE 2.16 Generation and final 2D cross polytope, a square. 53
FIGURE 2.17 Generation and final 3D cross polytope, an octahedron. 54
FIGURE 2.18 Generation and final 4D cross polytope. 54
FIGURE 2.19 Triangle embedded in the octant defined by the positive sides of the 3D space's X_{1}, X_{2} and X_{3} axis. 56
FIGURE 2.20 Viewing the 4D cross polytope's 16 boundary volumes. 57
CHAPTER 3 Techniques for Visualizing the Four-Dimensional Space
FIGURE 3.1 Projecting a cube onto a plane. 76
FIGURE 3.2 4D Hypercube's rotation around the XW plane. 80
FIGURE 3.3 The 5D Hypercube's central projection. 85
FIGURE 3.4 Unraveling the cube. 86

[^0]FIGURE 3.5 The unraveled hypercube: the tesseract. 86
FIGURE 3.6 The hypercube's unraveling result. 87
FIGURE 3.7 The adjacency relations between the 4D hyper-tesseract's hypervolume's. 101
FIGURE 3.8 The 4D simplex. 102
FIGURE 3.9 Intersections between a cube and Flatland when one of its faces is parallel to the 2D space. 112
FIGURE 3.10 Intersections between a cube and Flatland when one of its edges is parallel to the 2D space. 113
FIGURE 3.11 Intersections between a cube and Flatland when its main diagonal coincides with the 2D space's normal vector. 114
FIGURE 3.12 Visualizing in Flatland its intersections with a cube whose main diagonal coincides with 2D space's normal vector. 114
FIGURE 3.13 Visualizing the intersections between a 4D hypercube with 3D space: the first element that makes contact with 3D space is a volume 115
FIGURE 3.14 Visualizing the intersections between a 4D hypercube with 3D space: the first element that makes contact with 3D space is a face. 116
FIGURE 3.15 Visualizing the intersections between a 4D hypercube with 3D space: the first element that makes contact with 3D space is an edge. 116
FIGURE 3.16 Visualizing the intersections between a 4D hypercube with 3D space: the first element that makes contact with 3D space is a vertex. 117
FIGURE 3.17 Visualizing the sphere's intersections with Flatland. 118
FIGURE 3.18 Visualizing the intersections between a 4D hypersphere and the 3D space. 118
FIGURE 3.19 A sphere's intersection with Flatland and considering some circumferences on its surface. 119
FIGURE 3.20 Visualizing some surface's circumferences on a sphere from Flatland and from the 3D space. 120
FIGURE 3.21 Visualizing the circumferences, now embedded in Flatland, that compose the 3D sphere. 120
FIGURE 3.22 The intersections between the 3D space and some spheres on the 4D hypersphere's boundary. 121
FIGURE 3.23 Visualizing in the 3D space 4D Hypersphere's five selected spheres. 122
CHAPTER 4 Four-Dimensional Orthogonal Polytopes
FIGURE 4.1 Example of a 3D-OPP. 155
CHAPTER 5 Determining the Configurations for the nD-OPP's ($n \geq 4$)
FIGURE 5.1 The graph generated by the "Test-Box" algorithm for determining the 2D configurations. 188
FIGURE 5.2 The first sub-tree chosen by the "Test-Box" algorithm. 191
FIGURE 5.3 The two sub-trees selected in level 2 by the "Test-Box" algorithm. 192

FIGURE 5.4 The permutation tree for obtaining the 2D configurations.
FIGURE 5.5 A boxes' combination for 3D configuration "j" and its binary representation.
CHAPTER 6 Some Schemes for the Modeling of n-Dimensional Polytopes201
FIGURE 6.1 A 3D grid for positioning up to 8 unitary voxels. 229
FIGURE 6.2 The incidence graph for the elements on the boundary of a 4D simplex. 235
FIGURE 6.3 The boundary tree for a 4D simplex. 236
FIGURE 6.4 A polygon Π_{2}^{1} and its cells Π_{0}^{i} and Π_{1}^{j}. 241
FIGURE 6.5 Forming a tetrahedron inside a cube. 243
FIGURE 6.6 A cube and its coordinates. 244
FIGURE 6.7 The vertices of the 6 tetrahedrons that compose the 3D simplexation of a cube. 245
FIGURE 6.8 The resultant six tetrahedrons from the simplexation of a cube through the Cohen \& Hickey's algorithm. 245
FIGURE 6.9 A cube and its coordinates. 246
FIGURE 6.10 The vertices of the 24 simplexes that compose the 4D simplexation of a 4D hypercube. 246
FIGURE 6.11 The resultant 24 simplexes from the simplexation of a 4D hypercube through the Cohen \& Hickey's algorithm. 247
FIGURE 6.12 A 4D grid for positioning up to 16 unitary rexels. 248
FIGURE 6.13 Boolean operations between two hypervoxels' grids C^{l} and C^{2}. 249
FIGURE 6.14 Two 5D-OPP's embedded in a 5D hypercubic universe and their representation through hypervoxels. 250
FIGURE 6.15 Results of the Boolean Operations between two 5D-OPP's. 251
FIGURE 6.16 The operations of union, intersection and complement for the nodes from $2^{\text {n }}$-trees. 255
FIGURE 6.17 The operations of difference and Exclusive OR for the nodes from 2^{n}-trees. 256
CHAPTER 7 Future Work
FIGURE 7.1 Example of a 3D-OPP p and its set of Extreme Vertices. 266
FIGURE 7.2 The brinks in a 3D-OPP. 266
FIGURE 7.3 The sequences of extended faces in a 3D-OPP. 268
FIGURE 7.4 The slices of a 3D-OPP. 268
FIGURE 7.5 The sections of a 3D-OPP. 269
FIGURE 7.6 The construction of a 4D-OPP by the union of several 4D-OPP's. 272
FIGURE 7.7 A 4D-OPP resulting from the union of several 4D polytopes. 273
FIGURE 7.8 A 4D-OPP and its set of Extreme Vertices. 274
FIGURE 7.9 Numbering the extreme vertices that lie on a line parallel to one of the space's main axes and composing their corresponding brinks. 275
FIGURE 7.10 A 4D-OPP and its brinks parallel to X_{1}, X_{2}, X_{3} and X_{4} axes. 276
FIGURE 7.11 A 4D-OPP and its Φ 's perpendicular to X_{1}, X_{2}, X_{3} and X_{4} axes. 278
FIGURE 7.12 The regions of a 4D-OPP between its extended volumes perpendicular to X_{1}-axis and its respective slices. 279
FIGURE 7.13 A 4D-OPP and its sections perpendicular to $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$ and X_{4} axes. 281
FIGURE 7.14 A 4D-OPP and its regions between its extended volumes perpendicular to X_{2}-axis; its slices and its slices showing their respective sections as their bases. 282
FIGURE 7.15 Two 4D-OPP's with common interior regions. 288
FIGURE 7.16 Example of a simple 2D black \& white animation. 291
FIGURE 7.17 Extrusion of the frames of an animation and some of their extreme vertices. 292
FIGURE 7.18 Composing the 3D-OPP that will represent an animation as the union of its extruded frames. 293
FIGURE 7.19 The Φ 's, perpendicular to the corresponding axis for the time, of a 3D-OPP that represents an animation. 294
FIGURE 7.20 Example of a simple color 2D-animation. 299
FIGURE 7.21 The 3D space defined for the extrusion of color 2D-pixels. 300
FIGURE 7.22 The sets of prisms which are the result of the extrusion of the frames of an animation. 301
FIGURE 7.23 The 3D frames that represent a 2D colored animation. 302
FIGURE 7.24 The process of extrusion of a 3D frame in order to obtain a hyperprism $_{l}$. 303
FIGURE 7.25 The extended volumes of the 4D-OPP p that represents a color 2D-animation. 305
FIGURE 7.26 The sequences of extended faces of the 3D frames that represent a color 2D-animation. 307
FIGURE 7.27 Two images classified as "initially similar". 312
FIGURE 7.28 Two images classified as not "initially similar". 312
FIGURE 7.29 Computing the intersection between the 5D colorspace's extrusions of two color 2D-images "initially similar". 317
FIGURE 7.30 Reproduction of Figure 7.27. 318
APPENDIX F An Application for the Comparison of Popocatépetl Volcano's Fumaroles
FIGURE F. 1 An schematic view of an Image Based Reasoner. F-4
FIGURE F. 2 An schematic view of an Image Based Reasoner by considering the images' comparison through their extrusions to 5D colorspace. F-6
FIGURE F. 2 Two possible situations related with the visualization of a volcano's silhouette. F-8
FIGURE F. 3 The volcano's silhouette to assign to the images in the cases base. F-9
FIGURE F. 4 Two examples of the assignation of the same volcano's silhouette by performing the union. F-10
FIGURE F. 5 Classes' diagram for the implemented Image Based Reasoner. F-11
FIGURE F. 6 The System's main graphical interface. F-13
FIGURE F. 7 An example of the System's input/output. F-14
FIGURE F. 8 A case's detailed information. F-15

[^0]: ${ }^{1}$ A NOTE TO THE READER: Some of the images in this document are referred as color ones. However, depending of the printed version, it is possible that they cannot be appreciated as originally intended. According to the case, we recommend to consult the electronic version of this work.

