
 257

Chapter 7
Future Work

 In this chapter we will discuss some lines of future work and some results based in

our first approaches to these topics. Summarizing, there are two wide fields to consider in

our future research:

�� Precise determination of the new geometric transformation(s) that makes possible to

determine the equivalencies between the 402 Hill 's configurations and the 253 Aguilera

& Pérez's Configurations for the 4D-OPP's (section 7.1).

�� Formal specifi cations of the theoretical foundations and algorithms related to the

extension of the Extreme Vertices Model to the four and five-dimensional spaces

(section 7.2) and their related applications (sections 7.3 and 7.4) for the analysis and

visualization of multidimensional data.

Although in this chapter we will present some results and applications based on the first

approaches to these topics, the reader must consider them carefully because the basis in

which they are supported still require a formal and careful inspection.

7.1 Future Work: Towards the Determination of the Equivalencies

Between Hill 's Configurations and Aguilera & Pérez's Configurations

for the 4D-OPP's through a New Geometr ic Transformation

 When Hill 's configurations are represented through their adjacencies counting (see

section 5.7.2) it results that some of them (diff erent Hill 's configurations) have the same

counting, and therefore they could be considered that belong to a same Aguilera & Pérez's

 258

configuration. For example, in the Table 7.1 there are shown six hyper-boxes' sets that are

representatives of six Hill 's configurations, however all of them have the same adjacencies

counting.

TABLE 7.1
Six Hill 's configurations that supposedly belong to a same Aguilera & Pérez's configuration

(own elaboration).
Hill 's Configurations Aguilera & Pérez's Configuration

Hyper-boxes'
combinations

Volume
Adjacencies

Face
Adjacencies

Edge
Adjacencies

Vertex
Adjacencies

0011110110000000
1001011110000000
0110101011000000
1001101011000000
0101011011000000
1000000111101000

4 6 4 1

 As we saw in section 5.7.1 the determination of the Hill 's configurations is based in

the fact that the 402 hyper-boxes' sets that represent these configurations cannot be reduced

to a lesser number because all the possible compositions of rotations and reflections were

exhaustively tested on them. In others words, the Hill 's configurations presented in Table

7.1 cannot be reduced to the Aguilera & Pérez configuration with 4 volume, 6 face, 4 edge

and 1 vertex adjacencies by using a composition exclusively integrated with rotations

and/or reflections.

 However, it should be possible to reduce the number of the Hill 's configurations by

considering the application of new geometric transformations. Our initial approach is the

following: we will consider the application of only one geometric transformation which is

additional to the possible composition of rotations and reflections defined in section 5.7.1.

 259

We will generate all possible matrices with 4 columns and 4 rows and whose values will be

in {-1, 0, 1}. One of these matrices will be added to the compositions considered in the

Hill 's configurations determination. The main idea behind this approach is that given two

diff erent Hill 's configurations Cn1 and Cn2 but with the same adjacencies count, there is a

composition Tn plus a matrix transformation TX (i.e. a possible new geometric

transformation) such that:

)(21 CnTTCn X
n

��

 The following is an implementation of this idea. We will generate all possible

matrices with 4 columns and 4 rows and whose sixteen values will be in {-1, 0, 1}. Each

one of the possible 316 = 43,046,721 matrices (matrix xTransformation) will be added to

each one of the 20,480 possible combinations of rotations and/or reflections (see section

5.7.1); by this way we get a possible composition X
n TT � . The algorithm will r eceive as

input a set of diff erent Hill 's configurations (the vector HillConfigurations) but with the

same adjacencies counting; and a binary string that represents an Aguilera & Pérez's

configuration (obviously with the same adjacencies counting of the Hill 's configurations;

one of the Hill 's configurations can be selected for this end; aguileraPerezConf in the

code). In the calli ng of the function evaluateTransformationMatrixWithComposition, each

Hill 's configuration will be transformed with all the possible X
n TT � and evaluated against

the aguileraPerezConf. We expect to find a valid transformation matrix when the Hill 's

configuration is converted into the aguileraPerezConf.

 260

void findTransformationMatrices(Vector Hill Configurations,

BinaryString aguileraPerezConf)

{

for(int i = 0; i < Hill Configurations.size(); i++) {

int xTransformation[4][4] = {{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}};

BinaryString hill _conf = Hill Configurations.elementAt(i);

for(int j = 1; j < 43046721; j++) {

evaluateTransformationMatrixWithComposition

(xTransformation, Hill _conf, aguileraPerezConf);

getNextMatrix(xTransformation);

}

}

}

void evaluateTransformationMatrixWithComposition

(int xTransformation[][] , BinaryString hill _conf, BinaryString aguileraPerezConf)

{

int composition[7] = {0,0,0,0,0,0,0};

for(int i = 0; i < 78125; i++) {

BinaryString cn = hill _conf.clone();

applyComposition(composition, cn);

apply_XTransformation(xTransformation, cn);

if(combinationIsValid(cn) == true)

if(equals(cn, aguileraPerezConf) == true)

/* It has been found a composition of rotations and/or reflections

and x-transformation that converts a Hill 's configuration into a

Aguilera & Pérez's Configuration. * /

else

return; //The matrix produces an invalid combination of hyper-boxes.

getNextComposition(composition);

}

}

 261

 Through this implementation we have found that there are at least two

transformation matrices for any pair of Hill 's configurations with the same adjacencies

counting that convert between them. By this way it is possible to convert the set of 402

Hill 's configurations into the 253 Aguilera & Pérez's configurations. For example, in the

Table 7.2 shows the transformation matrices found for two pairs of Hill 's configurations

with 6 hyper-boxes; these four Hill 's configurations can belong to two Aguilera & Pérez's

configurations through the application of their found transformation matrices between

them. In the Appendix B are shown the possible equivalencies between the Hil l and

Aguilera & Pérez's configurations.

 262

TABLE 7.2
The possible conversion of four Hill 's configurations into two Aguilera & Pérez's

configurations (own elaboration).

Hill 's Configurations and Associated Matr ix Transformation Aguilera & Pérez's
Configurations

Cn1 (Binary
Representation)

Transformation
Matrix T(Cn1) = Cn2

Cn2 (Binary
Representation)

Adjacencies
Counting

0101011110000000

�
�
�
�

�

�

�
�
�
�

	

1100

0010

0101

0100

1011010110000000

5 volume adjacencies
5 face adjacencies

0101011110000000

�
�
�
�

�

�

�
�
�
�

	

1100

0101

0010

0100

1011010110000000

4 edge adjacencies
1 vertex adjacency

0111010110000000

�
�
�
�

�

�

�
�
�
�

	

1010

0100

0011

0010

1101100110000000

5 volume adjacencies
6 face adjacencies

0111010110000000

�
�
�
�

�

�

�
�
�
�

	

�

�

1101

0011

0100

0101

1101100110000000

3 edge adjacencies
1 vertex adjacency

However, through this first approach we have found that there are some pairs of

Hill 's configurations that have hundreds of valid transformation matrices. Moreover, we

will have to assure, as part of our future work, that each one of the found valid matrices is

not representing a composition of the considered transformations. By this way, we expect

to count with a set of transformation matrices from which a new geometric

transformation(s) should be determined.

 263

7.2 The Extreme Vertices Model

 In the following sections will be mentioned some of the basic concepts related to the

Extreme Vertices Model for the representation of Orthogonal Pseudo-Polyhedra (EVM-3D)

in a very concise form. This model also enables the development of simple and robust

algorithms for performing the most usual and demanding tasks on solid modeling, such as

closed and regularized Boolean operations, solid splitti ng, other set membership

classifi cation operations and measure operations on 3D-OPP's. The EVM-3D was

originally presented by Aguilera & Ayala in [Aguilera, 97] (for representing only

Orthogonal Polyhedra) and widely described in [Aguilera, 98] (considering both

Orthogonal Polyhedra and Pseudo-Polyhedra) where the aspects related to formalizations

and proofs are treated with the proper detail .

7.2.1 Br inks and Extreme Vertices in the 3D-OPP's

A brink is defined as the maximal uninterrupted segment, built out of a sequence of

colli near and contiguous two-manifold edges of a 3D-OPP with the following properties:

�� Non-manifold edges do not belong to brinks.

�� Every two-manifold edge belongs to a brink, whereas every brink consists of m edges

(m � 1), and contains m � 1 vertices.

�� Two vertices of type V3, V4N1 or V6N1 (Table 7.3) are at either extreme of the brink

(Extreme Vertices). These vertices have in common that they are the only ones that have

exactly three incident two-manifold and perpendicular edges, regardless of the number

of incident non-manifold edges, therefore those vertices mark the end of brinks in all

three orthogonal directions.

 264

�� The m � 1 vertices of type V4, V4N2, V5N or V6 (Table 7.3) are the only common

point of two colli near edges of a same brink (interior vertices).

�� Due to all six incident edges of a V6N2 vertex (Table 7.3) are non-manifold edges, none

of them belongs to a brink, thus this vertex does not belong to any brink.

TABLE 7.3
Vertices in the 3D-OPP's and their relation with brinks

(own elaboration).

Extreme
Vertices

(The brinks'
boundary)

V3

V4N1

V6N1

Brinks'
Interior
Vertices

V4

V4N2

V5N

V6

Vertex that
do not

belong to
any brink.

V6N2

Based in the previous analysis for brinks we have the following properties for the

Extreme Vertices:

�� Property 7.1: Every Extreme Vertex of a nD-OPP (31

 n) has exactly n incident

manifold edges perpendicular to each other. This number is even for every non-extreme

vertex.

�� Property 7.2: Every Extreme Vertex of a 3D-OPP has an odd number of incident faces,

and every non-extreme vertex has an even number of incident faces.

 265

�� Property 7.3: Any Extreme Vertex of a nD-OPP (31

 n), when is locally described

by a set of surrounding "boxes", is surrounded by an odd number of such "boxes". An

even number of surrounding "boxes" either defines a non-extreme vertex, or does not

define any vertex at all . See Table 7.4.

TABLE 7.4
The configurations from the nD-OPP's (31

 n) that describe

Extreme Vertices (own elaboration).
1D-OPP's 1 segment

2D-OPP's

1 rectangle

b

3 rectangles

e

3D-OPP's

1 box

b

3 boxes

f g h

7 boxes

u

5 boxes

o p q

The Extreme Vertices of a 3D-OPP p are the ending vertices of all the brinks in p.

Let V(p) be the set of vertices in p, then)()(pVpEV � will denote to the set of the

extreme vertices where)(16)(14)(3)(pNVpNVpVpEV ��� . #p will denote the

cardinality of V(p). For a 3D-OPP p, its Extreme Vertices Model (EVM) is the model that

will only store to all extreme vertices from p. For any 3D-OPP p, EV(P) will have an even

number of vertices, that is, #p is even. See the Figure 7.1.

 266

x

x 2

x 3

1

FIGURE 7.1

Example of a 3D-OPP p and its set of Extreme Vertices
(Continuous lines indicate manifold edges while the dotted lines indicate non-manifold

edges; the points compose the set EV(P); own elaboration).

 The brinks in a 3D-OPP can be classified according to the main axis to which they

are parallel. Since the extreme vertices mark the end of brinks in the three orthogonal

directions, is that any of the three possible sets of brinks (parallel to X1-axis, parallel to

X2-axis or parallel to X3-axis, see Figure 7.2) will produce to the same set EV(p).

x

x 2

x 3

1

a)

x

x 2

x 3

1

b)

x

x 2

x 3

1

c)

FIGURE 7.2
The brinks in a 3D-OPP (the OPP presented in Figure 7.1).

a) The brinks parallel to X1-axis, b) the brinks parallel to X2-axis,
c) the brinks parallel to X3-axis (own elaboration).

7.2.2 Extended Faces and Extended Edges

An extended face is the maximal set of faces lying on a plane perpendicular to one

of the 3D space’s main axes X1, X2 or X3. These faces can be united by the edges or

 267

vertices of a 3D-OPP. The faces of an extended face in a 3D-OPP can also be united by a

non-manifold edge or by just one vertex which can be of the type V4, V5N, V6, V6N1 or

V6N2. The EVM of an extended face (formerly a plane of vertices, according to the

nomenclature presented in [Aguilera, 98]) of a 3D-OPP p is a subset from the EV(p).

 An extended edge of a 2D-OPP p is the set of brinks that lie in a straight line that is

parallel to a coordinate axis. The EVM of an extended edge (formerly a line of vertices,

according to the nomenclature presented in [Aguilera, 98]) is a subset from the EV(p).

Both extended faces of a 3D-OPP and extended edges of a 2D-OPP will be referred

here as � (formerly plv, according to [Aguilera,98]'s nomenclature) and each one will

have an even number of vertices. A k-th extended face (or extended edge) of a 3D-OPP p

will be referred as)(pk� .

An EVM(p) can be considered as a sequence of extreme vertices models

EVM()(1 p�), EVM()(2 p�), ..., EVM()(pnp�) from its corresponding np extended faces.

The number of elements np in this sequence is the number of diff erent coordinates for the

axis perpendicular to the extended faces)(1 p� ,)(2 p� , ...,)(pnp� . See Figure 7.3. The

EVM of each extended face is at the same time the sequence of EVM's from its extended

edges, and the EVM of a brink is defined by a pair of extreme vertices.

 268

x

x 2

x 3

1

a)

x

x 2

x 3

1

b)

x

x 2

x 3

1

c)

FIGURE 7.3
The sequences of extended faces in a 3D-OPP (the OPP presented in Figure 7.1). a) The

extended faces perpendicular to X1-axis. b) The extended faces perpendicular to
X2-axis. c) The extended faces perpendicular to X3-axis (own elaboration).

7.2.3 Slices

 An slice is the region of a 3D-OPP contained between the corresponding supporting

planes of two consecutive extended faces. A k-th slice of a 3D-OPP p is denoted by

slicek(p). Then �
1

)(
�

�

np

k
k pslicep . See Figure 7.4 for an example.

x 1

x 2

x 3

FIGURE 7.4

The slices of a 3D-OPP (presented in Figure 7.1. There are presented the regions from the
3D-OPP between the supporting planes of the planes of vertices perpendicular to X1-axis;

own elaboration).

 269

7.2.4 Sections

 A section is the resulting 2D-OPP from the intersection between a 3D-OPP and a

plane which is perpendicular to one of the main axis. That 2D-OPP doesn't coincide with

any extended face but it is parallel to all of them. Furthermore, it is called an internal

section from p if the intersection between the 3D-OPP and the plane is not empty,

otherwise it is called an external section. A k-th section of p between)(pk� and)(1 pk �
�

is referred by Sk(p). The slices of a 3D-OPP's are a set of one or more disjoint prisms whose

base is the section of each slice. In Figure 7.5 are presented the sections for the 3D-OPP

from Figure 7.1.

x

x 2

x 3

1

a)

x

x 2

x 3

1

b)

x

x 2

x 3

1

c)

FIGURE 7.5
The sections of a 3D-OPP (the OPP presented in Figure 7.1). a) The internal sections

perpendicular to X1-axis. b) The internal sections perpendicular to X2-axis. c) The internal
sections perpendicular to X3-axis (own elaboration).

7.2.5 Computing the Extended Faces Through Sections

 Let p be a (d-1)-dimensional OPP embedded in Ed, then p will denote to the

projection of p on a (d-1)-dimensional hyperplane parallel to p.

 270

 The projection of an extended face)(pk� of a 3D-OPP p can be obtained by

computing the regularized XOR between the projections of its previous section)(1 pSk�
 and

its following section)(pSk . Then we have that:

],1[,)()()(*
1 nppSpSp kkkk �����

�

7.2.6 Computing the Sections Through the Extended Faces

 The projection)(pSk of any section from a 3D-OPP p can be obtained by

computing the regularized XOR between the projection of the section)(1 pSk�
 and the

projection of the extended face)(pk� . Then we have that:

�)(0 pS �

],1[,)()()(*
1 npppSpS kkkk �����

�

 Or in an equivalent way by computing the regularized XOR of the projection of all

the previous extended faces:

)(*)(
1

ppS i

k

i
k �� �

�

 The projection of the first and last extended faces of any 3D-OPP p must coincide

with the projection of the first and last internal sections of p, that is to say,)()(11 ppS ��

and)()(1 ppS npnp ��
�

.

 271

7.2.7 Virtual Extended Faces

 An empty extended face is called a virtual extended face. Let p be an arbitrary

3D-OPP, then we say that p has a virtual extended face)(pk� which is perpendicular to

one of the main axes if there are no vertices of p in such extended face. We know that

starting from the consecutive sections Sk-1(p) and Sk(p) it is possible to obtain)(pk�

through)()()(*
1 pSpSp kkk ���

�
. But if)()(1 pSpS kk �

�
 then obviously)(pk� =�.

That means that any number of virtual extended faces can be considered, as required,

without altering to p.

7.2.8 Future Work: Towards the Extreme Vertices Model in the 4D and 5D Spaces

 This section presents our first experimental results about the representation of 4D

and 5D Orthogonal Pseudo-Polytopes (4D-OPP’s and 5D-OPP’s) through a single subset of

their vertices. In order not to repeat the same words, sometimes we use parenthesis for the

5D case. Although some of the following results are promising, the reader must consider

them carefully because a deep inspection of the theoretical foundations and algorithms is

still required.

 272

 Consider the construction of a 4D-OPP as the union of several 4D-OPP's in the

following way (Figure 7.6):

�� We will have a hyperdimensional "L-shaped" polytope a in Figure 7.6, and

�� Three four-dimensional hypercubes b, c and d.

�� The polytope a will share a vertex with hypercube c and a face with hypercube b.

�� The hypercube b will share an edge with hypercube d.

See the final 4D-OPP in the Figure 7.7. We will use it the following sections to exemplif y

some aspects about the EVM-4D.

a)

b)

c)

d)

FIGURE 7.6

The construction of a 4D-OPP by the union of several 4D-OPP's
(a hyperdimensional "L-shaped" polytope and three hypercubes; own elaboration).

 273

FIGURE 7.7

A 4D-OPP resulting from the union of several 4D polytopes
(seen in Figure 7.6; own elaboration).

 The property 7.3 says that any Extreme Vertex of a nD-OPP (31

 n), when is

locally described by a set of surrounding boxes, is surrounded by an odd number of such

boxes. We will assume now that this is true for 1�n . Then, by instantiation, any vertex of

a (5D) 4D-OPP when is surrounded by an odd number of (5D) 4D hyper-boxes should be

an extreme vertex. In fact, there are 1 configuration with 1 or 15 hyper-boxes, 6

configurations with 3 or 13 hyper-boxes, 20 configurations with 5 or 11 hyper-boxes and

30 configurations with 7 or 9 hyper-boxes in the 4D-OPP's that should describe extreme

vertices (see Appendix A). Moreover, through the 5D-OPP's configurations counting

(presented in Section 5.3) there are 1 configuration with 1 or 31 hyper-boxes, 10

configurations with 3 or 29 hyper-boxes, 66 configurations with 5 or 27 hyper-boxes, 236

configurations with 7 or 25 hyper-boxes, 570 configurations with 9 or 23 hyper-boxes, 989

 274

configurations with 11 or 21 hyper-boxes, 1,406 configurations with 13 or 19 hyper-boxes

and 1,607 configurations with 15 or 17 hyper-boxes that should describe Extreme Vertices.

We will consider that every (5D) 4D-OPP p is initially represented through a

hypervoxelization (see section 6.4.3). Then, we will select only such vertices with an odd

number of incident (5D) 4D hyper-boxes. We will call to the resultant set of vertices the

extreme vertices of p, that is, EV(p). Figure 7.8 shows the set of extreme vertices of the

4D-OPP of Figure 7.7.

FIGURE 7.8

A 4D-OPP (from Figure 7.7) and its set of Extreme Vertices (own elaboration).

We will refer to a brink as the segment defined by two consecutive extreme vertices

that lie on a line parallel to one of the (5D) 4D space's main axes. Moreover, brinks must be

between and odd-numbered extreme vertex and an even-numbered extreme vertex in that

order (see Figure 7.9). There is no brink between an even one and any odd one. In each

 275

dimension, every extreme vertex has just one incident brink, thus in all the (five) four

dimensions every extreme vertex has exactly (five) four incident brinks perpendicular to

each other.

1 2 3 4 5 6 7 8

FIGURE 7.9
Numbering the extreme vertices that lie on a line parallel to one of the space’s main axes

and composing their corresponding brinks (own elaboration).

 For example, in Figure 7.10 are respectively shown:

�� The parallel brinks to X1-axis (7.10.a);

�� The parallel brinks to X2-axis (7.10.b);

�� The parallel brinks to X3-axis (7.10.c);

�� The parallel brinks to X4-axis (7.10.d);

From the 4D-OPP presented in Figure 7.7.

 276

a)

b)

c)

d)

FIGURE 7.10
A 4D-OPP (from Figure 7.7) and its brinks parallel to X1 (a), X2 (b), X3 (c) and X4 (d) axes

(own elaboration).

We will consider an extended (hypervolume) volume as the set of (hypervolumes)

volumes of a (5D) 4D-OPP p lying on a (4D) 3D hyperplane perpendicular to one of the

(5D) 4D space’s main axes X1, X2, X3, X4 (or X5). The (hypervolumes) volumes in an

 277

extended (hypervolume) volume can be joined by lower dimensional elements as

(volumes), faces, edges or vertices of a (5D) 4D-OPP. We will assume that the set of

extreme vertices of a extended (hypervolume) volume is a subset of EV(p).

Moreover, we will also refer to the extended (hypervolumes) volumes for (5D) 4D

Orthogonal Pseudo-Polytopes as � . Moreover,)(pk� will refer to the k-th (5D) 4D

extended (hypervolume) volume of a (5D) 4D polytope p. We will also expect that the

number np of � 's in a (5D) 4D-OPP p is the number of different coordinates for the axis

perpendicular to these � 's.

 For example, in Figure 7.11 are respectively shown (extended volumes):

�� The � 's perpendicular to X1-axis (7.11.a);

�� The � 's perpendicular to X2-axis (7.11.b);

�� The � 's perpendicular to X3-axis (7.11.c);

�� The � 's perpendicular to X4-axis (7.11.d);

From the 4D-OPP presented in Figure 7.7.

 278

a)

b)

c)

d)

FIGURE 7.11
A 4D-OPP (from Figure 7.7) and its � 's (extended volumes) perpendicular

to X1 (a), X2 (b), X3 (c) and X4 (d) axes (own elaboration).

We will consider that a slice is the region contained in a (5D) 4D-OPP between the

supporting (4D) 3D hyperplanes of two consecutive extended (hypervolumes) volumes.

Therefore we can assume that Slicek(p) will denote the k-th slice of a (5D) 4D-OPP p.

Hence �
np

k
k pslicep)(� .

 279

 In the Figure 7.12.a are shown the regions between the extended volumes

perpendicular to X1-axis of the 4D-OPP presented in Figure 7.7. Finally, in the Figure

7.12.b are shown the 4D-OPP's slices.

a)

b)

FIGURE 7.12
The regions of a 4D-OPP (presented in Figure 7.7) between its extended volumes

perpendicular to X1-axis (a) and its respective slices (b; Own elaboration).

 280

We will say that a section is the (4D) 3D-OPP resulting from the intersection

between a (5D) 4D-OPP and an orthogonal (4D) 3D hyperplane perpendicular to a

coordinate axis which does not coincide with the supporting (4D) 3D hyperplane of any

extended (hypervolume) volume. Furthermore, it will be called external or internal section

of p, respectively, if this intersection is empty or not.

 Sk(p) will refer to the k-th section of p between)(pk� and)(1 pk �
� .

For example, in Figure 7.13 are respectively shown:

�� The sections perpendicular to X1-axis (7.13.a);

�� The sections perpendicular to X2-axis (7.13.b);

�� The sections perpendicular to X3-axis (7.13.c);

�� The sections perpendicular to X4-axis (7.13.d);

From the 4D-OPP presented in Figure 7.7.

 281

a)

b)

c)

d)

FIGURE 7.13
A 4D-OPP (from Figure 7.7) and its sections perpendicular to X1 (a), X2 (b), X3 (c)

and X4 (d) axes (own elaboration).

 A slice from a (5D) 4D-OPP is a set of one or more disjoint (5D) 4D hyperprisms

whose base is the slice’s section. A (5D) 4D hyperprism is generated by the parallel motion

of a (4D polytope) polyhedron; it is bounded by the (4D polytope) polyhedron in its initial

and final positions and by several prisms [Sommervill e, 58] (a special case of a [5D] 4D

hyperprism is a [5D] 4D hypercube generated according to section 2.2.1.1).

 282

a) b)

c)
FIGURE 7.14

A 4D-OPP (presented in Figure 7.7) and a) its regions between its extended volumes
perpendicular to X2-axis; b) its slices and c) its slices showing their respective sections

(also perpendicular to X2-axis) as their bases (own elaboration).

 283

All the orthogonal (4D) 3D hyperplanes intersecting a (5D) 4D-OPP in the same

slice give the same section. Hence, every n-dimensional slice has its representing

(n-1)-dimensional section. See Figure 7.14.

Consider p as a (four-) three-dimensional OPP embedded in the (fifth-)

four-dimensional space, then p will denote the projection of p onto a (4D) 3D hyperplane

parallel to p. This way we can consider that the projection of the set of extended

(hypervolumes) volumes)(pk� of a (5D) 4D-OPP, p, can be obtained by computing the

regularized XOR between the projections of its previous)(1 pS k � and next)(pS k sections

(this is an extension of the procedure presented in [Aguilera, 98], see section 7.1.6):

)()()(*
1 pSpSp kkk ��� � ,],1[npk �� .

 Moreover, the projection of any section)(pS k , of a (5D) 4D-OPP, p, can be

obtained by computing the regularized XOR between the projection of its previous section

)(1 pS k � and the projection of its previous extended (hypervolume) volume)(pk� . Or,

equivalently, by computing the regularized XOR of the projection of all the previous

extended (hypervolumes) volumes (this is also an application of the procedure presented in

[Aguilera, 98], see section 7.1.7):

�
�
�

�����

��

�],1[,)()()(

)(
*

1

0

npppSpS

pS

kkkk

 284

 That is:

)(*)(
1

ppS i

k

i
k �� �

�

 The projection of the first and last extended (hypervolumes) volumes of any (5D)

4D-OPP p should coincide with the projection of the first and last internal sections of p,

that is:

)()(11 ppS �� and)()(1 ppS npnp ��
�

.

Now, we will extend some of the concepts originally presented in [Aguilera, 98] for

the achievement of Boolean operations between (5D) 4D-OPP's. Let p and q be two (5D)

4D-dimensional OPP's with EV(p) and EV(q) as their respective extreme vertices, then

)()()(* qEVpEVqpEV ��� . This expression allow us to suggest formulas for

computing the (4D) 3D-dimensional hyperplanes of vertices of the (5D) 4D-OPP's through

their sections and vice versa. Then we can expect that:

��))(())(())((1 pSEVpSEVpEV kkk ���
�

��))(())(())((1 pEVpSEVpSEV kkk ���
�

Moreover, two expressions can be also suggested for using the XOR operator.

These expressions should allow the computing of the union and the diff erence of two (5D)

4D-OPP's whose specifi c situations are previously known:

 285

�� Let p and q be two disjoint or quasi-disjoint (5D) 4D-OPP's (that is, �� qp * �) with

EV(p) and EV(q) as their respective sets of extreme vertices, then:

)()()*(qEVpEVqpEV ��� .

�� Let p and q two (5D) 4D-OPP's such that qp � with EV(p) and EV(q) as their

respective sets of extreme vertices, then:

)()()*(qEVpEVqpEV ���

 Let p and q be two (5D) 4D-OPP's and r = p op* q where op* is in },,,{ ****
���� .

A Boolean regularized operation op* between p and q, each one expressed with its set of

extreme vertices, should be performed by the same op* by applying it over their sections

also expressed through their sets of extreme vertices; these sections will be (4D) 3D-OPP's.

These situation lead us to a recursive process, for computing the Boolean regularized

operations, which descends in the number of dimensions [Aguilera, 98]. The recursion's

basic case is defined by the Boolean operations between two 1D-OPP's (Table 7.5).

 286

TABLE 7.5
The Boolean regularized operations between two 1D-OPP's and their possible cases

(own elaboration).
If ab & cd are:)(* cdabEVM �)(* cdabEVM �)(* cdabEVM �)(* cdabEVM �

a b

c d
 �

Disjoint:
b < c

{ a, b, c, d} � { a, b} { a, b, c, d}

c d

a b

 �

Disjoint
d < a

{ c, d, a, b} � { a, b} { c, d, a, b}
a b

c d
 �

Contiguous:
b = c

{ a, d} � { a, b} { a, d}
a b

c d
 �

Contiguous:
a = d

{ c, b} � { a, b} { c, b}
a b

c d � �

Coincident:
a = c y b = d

{ a = c, b = d} { a = c, b = d} � �
a b

c d � �

Inclusive
(cdab �):

a < c < d < b
a = c < d < b
a < c < d = b

{ a, b}

{ a = c, b}
{ a, d = b}

{ c, d}

{ a = c, d}
{ c, d = b}

{ a, c, d, b}
{d, b}
{ a, c}

{ a, c, d, b}

{d, b}
{ a, c}

c d

a b

 �

Inclusive
(cdab �):

c < a < b < d
c = a < b < d
c < a < b = d

{ c, d}

{ c = a, d}
{ c, b = d}

{ a, b}

{ c = a, b}
{ a, b = d}

��

��

�

{ c, a, b, d}
{b, d}
{ c, a}

a b

c d

Overlapping:
a < c < b < d

{ a, d} { c, b} { a, c} { a, c, b, d}
a b

c d

Overlapping:
c < a < d < b

{ c, b} { a, d} {d, b} { c, a, d, b}

 287

 Now we will consider an example. Let A and B the two 4D-OPP's operands of the

Table 7.6. The 4D-OPP A can be seen as a four-dimensional "cross-shaped" polytope and

the 4D-OPP B can be considered as a four-dimensional "L-shaped" polytope (see Table

7.6's first column). The operand A has three sections while operand B has only two (see

Table 7.6's second column). Each 3D section will have only one 2D section (since they are

only rectangular prisms; third column). Finally, each 2D section will have only one 1D

section: a segment with their respective pair of extreme vertices (fourth column). The 1D

sections' extreme vertices for operand A are labeled as ai and bi while the 1D sections'

extreme vertices for operand B are labeled as ci and di.

TABLE 7.6
Two 4D-OPP's A & B and their corresponding sections since the 3D case until the 1D case

(see text for details; own elaboration).

4D-OPP's Sections
(3D-OPP's)

Sections
(2D-OPP's)

Sections
(1D-OPP's)

A

a 1

a 2

a 3

b 1

b 2

b 3

B

 c 1 c 2

d 1

d 2

 288

 The relative position for the Boolean operation is shown in Figure 7.15.a (the

Boolean operation between the two 4D-OPP's). In the Figure 7.15.b is shown how interact

the 3D sections for operands A and B (the Boolean operation between the 3D sections). In

Figure 7.15.c are shown the interactions between the 2D sections (the Boolean operation

between the 2D sections). Finally, in Figure 7.15.d are shown the interactions between the

1D sections (the basic case for the Boolean operations).

a) b)

c) d)

a 1

a 2

a
3

b 1

b 2

b 3

c
1

c
2

d 1

d 2

FIGURE 7.15

Two 4D-OPP's (presented in Table 7.6) with common interior regions (a). b) Their 3D
sections (two of them have common interiors). c) The 2D sections from the 3D sections. d)

The 1D sections from the 2D sections (own elaboration).

 289

 Since the segments in Figure 7.15.d represent the basic case for the regularized

Boolean operations between the 4D-OPP's A and B (of Figure 7.15.a), it must be applied

the corresponding operator. We will exemplif y the operations of union, intersection and

diff erence. In the Table 7.7 are shown the results of these operations. Table 7.7's columns

1, 2 and 3 corresponds to BA *� , BA *� and BA *� respectively. The Boolean

operations between 1D sections are performed according to Table 7.5. The resultant 1D

sections will define 2D rectangular sections which in turn define the three or two

(according to the operation) 3D sections of the resultant 4D-OPP.

 290

TABLE 7.7
Boolean Operations Between 1D Sections of two 4D-OPP's (whose relative positions are
shown in Figure 7.15.a) and the resultant 4D-OPP's (see text for details; own elaboration).

BA *� BA *� BA *�

a 1

=a 2

b 1

b 2

=b 3

c 1 c 2

d 2

=a

2

a 3

=b 3

c 1

d 1

d 2

a 1

b 1

b 2

d 1

 291

7.3 Application 1: Handling and Processing Animation Frames

Using the EVM

7.3.1 Black & White 2D Animation Using the EVM-3D

This current application was originally suggested in [Aguilera, 98]. A black & white

2D animation, viewed as a sequence of n black & white 2D frames, can be handled as a

3D-OPP in the following way:

a) Let each frame fk in the animation be coded in the EVM as a 2D-OPP, where the inside

of fk represents the black regions or pixels in the frame; and the outside, the white ones

(See in Figure 7.16.a an example of a simple 2D black & white animation composed

by four frames whose resolution is 9 x 9 pixels. Figure 7.16.b shows the result of the

same frames considered as 2D-OPP's and their respective extreme vertices).

a)

f1

f2

f3

f4

b)

f1

f2

f3

f4

FIGURE 7.16
Example of a simple 2D black & white animation. a) Its frames with 9x9 pixels' resolution.
b) The frames represented through 2D-OPP's and their extreme vertices (own elaboration).

 292

b) Let us extrude fk into the third dimension, and thus obtain a prism prismk whose base is

fk and its length is proportional to the time fk is to be displayed. The new dimension will

measure and represent the time. See in Figure 7.17 the extrusion of the frames

presented in Figure 7.16.b.

prism1

prism2

prism3

prism4

FIGURE 7.17
Extrusion of the frames of an animation (from Figure 7.16) and some of their extreme

vertices (own elaboration).

c) Let �
n

k
kprismp

1�

� , then p is a 3D-OPP that represents the given 2D animation (see

Figure 7.18). Due to all the prisms are quasi disjoint 3D-OPP's, then the EVM for p can

be obtained by applying [Aguilera, 98]:

)()(
1 k

n

k
prismEVMpEVM � �

�

 293

x = t3
FIGURE 7.18

Composing the 3D-OPP that will r epresent an animation (from Figure 7.16) as the union of
its extruded frames (own elaboration).

Figure 7.19.a shows the � 's of the 3D-OPP that represents the animation from Figure

7.16 which are perpendicular to the axis that represent the time. In Figure 7.19.b is

shown separately each)(pk� .

 294

a)

X 1

X 2

t

b)

X 1

X 2

1�

X 1

X 2

2�

X 1

X 2

3�

X 1

X 2

4�

X 1

X 2

5�

FIGURE 7.19
The � 's, perpendicular to the corresponding axis for the time, of a 3D-OPP that represents

an animation (from Figure 7.16; own elaboration).

 295

By representing a given 2D animation using a 3D-OPP p and the EVM-3D we have

the following characteristics:

�� The sequence of sections of p corresponds to the sequence of frames, i.e., kk fpS �)(.

�� Computation of frames: Since)(*)()(1 ppSpS kkk ���
�

 (section 7.2.6) then,

))(()()(1 pEVMfEVMfEVM kkk ���
�

, i.e., the black regions at extended faces

)(pk� represent the regions of a previous frame fk-1 that need to be modified (changed

from black to white, or from white to black) in order to update it to the following frame

fk. Table 7.8 presents the sequence of the computation of the frames for the animation

presented in Figure 7.16.

 296

TABLE 7.8
Computing the frames for an animation (from Figure 7.16) represented through a 3D-OPP

and the EVM (Own elaboration).

)(1 pS k �
)(pk�

�)(0 pS �

)(1 p�

)(1 pS =)(*)(10 ppS �� = f1

)(2 p�

)(2 pS =)(*)(21 ppS �� = f2

)(3 p�

)(3 pS =)(*)(32 ppS �� = f3

)(4 p�

)(4 pS =)(*)(43 ppS �� = f4

)(5 p�

)(5 pS =)(*)(54 ppS �� = �

 297

 The managing of a black & white 3D-animation’s n frames can be performed in

analogous way:

�� Let each 3D frame fk in the 3D-animation be coded in EVM as a 3D-OPP, where the

inside of fk represents the black regions or voxels in the 3D frame; and the outside, the

white ones.

�� Let us extruded fk into the fourth dimension, and thus obtain a 4D hyperprism

hyperprismk whose base is fk and its length is proportional to the time fk is to be

displayed.

�� Let �
n

hyperprismp
1�

�

�

�
 then p is a 4D-OPP that represents the given black & white

3D-animation.

�� By representing this 4D-OPP p through the EVM-4D we have that the sequence of

sections of p corresponds to the sequence of 3D frames, i.e, kk fpS �)(.

�� Computation of frames: Since)(*)()(1 ppSpS kkk ���
�

 (see section 7.2.8) then,

))(()()(1 pEVfEVfEV kkk ���
�

, i.e., the black regions at extended volumes)(pk�

represent the regions of a previous frame fk-1 that need to be modified (changed from

black to white, or from white to black) in order to update it to the following frame fk.

 298

7.3.1.1 Collision Detection

 This application (which will be explored as part of our future research) was

originally proposed in [Zhou, 91]. However, it can be considered under our context in the

following way:

If p and q are two (4D) 3D-OPP’s representing the black & white animation and/or motion

of two (solids) polygons, then these two (solids) polygons collide iff ��� qp .

Furthermore, if ��� qp then the time coordinate values of qp � indicate the precise

instant of the collision (In fact, [Zhou, 91] proposed this application by representing

3D-objects’ boundaries through the equations that define the set of points on the surfaces of

spheres, ellipsoids, etc.).

7.3.2 Representing Color 2D-Animations Through 4D-OPP's and Their

Extreme Vertices

 The procedure described in [Aguilera, 98] for processing black & white 2D

animations can be directly extended to control colored frames through a 4D-OPP and its

extreme vertices. We will label each colored frame in the animation as fk and n will be the

number of such frames. In the Figure 7.20 an example of a simple color 2D-animation

composed by four frames whose resolution is 9 x 9 pixels is shown. In each frame can be

identified yellow, red, green and blue regions.

 299

f1

f2

f3

f4

FIGURE 7.20
Example of a simple color 2D-animation (own elaboration).

A color animation can be handled as a 4D-OPP in the following way:

a) The red-green-blue components of each pixel will be integrated into a single value (for

example, we can use the procedure defined in [Gosling, 00] to represent the

red-green-blue components as an integer with 32 bits. Bits 0-7 correspond to the blue

value, bits 8-15 correspond to the green value, bits 16-23 correspond to the red value

and bits 24-31 to the alpha [transparency] value). Each pixel will now be extruded

towards the third dimension where the value integrating its red-green-blue components

will now be considered as its X3 coordinate (coordinates X1 and X2 correspond to the

original pixels' coordinates). See Figure 7.21.

 300

x = color3

x 1x 2

FIGURE 7.21

The 3D space defined for the extrusion of color 2D-pixels (own elaboration).

Let us call xfk to the set composed by the rectangular prisms (the extruded pixels) of

each extruded frame fk. It is very important to avoid the zero value in the X3 coordinate

because a pixel couldn't be extruded and therefore its associated prism (a 3D-OPP)

won't be obtained. See in Figure 7.22 the sets of prisms xfk which are the result of the

extrusion of the frames fk of the animation presented in Figure 7.20.

 301

xf1

xf2

xf3

xf4

FIGURE 7.22
The sets of prisms which are the result of the extrusion of the frames of an animation

(presented in Figure 7.20; own elaboration).

b) Let prismi be a prism in xfk and npr the number of prisms in that set. Due to all the

prisms in xfk are quasi disjoint 3D-OPP's, we can easily obtain the 3D-OPP and its

respective EVM of the whole 3D frame by computing the regularized union of all the

prisms in xfk. Then we have to apply (all the vertices in a prismi are extreme):

)()(
1

ki

npr

i
k xfprismEVMFEVM �� �

�

 302

Where Fk is the 3D frame (a 3D-OPP) that represents the union of all the prisms in xfk.

In the Figure 7.23 are shown the 3D frames Fk from the animation presented in Figure

7.20).

F1

F2

F3

F4

FIGURE 7.23
The 3D frames that represent a 2D colored animation

(presented in Figure 7.20. Some of their extreme vertices are shown; own elaboration).

 303

c) Let us extrude Fk into the fourth dimension, and thus obtain a 4D hyperprism

hyperprismk whose bases are Fk and its length is proportional to the time fk is to be

displayed. The new fourth dimension will measure and represent the time. See in

Figure 7.24 the process of extrusion of the 3D frame F1 presented in Figure 7.23.

x = color3

x 1x 2

x = t ime4

FIGURE 7.24

The process of extrusion of a 3D frame (F3, presented in Figure 7.23) in order to obtain a
hyperprism1 (some of its extreme vertices are shown; own elaboration).

 304

d) Let �
n

k
khyperprismp

1�

� , then p is a 4D-OPP that represents the given color

2D-animation. Due to all the n hyperprisms are quasi disjoint 4D-OPP's, then the EV(p)

for p can be obtained by applying:

)()(
1 k

n

k
hyperprismEVpEV � �

�

In the Figure 7.25 are shown the)(pk� 's of the 4D-OPP p that represents the

animation from Figure 7.20 which are perpendicular to the axis that represent the time.

 305

)(1 p�

)(2 p�

)(3 p�

)(4 p�

)(5 p�

FIGURE 7.25
The extended volumes of the 4D-OPP p that represents a color 2D-animation (from Figure

7.20. Their extreme vertices are shown. Own elaboration).

 306

By representing a given color 2D-animation using a 4D-OPP p and its EV(p) we

have the following characteristics:

�� The sequence of sections of p corresponds to the sequence of 3D frames, i.e.,

kk FpS �)(.

�� Computation of 3D frames: Since)(*)()(1 ppSpS kkk ���
�

 (see section 7.2.8) then

))(()()(1 pEVFEVFEV kkk ���
�

.

�� Displaying the 2D colored animation: Each extended face perpendicular to the X3 axis

of each 3D frame Fk contains the polygons to display. The colors to apply to those

polygons are referred through the X3 coordinate that contains the integrated red-green-

blue components. In the Figure 7.26 is presented the sequences of extended faces of the

3D frames Fk for the 2D animation presented in Figure 7.20.

 307

F1’s extended faces

F2’s extended faces

F3’s extended faces

F4’s extended faces

FIGURE 7.26
The sequences of extended faces (the polygons to display) of the 3D frames that represent a

color 2D-animation (from Figure 7.20; own elaboration).

Another application to explore and to analyze in our future research is the managing

of a color 3D-animation’s n frames, which can be performed in analogous way (we assume

that each 3D frame is defined through a voxelization, see section 6.3.2.2):

�� The red-green-blue components of each voxel will be integrated into a single value.

Each voxel will now be extruded towards the fourth dimension where the value

 308

integrating its red-green-blue components will now be considered as its X4 coordinate

(coordinates X1, X2 and X3 correspond to the original voxels' coordinates). Let us call

xfk to the set composed by the 4D hyperprisms (the extruded voxels) of each extruded

frame fk.

�� Let pri be a 4D hyperprism in xfk and npr the number of prisms in that set. Since all the

hyperprisms in xfk are quasi disjoint 4D-OPP's, we can easily obtain the 4D-OPP and its

respective extreme vertices of the whole 4D frame by computing the regularized union

of all the hyperprisms in xfk. Then we have to apply (see section 7.2.8):

)()(
1

ki

npr

i
k xfprEVFEV �� �

�

Where Fk is the 4D frame (a 4D-OPP) that represents the union of all the hyperprisms

in xfk.

�� Let us extrude Fk into the fifth dimension, and thus obtain a 5D hyperprism hyperprismk

whose bases are Fk and its length is proportional to the time fk is to be displayed. The

new fifth dimension will measure and represent the time.

�� Let �
n

k
khyperprismp

1�

� , then p is a 5D-OPP that represents the given color

3D-animation. Since all the n hyperprisms are quasi disjoint 5D-OPP's, then the EV(p)

for p can be obtained by applying:

)()(
1 k

n

k
hyperprismEVpEV � �

�

�� The sequence of sections of p corresponds to the sequence of 4D frames, i.e.,

kk FpS �)(.

 309

�� Computation of 4D frames: Since)(*)()(1 ppSpS kkk ���
�

 (see section 7.2.8) then

))(()()(1 pEVFEVFEV kkk ���
�

.

�� Displaying the 3D colored animation: Each extended volume perpendicular to the X4

axis of each 4D frame Fk contains the voxels to display. The colors to apply to those

voxels are referred through the X4 coordinate that contains the integrated red-green-blue

components.

7.4 Application 2: Comparing Color 2D-Images Through Their

Extrusions to the 5D Colorspace

 The topic related to comparing color 2D-images has been widely considered in

several works by proposing specific methods to achieve this process, see for example

[Huttenlocher, 93], [Pass, 96] or [Jurisica, 00]. We propose now a method for comparing

color 2D-images which can be resumed in the following way:

a) Extruding color 2D-images towards the 5D colorspace (section 7.4.1).

b) Computing the 5D hypervolume of extruded images (section 7.4.2).

c) Determining if two color 2D-images are “ initially similar” (section 7.4.3).

d) Computing the intersection between two extruded images (section 7.4.4).

e) Determining if two color 2D-images are similar (section 7.4.5).

Finally, in section 7.4.6 is presented the algorithm to perform the proposed comparison

method and an application is mentioned.

 310

7.4.1 Extruding color 2D-images towards the 5D colorspace

The color 2D-images are extruded towards the 5D colorspace: where X1, X2, X3, X4

and X5 coordinates correspond to the pixels’ values x1, x2, R (the red component), G (the

green component) and B (the blue component), respectively [Duffin, 94]. By this way the

extrusion of each pixel will be a 5D hyperprism hj and n will indicate the total number of

hyperprisms obtained for a color 2D-image. As mentioned in previous section, we have to

avoid zero values for components R, G and B in order to obtain for each pixel its

corresponding 5D hyperprism.

7.4.2 Computing the 5D hypervolume of extruded images

Let H the set of 5D hyperprisms for a color 2D-image. Now, we will compute the

total 5D hypervolume HV of this set, i.e. the sum of the 5D hypervolume of each one of its

hyperprisms:

�
�

��
n

i
i HhehypervolumHV

1

)(

The hypervolume of a 5D hyperprism can be easily computed through the product

of its values x1Side * x2Side * R * G * B, where x1Side = x2Side = 1 correspond to the

dimensions of a pixel in the original 2D-image.

 311

7.4.3 Determining if two color 2D-images are “ initially similar”

Let Ha and Hb be the corresponding sets of 5D hyperprisms for two color

2D-images a and b with their respective computed 5D hypervolumes HVa and HVb. If we

assume that the color components R, G and B are inside the range [1 – 256] (where 1

indicates the least intensity), then we can expect that the hyperprism of a white pixel

(R=256, G=256, B=256) will have the maximum 5D hypervolume (in fact 2563 u5), while

the hyperprism of a black pixel (R=1, G=1, B=1) will have the minimum 5D hypervolume

(13 u5). If the majority of the pixels of an image are dark then its associated 5D

hypervolume will be less than the associated 5D hypervolume of a image whose pixels are

lighter and therefore, both images will have numeric diff erences related with the color of

their pixels. These diff erences can be determined through the computation of the function

Qa,b between the total hypervolumes by according to:

�

�

�

�

!�

!�

�

ba

ab
a

b

ba
b

a

baba

HVHVif

HVHVif
HV

HV

HVHVif
HV

HV

HVHVQ

0

1

1

),(,

Let 1� be an arbitrary assigned value such that 10 1

 � . Then, we will propose

that two images a and b are “ initially similar” (because a second comparison will be

considered) if the Qa,b of the 5D hypervolumes of the corresponding sets Ha and Hb satisfies

the inequality (in fact 1� is an allowed diff erence):

1, �
baQ

 312

For example, consider the images presented in Figure 7.27 and 1� = 0.05. Then

HVa (according to our implementation, see Appendix F) is 5,146,844 u5 (where u5 stands

for 5D hypercubical units) and HVb is 4,996,787 u5. Therefore Qa,b(HVa,HVb) " 0.029 and

05.0029.0
 which implies that the images are “ initially similar” .

Image a

Image b

FIGURE 7.27
Two images classified as “ initially similar”

(see text for details; images obtained from [Cenapred, 03]).

The images from Figure 7.28 were classified, according to our proposed procedure,

as not “ initially similar” . Let 1� =0.05, HVa is equal to 10,742,439 u5, HVb is 9,819,038 u5

and Qa,b(HVa,HVb) " 0.085. Therefore 05.0085.0
 is not true.

Image a

Image b

FIGURE 7.28
Two images classified as not “ initially similar”

(see text for details; images obtained from [Cenapred, 03]).

 313

7.4.4 Computing the intersection between two extruded images

Now we will compute the intersection between Ha and Hb (the corresponding sets of

5D hyperprisms for color 2D-images a and b) which were classified as “ initially similar” .

If the sets of hyperprisms are represented through an scheme as the EVM-5D then this

Boolean operation would be performed through its corresponding algorithm (see section

7.2.8) by intersecting the corresponding 5D hyperprisms. However, this process can be

achieved in a very simple way by considering only two points of each 5D hyperprism: one

of the points will be (x1, x2, 0, 0, 0) while the other will be (x1 + 1, x2 + 1, R, G, B). These

two points will define a segment which is the main diagonal that connects the bases of a 5D

hyperprism.

Let hi �Ha and hj � Hb be two 5D hyperprisms with the same x1 and x2 coordinates.

The points’ coordinates of the diagonal associated to hi are then (x1, x2, 0, 0, 0) and

(x1 + 1, x2 + 1, Ri, Gi, Bi); while the points’ coordinates of the diagonal associated to hj will

be (x1, x2, 0, 0, 0) and (x1 + 1, x2 + 1, Rj, Gj, Bj).

The required Boolean operation, intersection, can be performed by selecting only

the minimum coordinates of the points (x1+1, x2+1, Ri, Gi, Bi) and (x1+1, x2+1, Rj, Gj, Bj),

that is, we have the new point:

(x1 + 1, x2 + 1, Rk, GK, BK)

Where

Rk = min{Ri, Rj}

GK = min{Gi, Gj}

BK = min{Bi, Bj}

 314

The new segment’s vertices (x1, x2, 0, 0, 0) and (x1 + 1, x2 + 1, Rk, Gk, Bk) will

correspond to the main diagonal of the 5D hyperprism hk which is the intersection between

5D hyperprisms hi and hj. The final set Hc of hyperprisms hk will correspond to the

intersection between the 5D colorspace’s extrusions of image a and image b.

 We will illustrate the above step by considering a simple example of the two color

1D-images presented in Table 7.9. We will assume in this case that there are only two

color components (R and G) whose values will be in {1, 2, 3}. Moreover, x1Side will be

equal to one. These color 1D-images will be extruded to a 3D colorspace, where X2 axis

will correspond to the red component while X3 axis will correspond to the green

component. The extrusions Ha and Hb (each one with three prisms; the dotted lines indicate

their main diagonals) are also shown in Table 7.9.

TABLE 7.9
Two color 1D-images and their extrusion to the 3D colorspace

(see text for details; own elaboration).
Color 1D-Image a Color 1D-Image b

R=3,G=2 R=1,G=2R=2,G=2

(0) (1) (2) (3)

X 1

R=3,G=3 R=1,G=1R=2,G=1

(0) (1) (2) (3)

X 1
Image a Extrusion to 3D colorspace (Ha) Image b Extrusion to 3D colorspace (Hb)

X 1

X 2 = R

X = G3

(0,0,0) (1,0,0) (2,0,0)

(1,3,2)
(2,2,2)

(3,1,2)

 X 1

X 2 = R

X = G3

(0,0,0)

(1,3,3)

(1,0,0) (2,0,0)

(2,2,1)

(3,1,1)

 315

 In the Table 7.10 are shown the main diagonal’s pair of vertices of each one of the

prisms in the extrusions Ha and Hb from Table 7.9. One of the vertices in a diagonal will

have the values corresponding to red and green components equal to zero; the intersection

will be performed by considering the opposite vertex. In this case, given two vertices i and

j, the new vertex k will be (x1 + 1, Rk, Gk) where Rk=min{Ri,Rj} and Gk=min{Gi,Gj}.

Finally, the resulting new main diagonals can be seen in Table 7.10’s last column.

TABLE 7.10
Performing the intersection between prisms in Ha and Hb (from Table 7.9) through their

corresponding main diagonals (see text for details; own elaboration).
Pair of
Main

Diagonals

Vertices of the
Main diagonals’ for

prisms in Ha

Vertices of the
Main diagonals’ for

prisms in Hb

Ha � Hb
(Hc’s vertices of the

main diagonals)
1 (0,0,0) – (1,3,2) (0,0,0) – (1,3,3) (0,0,0) – (1,3,2)
2 (1,0,0) – (2,2,2) (1,0,0) – (2,2,1) (1,0,0) – (2,2,1)
3 (2,0,0) – (3,1,2) (2,0,0) – (3,1,1) (2,0,0) – (3,1,1)

 Finally, the new diagonals shown in Table 7.10 will describe to three new prisms

that belong to the new set Hc. See Table 7.11. These new prisms are the result of the

intersection between the corresponding prisms in Ha and Hb. Finally, the prisms in Hc can

be intruded (or projected) to get a color 1D-image c (shown in Table 7.11).

 316

TABLE 7.11
The results of the intersection between the extrusions of two color 1D-images

(from Table 7.9; see text for details. Own elaboration).
Hc = Ha � Hb

X 1

X 2 = R

X = G3

(0,0,0) (1,0,0) (2,0,0)

(1,3,2)

(2,2,1)

(3,1,1)

Color 1D-Image c = a � b

R=3,G=2 R=1,G=1R=2,G=1

(0) (1) (2) (3)

X 1

By reconsidering the application of these procedure over color 2D-images, we have

to add that in order to get the resultant color 2D-image of the intersection operation, only

we have to consider again its 5D hyperprisms’ main diagonals. The main diagonal’s first

point (x1, x2, 0, 0, 0) will indicate the coordinates of the original pixel (obviously x1 and x2)

while the last three coordinates of the second point (x1 + 1, x2 + 1, R, G, B) will indicate

their appropriate color. In the Figure 7.29 the color 2D-image, that is the result of

intersecting the 5D colorspace’s extrusions of images presented in Figure 7.27, is shown.

 317

Image a

�

Image b

=

FIGURE 7.29

Computing the intersection between the 5D colorspace’s extrusions of two color
2D-images “ initially similar” (from Figure 7.27; images a and b obtained from

[Cenapred, 03]; own elaboration).

7.4.5 Determining if two color 2D-images are similar

 We will compute the 5D hypervolume HVc (according to step 2) of the set of prisms

which are the result of the intersection between Ha and Hb (the 5D extrusions of the images

being compared). The intersection between Ha and Hb will imply that the set of prisms Hc is

composed by the 5D hypervolume that is common to Ha and Hb. Obviously there is 5D

hypervolume of Ha not included in Hc and there is 5D hypervolume of Hb not included in

Hc. We will compute the proportion of the 5D hypervolume that belongs to Ha but not

included in Hc by the following function:

a

c
ca HV

HVQ ��1,

 In a similar way, the proportion of the 5D hypervolume that belongs to Hb but not

included in Hc can be computed by:

b

c
cb HV

HVQ ��1,

 318

Let a� be an arbitrary assigned value such that 10

 a� . a� will indicate the

allowed proportion of 5D hypervolume of Ha that is not included in Hc. In a similar way, let

b� be an arbitrary value such that 10

 b� where b� will indicate the allowed proportion

of 5D hypervolume of Hb not included in Hc. We will assume that two images a and b are

similar if their Qa,c and Qb,c satisfy both inequalities:

acaQ �
,

bcbQ �
,

For example, consider the images and their intersection presented in Figure 7.29.

Since step c, we presented that HVa = 5,146,844 u5 (u5 stands for 5D hypercubical units)

and HVb = 4,996,787 u5. The 5D hypervolume HVc of the intersection between Ha and Hb is

3,744,778 u5. Then Qa,c " 0.272 and Qb,c " 0.25. Let a� = b� = 0.30, then we have, that

through our procedure, both acaQ �
, and bcbQ �
, are satisfied. Therefore, color 2D

images a and b in Figure 7.30 are classified as similar.

Image a

Image b

FIGURE 7.30
Reproduction of Figure 7.27 (images a and b obtained from [Cenapred, 03]).

 319

7.4.6 The Algorithm and Application

 The whole proposed procedure (sections 7.4.1 to 7.4.5) for comparing two color

2D-images can be resumed through the following algorithm:

Boolean imagesAreSimilar(Image a, Image b, float e_1, float e_a, float e_b)
{
 // We get the sets of 5D hyperprisms (extruded pixels) for images a and b.
 Set Ha = getExtrudedPixelsFromImage(a);
 Set Hb = getExtrudedPixelsFromImage(b);

 // We calculate the 5D hypervolumes of the sets of the hyperprisms in Ha and Hb.
 Integer Hva = calculateHypervolume(Ha);
 Integer Hvb = calculateHypervolume(Hb);

 /* We calculate the numeric difference between the 5D hypervolumes of the sets of
hyperprisms. */

 float Qab = calculateQab(Hva, Hvb);

 /* If the numeric difference is less or equal than the allowed difference indicated by
the input value e_1 then the images are “ initially similar” . */

If(Qab <= e_1)
 {
 /* We get the set of 5D hyperprisms which is the intersection between the

5D hyperprisms in Ha and Hb. */
 Set Hc = intersection(Ha, Hb);

 /* It is calculated the 5D hypervolume of the intersection between the sets of
hyperprisms Ha and Hb. */

 Integer Hvc = calculateHypervolume(Hc);

 // It is calculated the proportion of hypervolume in Ha not included in Hc.
 float Qac = calculateQac(Hva, Hvc);

 // It is calculated the proportion of hypervolume in Hb not included in Hc.
 float Qbc = calculateQbc(Hvb, Hvb);

 // If both proportions of hypervolume not included in Hc are less or equal
than the allowed proportion indicated by input values e_a and e_b then */

 if((Qac <= e_a) && (Qbc <= e_b))

 return true; // The images are similar.

 return false; // The images are not similar.
 }
 return false; // The images are not “ initially similar” .
}

 320

 The above proposed method for comparing images has been used in an

experimental application related to Popocatépetl volcano (located in the limits of Puebla

state in México; and active and under monitoring since 1997) in order to evaluate its

fumaroles under the context of Image Based Reasoning [Jurisica, 00]. See Appendix F for

more details.

