Chapter 7
Future Work

In this chapter we will disauss ®me linesof future work and some reaults basel in
our first approadhesto thesetopics Summarizing, there ae two wide fields to consider in
our future reseach:

e Predsedetermination d the new geometric transformation(s) that makes possble to
determine the equivalenciesbetween the 402 Hill's configurations and the 253 Aguilera
& PéreZs Configurations for the 4D-OPPs (sedion 7.J).

e Formal spedficdions of the theoreticd founditions and algorithms related to the
extension d the Extreme Vertices Model to the four and five-dimensional spaces
(sedion 7.2 and their related applicaions (sedions 7.3 and 7.9 for the analysis and
visualization d multidimensional data.

Although in this chapter we will present some results and applications based on the first

approaches to these topics, the reader must consider them carefully because the basis in

which they are supported still require a formal and careful inspection.

7.1 Future Work: Towards the Determination of the Equivalencies

Between Hill's Configurations and Aguilera & PéreZs Configurations

for the 4D-OPP'sthrough a New Geometric Transformation

When Hill's configurations ae represented throughtheir adjacencies ourting (see
sedion 5.7.2 it reallts that some of them (diff erent Hill's configurations) have the sane

courting, and therefore they could be mnsidered that belongto a sane Aguilera & PéreZs



configuration. For example, in the Table 7.1 there ae diown six hyper-boxes sds that are

represeantativesof six Hill's configurations, however al of them have the same aljacecies

courting.
TABLE 7.1
Six Hill's configurations that suppcsally belongto a sane Aguilera & PéreZs configuration
(own elaboration).

Hill 's Configurations Aguilera & PéreZs Configuration
Hyper-boxes Volume Face Edge Vertex
combinations Adjacencies| Adjaceicies| Adjacencies | Adjacecies

0011110110000000
1001011110000000
0110101011000000 4 6 4 1
1001101011000000
0101011011000000
1000000111101000

Aswe sav in section 5.7.1the determination o the Hill's mnfigurations is basel in
the fad that the 402 hyper-boxes ses that represent these onfigurations canna be reduced
to a lesse number because d the possble compositions of rotations and refledions were
exhaustively teded onthem. In athers words, the Hill's configurations preseated in Table
7.1 canna be reduced to the Aguilera & Pérez mnfiguration with 4 vdume, 6 face 4 edge
and 1 \ertex adjacencies by using a composition exclusively integrated with rotations

and/or refledions.

However, it shoud be possble to reduce the number of the Hill's configurations by
considering the gplicaion d new geometric transformations. Our initial approad is the
following: we will consider the goplicaion d only one geometric transformation which is

additional to the possble composition d rotations and refl edions defined in sedion 5.7.1.
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We will generate dl possble matriceswith 4 columns and 4rows and whosevaueswill be
in {-1, 0, 1}. One of thesematriceswill be added to the compositions mnsidered in the
Hill's configurations determination. The main ideabehind this gproad is that given two
diff erent Hill's configurations Cn; and Cn, but with the sane aljacencies ourt, there is a
compasition T" plus a matrix transformation Tx (i.e. a possble new geometric

transformation) such that:

Cn, =T"-T,(Cn,)

The following is an implementation d this idea We will generate dl possble
matriceswith 4 columns and 4rows and whaose $xteen valueswill bein {-1, 0, 1}. Each
one of the posshle 3'° = 43,046,721matrices (matrix xTransformation) will be aided to
eat ore of the 20,480 pashle combinations of rotations and/or refledions (see setton
5.7.1); by this way we get a possble omposition T"-T, . The dgorithm will receve as
inpu a sé of different Hill's configurations (the vedor HillConfigurations) but with the
sane ajacecies ourting, and a binary string that represents an Aguilera & PéreZs
configuration (obviously with the sane aljacencies ourting d the Hill's configurations,
ore of the Hill's wnfigurations can be séeded for this end, aguileraPerezConf in the
code). In the cdling d the function evaluateTransfor mationMatrixWithComposition, ead

Hill's configuration will be transformed with all the possble T" - T, and evaluated against

the aguileraPerezConf. We exped to find a valid transformation matrix when the Hill's

configurationis converted into the aguileraPerezConf.
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void findTransformationMatricegVedor Hill Configurations,
BinaryString aguil eraPerezConf)

for(inti = 0; i < Hill Configurations.sizg( ); i++) {
int xTransformation[4][ 4] = {{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}};
BinaryString hll _conf = Hill Confi gurations.elementAt(i);
for(intj=1; ] <43046721j++) {
evaluateTransformationMatrixWithCompasition
(xTransformation, Hill _conf, aguil eraPerezCor);
getNextMatrix(xTransformation);

}

void evaluateTransformationMatrixWithComposition
(int xTransformation ][ ], BinaryString hll _conf, BinaryString aguil eraPerezConf)

{
int compaosition 7] ={0,0,0,0,0,0,0}
for(inti=0;i<78125 i++) {
BinaryString cn = hill _conf.clone( );
applyCompositi on(compasition, cn);
apply_XTransformation(xTransformation, cn);
if(combinationlsvValid(cn) == true)
if(equals(cn, aguil eraPerezConf) == true)
[* It hasbeen founda composition d rotations and/or refledions
and xtransformation that converts aHill 's configurationinto a
Aguilera & PéreZs Configuration.*/
else
return; //The matrix produces a invalid combination d hyper-boxes
getNextCompasiti on(compositi on);
}
}
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Through this implementation we have found that there ae & leas two
transformation matrices for any pair of Hill's configurations with the sane aljacecies
courting that convert between them. By this way it is possble to convert the se of 402
Hill's configurations into the 253 Aguilera & PéreZs aonfigurations. For example, in the
Table 7.2 shows the transformation matricesfoundfor two pairs of Hill's cnfigurations
with 6 hyper-boxes thesefour Hill's configurations can belongto two Aguilera & PéreZs
configurations through the gplicaion d their found transformation matrices between
them. In the Appendix B are $own the possble euivalencies between the Hill and

Aguilera & PéreZs oonfigurations.
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TABLE 7.2
The possble mnversion d four Hill's configurations into two Aguilera & PéreZs
configurations (own elaboration).

Hill 's Configurations and Associated Matrix Transfor mation

Aguilera & PéreZs
Configurations

Cny (Binary Transformation Cn; (Binary Adjacencies
Represeantation) Matrix T(Cny) = Cny Represantation) Courting
[0 0 1 O]
1 010
010101111000000( 0100 101101011000000(
00 1 1 5 vdume gjjacmcies
B - 5face @jacencies
00 1 0 4 edge aﬂqcenaes
0100 1 vertex adjacency
010101111000000( 1010 101101011000000(
0 0 1 1]
[0 1 0 O]
1100
011101011000000( 0010 110110011000000¢
010 1 5 vdume qjjacen_cies
3 - 6 face @jacecies
1010 SedgeajjqcmC|es
0o 010 1 vertex adjacency
011101011000000( 1100 110110011000000(
-1 011

However, through this first approach we have found that there ae ome pairs of

Hill's configurations that have hundeds of valid transformation matrices Moreover, we

will have to assire, aspart of our future work, that ead ore of the found \alid matricesis

not represanting a cmposition d the considered transformations. By this way, we exped

to court with a sé of transformation matrices from which a new geometric

transformation(s) shoud be determined.
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7.2 The Extreme Vertices M odél

In the foll owing sedions will be mentioned some of the basc concepts related to the
Extreme Vertices Modd for the represeantation o Orthogoral Pseudo-Polyhedra (EVM-3D)
in a very concise form. This model also enables the development of simple and robust
algorithms for performing the most usual and demanding tasks on solid modeling, such as
closed and regularized Boodean operations, solid splitting, dher sd& membership
clasdficaion operations and measire operations on 3D-OPPs. The EVM-3D was
originally preseited by Aguilera & Ayala in [Aguilera, 97 (for represeiting ony
Orthogoral Polyhedra) and widely descibed in [Aguilera, 98 (considering bdh
Orthogoral Polyhedra and Pseudo-Polyhedra) where the apeds related to formalizations

and proofs ae treaed with the proper detail .

7.2.1Brinks and Extreme Verticesin the 3D-OPP's

A brink is defined asthe maximal uninterrupted segment, built out of a seuence of

colli nea and contiguous two-manif old edgesof a 3D-OPPwith the following properties

e Non-manifold edgesdo nd belongto brinks.

e Every two-manifold edge belongs to a brink, whereas gery brink consists of m edges
(m2>1), andcontains m+1 vertices

e Two verticesof type V3, VANL o V6N1 (Table 7.3) are a either extreme of the brink
(Extreme Vertices). Theseverticeshave in common that they are the only onesthat have
exadly threeincident two-manifold and perpendicular edges regardlessof the number
of incident nonrmanifold edges therefore those verticesmark the end d brinks in all

threeorthogoral diredions.
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e The m-1 verticesof type V4, VAN2, V5N or V6 (Table 7.3) are the only common
point of two colli nea edgesof a sane brink (interior vertices.
e Dueto al six incident edgesof aV6N2 vertex (Table 7.3) are non-manifold edges nore

of them belongsto a brink, thus this vertex doesnat belongto any hrink.

TABLE 7.3
Verticesin the 3D-OPPs and their relation with brinks
(own elaboration).
Extreme L
Vertices PR
(The brinks ;
boundr
undry) V3 VAN V6N1
Brinks ‘ ‘
Interior A
Vertices
V4 V4N2 V5N V6
Vertex that oo
do nd ,
belongto a
any brink. ;
V6N2

Basal in the previous analysis for brinks we have the following propertiesfor the

Extreme Vertices:

e Property 7.1: Every Extreme Vertex of a nD-OPP (1<n<3) has eadly n incident
manifold edgesperpendicular to ead ather. This number is even for every nonextreme
vertex.

e Property 7.2: Every Extreme Vertex of a 3D-OPPhas a odd number of incident faces

and every nonextreme vertex has a even number of incident faces
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e Property 7.3. Any Extreme Vertex of a nD-OPP (1< n<3), when is locdly descaibed

by a se of surroundng "boxes', is surrounced by an odd nunber of such "boxes'. An

even number of surroundng "boxes' either defines anonextreme vertex, or does nat

define any vertex at all. SeeTable 7.4.

TABLE 7.4

The configurations from the nD-OPPs (1< n < 3) that descibe
Extreme Vertices(own elaboration).

1D-OPPs |1 segment
1lredangle 3redangles
2D-OPPs L
b
1 box 3 boxes
3D-OPPs bO f g %
7 boxes 5 boxes

The Extreme Vertices of a 3D-OPP p are the ending \erticesof all the brinksin p.

Let V(p) be the sé of verticesin p, then EV(p) <V (p) will denate to the se& of the

extreme vertices where EV(p)=V3(p) UV4ANL(p)UVENLp). #p will denate the

cadinality of V(p). For a3D-OPPp, its Extreme Vertices Model (EVM) is the model that

will only store to all extreme verticesfrom p. For any 3D-OPPp, EV(P) will have an even

number of vertices that is, #p is even. Seethe Figure 7.1.
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FIGURE 7.1
Example of a 3D-OPP p and its set of Extreme Vertices
(Continuous lines indicate manifold edges while the dotted lines indicate non-manifold
edges; the points compose the set EV(P); own elaboration).

The brinks in a 3D-OPP can be classified according to the main axis to which they
are paradlel. Since the extreme vertices mark the end of brinks in the three orthogonal
directions, is that any of the three possible sets of brinks (parallel to Xi-axis, parallel to

Xo-axis or parallel to Xz-axis, see Figure 7.2) will produce to the same set EV(p).

R .
1 — <

= il o

55 L\\ \ . )‘/x// S

X3 ) X; . X3 5
FIGURE 7.2

The brinks in a 3D-OPP (the OPP presented in Figure 7.1).
a) The brinks parallel to X;-axis, b) the brinks parallel to X,-axis,
c) the brinks parallel to Xs-axis (own elaboration).

7.2.2 Extended Faces and Extended Edges

An extended face is the maximal set of faces lying on a plane perpendicular to one

of the 3D space’s main axes X3, X, or X3. These faces can be united by the edges or
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verticesof a 3D-OPP. The facesof an extended facein a 3D-OPP can aso be united by a
nonmanifold edge or by just one vertex which can be of the type V4, V5N, V6, V6N1 o

V6N2. The EVM of an extended face (formerly a plane of vertices, acwording to the

nomenclature presented in [Aguilera, 98) of a3D-OPPp s a sibsd from the EV(p).

An extended edge of a 2D-OPPpisthe sé of brinksthat liein a draight line that is

paralel to a mordinate ais. The EVM of an extended edge (formerly a line of vertices,

acording to the nomenclature presented in [Aguilera, 99) is a sibse from the EV(p).

Both extended facesof a 3D-OPPand extended edgesof a 2D-OPPwill be referred
here as® (formerly plv, aacording to [Aguilera,98]'s nomenclature) and ead ore will
have ar even number of vertices A k-th extended face(or extended edge) of a 3D-OPPp

will bereferredas @, (p).

An EVM(p) can be mnsidered as a squence of extreme vertices models

EVM(®,(p)), EVM(®@,(p)), ..., EVYM(® ,,(p)) from its corregpondng np extended faces

The number of elements np in this sejuence is the number of diff erent coordinatesfor the

axis perpendicular to the extended faces®, (p), ®,(p), ..., ®,,(p). SeeFigure 7.3. The

EVM of eat extended faceis & the sane time the seguence of EVM's from its extended

edges andthe EVM of abrink is defined by a pair of extreme vertices



’%

PPV o= 11
X3 X3 X3
a) b) C)
FIGURE 7.3
The sequences of extended facesin a 3D-OPP (the OPP presented in Figure 7.1). @) The

extended faces perpendicular to X;-axis. b) The extended faces perpendicular to
Xo-axis. ¢) The extended faces perpendicular to Xs-axis (own elaboration).

7.2.3 Slices

An diceisthe region of a 3D-OPP contained between the corresponding supporting

planes of two consecutive extended faces. A k-th dlice of a 3D-OPP p is denoted by

np-1

dice(p). Then p= UsliceK(p) . See Figure 7.4 for an example.
k

X2
.j X
X3

FIGURE 7.4
The slices of a3D-OPP (presented in Figure 7.1. There are presented the regions from the
3D-OPP between the supporting planes of the planes of vertices perpendicular to Xi-axis;
own elaboration).
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7.2.4 Sections

A sedion is the reailting 2D-OPP from the intersedion ketween a 3D-OPP and a
plane which is perpendicular to ore of the main axis. That 2D-OPP doesn't coincide with
any extended facebut it is parale to al of them. Furthermore, it is cdled an internal
section from p if the intersedion between the 3D-OPP and the plane is not empty,

otherwiseit is cdled an external section. A k-th se¢ion d p between @, (p) and @, .,(p)

isreferred by S(p). The dicesof a3D-OPPs ae a seof one or more digoint prisms whose

baseis the setion d ead dice In Figure 7.5 are preseited the setions for the 3D-OPP

from Figure 7.1.

‘D | g ..' ‘ gl e
S S S
FIGURE 7.5

The setions of a3D-OPP(the OPPpreseted in Figure 7.1). a) The internal sedions
perpendicular to Xi-axis. b) The internal sedions perpendicular to X,-axis. ¢) The interna
sedions perpendicular to Xz-axis (own elaboration).

7.2.5 Computing the Extended Faces Through Sections

Let p be a(d-1)-dimensional OPP embedded in EY then p will denote to the

projedion d p ona(d-1)-dimensiona hyperplane parallel to p.
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The projection of an extended face @, (p) of a 3D-OPP p can be obtained by
computing the regularized XOR between the projections of its previous section S, (p) and

itsfollowing section S, (p) . Then we have that:

@, (p)=S1(P)® S(p). Y, [Lnp]

7.2.6 Computing the Sections Through the Extended Faces

The projection S (p) of any section from a 3D-OPP p can be obtained by
computing the regularized XOR between the projection of the section S _,(p) and the

projection of the extended face @, (p) . Then we have that:

S(p) =9

S(P)=S.,(p)® @, (p),¥, €[1,np]

Or in an equivalent way by computing the regularized XOR of the projection of all

the previous extended faces:

S.(A=®"@,(p)

The projection of the first and last extended faces of any 3D-OPP p must coincide

with the projection of the first and last internal sections of p, that isto say, S (p)=®,(p)

and S, ,(p) =P, (P).
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7.2.7 Virtual Extended Faces

An empty extended face is called a virtual extended face. Let p be an arbitrary
3D-OPP, then we say that p has a virtual extended face @, (p) which is perpendicular to
one of the main axes if there are no vertices of p in such extended face. We know that

starting from the consecutive sections Sc1(p) and S¢(p) it is possible to obtain @, (p)

through @, (p)=S,_,(p)®" S (p). But if S (p)=S.(p) then obviousy @, (p)=4.

That means that any number of virtual extended faces can be considered, as required,

without altering to p.

7.2.8 Future Work: Towardsthe Extreme VerticesModel in the 4D and 5D Spaces

This section presents our first experimental results about the representation of 4D
and 5D Orthogonal Pseudo-Polytopes (4D-OPP's and 5D-OPP’s) through a single subset of
their vertices. In order not to repeat the same words, sometimes we use parenthesis for the
5D case. Although some of the following results are promising, the reader must consider
them carefully because a deep inspection of the theoretical foundations and algorithms is

still required.
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Consider the construction d a 4D-OPP as the union d several 4D-OPPs in the
followingway (Figure 7.6):
e Wewill have ahyperdimensional "L-shaped” poytopeain Figure 7.6, and
e Threefour-dimensional hypercubesb, c andd.
e Thepoaytope awill share avertex with hypercube c and afacewith hypercube b.
e Thehypercube b will share an edge with hypercube d.
Seethe final 4D-OPPin the Figure 7.7. We will useit the following sedions to exemplify

some apeds dou the EVM-4D.

S 4

b)

FIGURE 7.6
The construction d a4D-OPPby the union d several 4D-OPPs
(ahyperdimensional "L-shaped" paytope and threehypercubes own elaboration).
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FIGURE 7.7
A 4D-OPPreallting from the union o several 4D polytopes
(sea in Figure 7.6, own elaboration).

The property 7.3 says that any Extreme Vertex of a nD-OPP (1<n<3), when is
locdly descibed by a se of surroundng boes is surrounded by an odd number of such
boxes We will assime now that thisistrue for n>1. Then, byinstantiation, any vertex of
a (5D) 4D-OPPwhen is surrounced by an odd number of (5D) 4D hyper-boxes $ioud be
an extreme vertex. In fad, there ae 1 configuration with 1 a 15 hyper-boxes 6
configurations with 3 a 13 hyper-boxes 20 configurations with 5 or 11 hyper-boxes and
30 configurations with 7 a 9 hyper-boxesin the 4D-OPPs that shoud descibe extreme
vertices (see Appendix A). Moreover, through the 5D-OPPs nfigurations urting
(presented in Sedion 5.3 there ae 1 configuration with 1 a 31 hyper-boxes 10
configurations with 3 a 29 hyper-boxes 66 configurations with 5 a 27 hyper-boxes 236

configurations with 7 a 25 hyper-boxes 570configurations with 9 a 23 hyper-boxes 989
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configurations with 11 or 21 hyper-boxes, 1,406 configurations with 13 or 19 hyper-boxes

and 1,607 configurations with 15 or 17 hyper-boxes that should describe Extreme Vertices.

We will consider that every (5D) 4D-OPP p is initially represented through a
hypervoxelization (see section 6.4.3). Then, we will select only such vertices with an odd
number of incident (5D) 4D hyper-boxes. We will call to the resultant set of vertices the
extreme vertices of p, that is, EV(p). Figure 7.8 shows the set of extreme vertices of the

4D-OPP of Figure 7.7.

* .
* .
* *
* *
. *
. .
* .
] .
L S .
*e * * * .
. . = L SN
P . *e %4
Pe .
. .
y = s,
¢ .
.
Vs .
¥ .
FIGURE 7.8

A 4D-OPP (from Figure 7.7) and its set of Extreme Vertices (own elaboration).

We will refer to a brink as the segment defined by two consecutive extreme vertices
that lie on aline paralel to one of the (5D) 4D space's main axes. Moreover, brinks must be
between and odd-numbered extreme vertex and an even-numbered extreme vertex in that

order (see Figure 7.9). There is no brink between an even one and any odd one. In each
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dimension, every extreme vertex has just one incident brink, thus in al the (five) four
dimensions every extreme vertex has exactly (five) four incident brinks perpendicular to

each other.

----- ——=o - —0 - &—O - O - -
1 2 3 4 5 6 7 8
FIGURE 7.9

Numbering the extreme vertices that lie on aline parallel to one of the space’s main axes
and composing their corresponding brinks (own elaboration).

For example, in Figure 7.10 are respectively shown:
e Theparallel brinksto X;-axis (7.10.a);
e Theparalé brinksto Xz-axis (7.10.b);
e Theparalel brinksto Xs-axis (7.10.c);
e Theparallel brinks to X4-axis (7.10.d);

From the 4D-OPP presented in Figure 7.7.
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FIGURE 7.10
A 4D-OPP (from Figure 7.7) and its brinks parallel to X; (a), X2 (b), X3 () and X4 (d) axes
(own elaboration).

We will consider an extended (hypervolume) volume as the set of (hypervolumes)
volumes of a (5D) 4D-OPP p lying on a (4D) 3D hyperplane perpendicular to one of the

(5D) 4D space’'s main axes X1, Xz, X3, X4 (or Xs). The (hypervolumes) volumes in an
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extended (hypervolume) volume can be joined by lower dimensional elements as
(volumes), faces, edges or vertices of a (5D) 4D-OPP. We will assume that the set of

extreme vertices of a extended (hypervolume) volume is a subset of EV(p).

Moreover, we will aso refer to the extended (hypervolumes) volumes for (5D) 4D

Orthogonal Pseudo-Polytopes as ® . Moreover, ©,(p) will refer to the k-th (5D) 4D

extended (hypervolume) volume of a (5D) 4D polytope p. We will also expect that the
number np of @ 'sin a (5D) 4D-OPP p is the number of different coordinates for the axis

perpendicular to these @ 's.

For example, in Figure 7.11 are respectively shown (extended volumes):
e The @ 'sperpendicular to X;-axis (7.11.a);
e The @ 'sperpendicular to X,-axis (7.11.b);
e The @ 'sperpendicular to Xz-axis (7.11.c);
e The @ 'sperpendicular to Xs-axis (7.11.d);

From the 4D-OPP presented in Figure 7.7.
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c) d)
FIGURE 7.11
A 4D-OPP (from Figure 7.7) and its @ 's (extended volumes) perpendicular
to X1 (a), X2 (b), X3 (c) and X4 (d) axes (own elaboration).

We will consider that adlice is the region contained in a (5D) 4D-OPP between the
supporting (4D) 3D hyperplanes of two consecutive extended (hypervolumes) volumes.

Therefore we can assume that Sice(p) will denote the k-th slice of a (5D) 4D-OPP p.

np
Hence p=| Jdlice, (p).
k
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In the Figure 7.12.a are dhown the regions between the extended vdumes
perpendicular to Xi-axis of the 4D-OPP presented in Figure 7.7. Finaly, in the Figure

7.12.b are shown the 4D-OPPs dices

FIGURE 7.12
The regions of a4D-OPP (presanted in Figure 7.7) between its extended vdumes
perpendicular to X;-axis (a) andits regedive dices(b; Own elaboration).



We will say that a section is the (4D) 3D-OPP resulting from the intersection
between a (5D) 4D-OPP and an orthogona (4D) 3D hyperplane perpendicular to a
coordinate axis which does not coincide with the supporting (4D) 3D hyperplane of any
extended (hypervolume) volume. Furthermore, it will be called external or internal section

of p, respectively, if thisintersection is empty or not.

S(p) will refer to the k-th section of p between ©, (p) and ©, ,(p) .

For example, in Figure 7.13 are respectively shown:

The sections perpendicular to X;-axis (7.13.a);

The sections perpendicular to X,-axis (7.13.b);

The sections perpendicular to Xs-axis (7.13.c);
e The sections perpendicular to Xs-axis (7.13.d);

From the 4D-OPP presented in Figure 7.7.
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FIGURE 7.13
A 4D-OPP(from Figure 7.7) andits setions perpendicular to X (a), X2 (b), X3 (c)
and X4 (d) axes(own elaboration).
A dlicefrom a (5D) 4D-OPPis a seof one or more digoint (5D) 4D hyperprisms
whosebaseisthe dices setion. A (5D) 4D hyperprism is generated by the parallel motion
of a (4D paytope) payhedron; it is bounded by the (4D poalytope) payhedronin its initia

and final positions and by several prisms [Sommerville, 58 (a gedal caseof a [5D] 4D

hyperprism is a[5D] 4D hypercube generated ac@rdingto sedion 2.2.1.}.
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c)
FIGURE 7.14
A 4D-OPP (presented in Figure 7.7) and a) its regions between its extended volumes
perpendicular to X,-axis; b) its slices and c) its slices showing their respective sections
(also perpendicular to X,-axis) as their bases (own elaboration).
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All the orthogonal (4D) 3D hyperplanes intersecting a (5D) 4D-OPP in the same
dlice give the same section. Hence, every n-dimensional slice has its representing

(n-1)-dimensional section. See Figure 7.14.

Consider p as a (four-) three-dimensiona OPP embedded in the (fifth-)
four-dimensional space, then p will denote the projection of p onto a (4D) 3D hyperplane
paralel to p. This way we can consider that the projection of the set of extended

(hypervolumes) volumes @, (p) of a (5D) 4D-OPP, p, can be obtained by computing the

regularized XOR between the projections of its previous S, ,(p) and next S, (p) sections

(thisis an extension of the procedure presented in [Aguilera, 98], see section 7.1.6):

D, (P) =S, (P® S(p). ¥, [Lnp].

Moreover, the projection of any section S (p), of a (5D) 4D-OPP, p, can be
obtained by computing the regularized XOR between the projection of its previous section
S,_.(p) and the projection of its previous extended (hypervolume) volume @, (p). Or,
equivalently, by computing the regularized XOR of the projection of all the previous

extended (hypervolumes) volumes (thisis also an application of the procedure presented in

[Aguilera, 98], see section 7.1.7):

{ S(p)=2
S(P)=S,(p)® @, (p),V, €[1,np]
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Thatis:

The projedion d the first and lag extended (hypervolumes volumes of any (5D)
4D-OPP p shoud coincide with the projedion d the first and lag interna sedions of p,

that is;

S(p)=D,(p) and S, ,(p) =D, (P)-

Now, we will extend some of the concepts originally preseated in [Aguilera, 9§ for
the atievement of Bodlean operations between (5D) 4D-OPPs. Let p and g be two (5D)

4D-dimensional OPPs with EV(p) and EV(q) as their repedive extreme vertices then
EV(p® g)=EV(p)®EV(q). This expresson alow us to sugged formulas for

computing the (4D) 3D-dimensional hyperplanesof verticesof the (5D) 4D-OPPs through

their sedions and viceversa Then we can exped that:

o EV(®,(p) =EV(S.(P)®EV(S(P)

o EV(S(P)=EV(S.(P)®EV(D,(p)

Moreover, two expressons can be dso suggeded for using the XOR operator.
These a&pressons soud allow the computing d the union and the diff erence of two (5D)

4D-OPPswhaose pedfic gtuations ae previously known:
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e Let pandq betwo digoint or quas-disoint (5D) 4D-OPPs (that is, pN*q=J) with

EV(p) and EV(q) astheir repedive sés of extreme vertices then:

EV(pu*a)=EV(p) ® EV(0).

e Let p and q two (5D) 4D-OPPs such that poq with EV(p) and EV(qQ) as their

regedive sés of extreme vertices then:

EV(p-*q)=EV(p) ® EV(q)

Let p and g be two (5D) 4D-OPPs andr = pop g where op* isin {U',n",— ,®'}.
A Bodean regularized operation op* between p and g, ead ore expresse with its se of
extreme vertices shoud be performed by the same op* by applying it over their sedions
also expressé throughtheir ses of extreme vertices these settons will be (4D) 3D-OPPs.
These guation lead us to a reaursive process for computing the Bodean regularized
operations, which descads in the number of dimensions [Aguilera, 98. The reaursion’s

bagc cases defined bythe Boolean operations between two 1D-OPPs (Table 7.5).
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TABLE 7.5
The Bodean regularized operations between two 1D-OPPs and their posshble cases
(own elaboration).

If ab & cdare: | EVM(abu’ cd) | EVM (abn cd) | EVM (ab—" cd) | EVM (ab® cd)
a b
c i
ot | fabed 2 (ab} | {abca
a b
! b '
oo {c.d,a b} % {a b} {c. d,a b}
a b :
Contiguots:
- {a d} 2 {a b} {a d}
a b
c d
Contiguots:
nod {c, b} @ {a b} {c, b}
T
Coincident: _ _ _ -
a=cyb=d {a=¢b=d} {a=¢b=d} %) %)
a b
c d
Inclusive
(ab>ocd):
a<c<d<b {a, b} {c, d} {a c, d, b} {a c, d, b}
a=c<d<b {a=¢ b} {a=cd} {d, b} {d, b}
a<c<d=b {a, d=Db} {c,d=Db} {a c} {a c}
c : : d
Inclusive
(abccd):
c<a<b<d {c, d} {a b} Z {c,a b, d}
c=a<bh<d {c=ad} {c=ab} ) {b, d}
c<a<b=d {c, b=d} {a b=d} %) {c, &
a_é_?ﬁd
Overlapping:
oo {a d} {c, b} {ac {ac b, d}
a b
C EJ
Overlapping:
RS {c. b} {ad) {d, b} {c.ad,b)
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Now we will consider an example. Let A and B the two 4D-OPPs operands of the
Table 7.6. The 4D-OPPA can be sea as afour-dimensional "cross-shaped” paytope and
the 4D-OPP B can be cmnsidered as afour-dimensional "L-shaped" poytope (seeTable
7.6s first column). The operand A hasthree setions while operand B hasonly two (see
Table 7.6s seond column). Eadch 3D sedion will have only one 2D sedion (sincethey are
only redanguar prisms; third column). Finaly, eat 2D sedion will have only one 1D
sedion: a s@ment with their repedive par of extreme vertices(fourth column). The 1D
sedions extreme verticesfor operand A are labeled as @ and h while the 1D sedions

extreme verticesfor operand B are labeled as ¢and d.

TABLE 7.6
Two 4D-OPPs A & B andtheir correpondng sedions sncethe 3D caseurtil the 1D case
seetext for detail s, own elaboration).

Sedions Sedions Sedions
4D-OPP's (3D-OPP's) (2D-OPP's) (1D-OPP's)
b2
bl | b3 |
al a3
324
d2
‘dl
5 €y ¢y




The relative position for the Bodean operation is diown in Figure 7.15.a (the
Bodean operation ketween the two 4D-OPPs). In the Figure 7.15.b is shown how interad
the 3D sedions for operands A and B (the Bodean operation between the 3D sedions). In
Figure 7.15.c are shown the interadions between the 2D sedions (the Boolean operation
between the 2D sedions). Findlly, in Figure 7.15.d are 1own the interadions between the

1D sedions (the basc casdor the Bodean operations).

a) b)
b24>
b1 b3<>d2
2 tdy a3t
d,eC ' C
0) d) 2° Y 2
FIGURE 7.15

Two 4D-OPPs (presented in Table 7.6) with common interior regions (a). b) Their 3D
sedions (two o them have ommoninteriors). c) The 2D sedions from the 3D sedions. d)
The 1D sedions from the 2D sedions (own elaboration).
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Since the s@ments in Figure 7.15.d represeant the basc casefor the regularized
Bodean operations between the 4D-OPPs A and B (of Figure 7.15.a), it must be gplied
the mrrepondng operator. We will exemplify the operations of union, intersedion and
diff erence In the Table 7.7 are hown the reaults of theseoperations. Table 7.7's @wlumns
1, 2 and 3 corregponds to Au*B, An*B and A-*B regedively. The Bodean
operations between 1D sedions ae performed acwrding to Table 7.5. The requltant 1D
sedions will define 2D redanguar sedions which in turn define the three or two

(acaording to the operation) 3D sedions of the resultant 4D-OPP.
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TABLE 7.7
Boolean Operations Between 1D Sedions of two 4D-OPPs (whoserelative positions ae
shown in Figure 7.15a) and the resultant 4D-OPPs (seetext for detail s, own elaboration).

AU*B AN*B A-*B
b, 1 b,
b, d,=b, d,=b, b,
a d A a, d
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7.3 Application 1: Handling and Processing Animation Frames

Usingthe EVM

7.3.1 Black & White 2D Animation Using the EVM-3D

This aurrent applicaionwasoriginally suggeded in [Aguilera, 9§. A bladk & white

2D animation, viewed as a squence of n bladk & white 2D frames can be handed as a

3D-OPPin the following way:

a) Let eat frame fy in the animation ke mded in the EVM as a2D-OPP, where the inside
of fx represants the bladk regions or pixels in the frame; and the outside, the white ones
(Seein Figure 7.16.a an example of a smple 2D bladk & white animation composed
by four frameswhaoserelutionis 9 x 9 pxels. Figure 7.16.b shows the reault of the

sane frames onsidered as2D-OPPs and their reedive extreme vertices.

b) f1 fa f3 fs
FIGURE 7.16

Example of a sSmple 2D bladk & white animation. a) Its frameswith 9x9 pxels reslution.

b) The framesrepreseanted through D-OPPs and their extreme vertices(own elaboration).
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b) Let us extrude fy into the third dimension, and thus obtain a prism prismg whose base is
fc and its length is proportional to the time fy is to be displayed. The new dimension will

measure and represent the time. See in Figure 7.17 the extrusion of the frames

a e} BMB

[ N

—

prismy prismp

N N[V
N

- |

presented in Figure 7.16.b.
prisms prismy

FIGURE 7.17

Extrusion of the frames of an animation (from Figure 7.16) and some of their extreme
vertices (own elaboration).

A

c) Let p:U prism, , then p is a 3D-OPP that represents the given 2D animation (see

k=1
Figure 7.18). Dueto all the prisms are quasi digoint 3D-OPP's, then the EVM for p can

be obtained by applying [Aguilera, 98]:

EVM (p) =®,_,EVM (prism,)
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FIGURE 7.18

Composing the 3D-OPPthat will r epresent an animation (from Figure 7.16) asthe union o
its extruded frames(own elaboration).

Figure 7.19.a shows the @ 's of the 3D-OPPthat represents the animation from Figure
7.16 which are perpendicular to the ais that represeant the time. In Figure 7.19.b is

shown separately ea @, (p) .
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X, l

a)
iR 1 1 1
1l
» B 1 | A0
b) X1<D1 chDz X1®3
1
.
e
qu>4 X1q>5
FIGURE 7.19

The @ 's, perpendicular to the corresponding axis for the time, of a 3D-OPP that represents
an animation (from Figure 7.16; own elaboration).
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By representing a given 2D animation using a 3D-OPP p and the EVM-3D we have

the following characteristics:

e The sequence of sections of p corresponds to the sequence of frames, i.e., S (p) = f, .

e Computation of frames. Since S, (p)=S,,(p)®*®, (p) (section 7.2.6) then,
EWM (f,)=EVM(f,,)® EVM (D, (p)), i.e, the black regions at extended faces
®, (p) represent the regions of a previous frame fi.; that need to be modified (changed

from black to white, or from white to black) in order to update it to the following frame

fc. Table 7.8 presents the sequence of the computation of the frames for the animation

presented in Figure 7.16.
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TABLE 7.8
Computing the frames for an animation (from Figure 7.16) represented through a 3D-OPP
and the EVM (Own elaboration).

S (p) @, (p)

g
S(p)=9

L 1

@,(p)
= — s B

1

wnlliss 1—1

S (p)=S,(p)®*®,(p) = f1

S
IN)
~
©
~

D
&
I I <JJIIEs
S,(P)=Si(p) ®*D,(p) =F ®4(p)
- 1

Lo

RSsssal =

S;(p) =S, (P) ®*D4(p) =15

=

=

S,(p) = S;(p) ®*D,(p) =fa
S;(p)=S,(p) ®*D,(p)= D

0[]

S
3
~
e
~
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The managing of a black & white 3D-animation’s n frames can be performed in

analogous way:

e Let each 3D frame fi in the 3D-animation be coded in EVM as a 3D-OPP, where the
inside of fy represents the black regions or voxels in the 3D frame; and the outside, the

white ones.

e Let us extruded fy into the fourth dimension, and thus obtain a 4D hyperprism

hyperprismy whose base is fx and its length is proportional to the time fy is to be

displayed.

e Let p=|Jhyperprism, then p is a 4D-OPP that represents the given black & white

A=1

3D-animation.

e By representing this 4D-OPP p through the EVM-4D we have that the sequence of

sections of p corresponds to the sequence of 3D frames, i.e, S (p) = f,.

e Computation of frames: Since S, (p)=S, ,(p)®*D,(p) (see section 7.2.8) then,
EV(f,)=EV(f, ,)®EV(®, (p)), i.e, the black regions at extended volumes @, (p)

represent the regions of a previous frame f.; that need to be modified (changed from

black to white, or from white to black) in order to update it to the following frame fi.
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7.3.1.1 Collision Detection

This application (which will be explored as part of our future research) was
originally proposed in [Zhou, 91]. However, it can be considered under our context in the

following way:

If pand q are two (4D) 3D-OPP's representing the black & white animation and/or motion

of two (solids) polygons, then these two (solids) polygons collide iff pnq#9.
Furthermore, if png= < then the time coordinate values of p~q indicate the precise

instant of the collision (In fact, [Zhou, 91] proposed this application by representing
3D-objects boundaries through the equations that define the set of points on the surfaces of

spheres, ellipsoids, etc.).

7.3.2 Representing Color 2D-Animations Through 4D-OPP'sand Their

Extreme Vertices

The procedure described in [Aguilera, 98] for processing black & white 2D
animations can be directly extended to control colored frames through a 4D-OPP and its
extreme vertices. We will label each colored frame in the animation as fx and n will be the
number of such frames. In the Figure 7.20 an example of a ssimple color 2D-animation
composed by four frames whose resolution is 9 x 9 pixels is shown. In each frame can be

identified yellow, red, green and blue regions.
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f1 f2

f3 f4
FIGURE 7.20
Example of asimple color 2D-animation (own elaboration).
A color animation can be handled as a 4D-OPP in the following way:

a) The red-green-blue components of each pixel will be integrated into a single value (for
example, we can use the procedure defined in [Gosling, 00] to represent the
red-green-blue components as an integer with 32 bits. Bits 0-7 correspond to the blue
value, bits 8-15 correspond to the green value, bits 16-23 correspond to the red value
and bits 24-31 to the alpha [transparency] value). Each pixel will now be extruded
towards the third dimension where the value integrating its red-green-blue components

will now be considered as its X3 coordinate (coordinates X; and X, correspond to the

original pixels coordinates). See Figure 7.21.
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X4= color

FIGURE 7.21
The 3D space defined for the extrusion of color 2D-pixels (own elaboration).

Let us call xfy to the set composed by the rectangular prisms (the extruded pixels) of
each extruded frame fi. It is very important to avoid the zero value in the X3 coordinate
because a pixel couldn't be extruded and therefore its associated prism (a 3D-OPP)
won't be obtained. See in Figure 7.22 the sets of prisms xfx which are the result of the

extrusion of the frames fy of the animation presented in Figure 7.20.



FIGURE 7.22
The sets of prisms which are the result of the extrusion of the frames of an animation
(presented in Figure 7.20; own elaboration).

b) Let prism be a prism in xfx and npr the number of prisms in that set. Due to al the
prisms in xfx are quasi digoint 3D-OPP's, we can easily obtain the 3D-OPP and its
respective EVM of the whole 3D frame by computing the regularized union of all the

prismsin xfx. Then we have to apply (all the verticesin aprism are extreme):

npr
EVM (F,) =& EVM (prism e xf,)

i=1
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Where Fy is the 3D frame (a 3D-OPP) that represents the union of all the prisms in Xxfy.
In the Figure 7.23 are shown the 3D frames Fy from the animation presented in Figure

7.20).

F F
F3 Fs4
FIGURE 7.23

The 3D frames that represent a 2D colored animation
(presented in Figure 7.20. Some of their extreme vertices are shown; own elaboration).
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c) Let us extrude Fy into the fourth dimension, and thus obtain a 4D hyperprism
hyper prismy whose bases are Fy and its length is proportional to the time fi is to be

displayed. The new fourth dimension will measure and represent the time. See in

Figure 7.24 the process of extrusion of the 3D frame F; presented in Figure 7.23.

X4= color
A

X,= time

FIGURE 7.24
The process of extrusion of a 3D frame (Fs, presented in Figure 7.23) in order to obtain a
hyperprismy (some of its extreme vertices are shown; own elaboration).

303



d) Let p:Uhyperprismk, then p is a 4D-OPP that represents the given color

k=1
2D-animation. Due to all the n hyperprisms are quasi digjoint 4D-OPP's, then the EV(p)

for p can be obtained by applying:
EV(p) = ®,., EV (hyperprism,)
In the Figure 7.25 are shown the @, (p)'s of the 4D-OPP p that represents the

animation from Figure 7.20 which are perpendicular to the axis that represent the time.
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-

@, (p) ®,(p)
®,(p) D, (p)

@;(p)
FIGURE 7.25
The extended volumes of the 4D-OPP p that represents a color 2D-animation (from Figure
7.20. Their extreme vertices are shown. Own elaboration).
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By representing a given color 2D-animation using a 4D-OPP p and its EV(p) we

have the following characteristics:

e The sequence of sections of p corresponds to the sequence of 3D frames, i.e,

Sc(p)=F.

e Computation of 3D frames: Since S, (p)=S, ,(p) ®*®, (p) (see section 7.2.8) then

EV(F,) =EV(F) ® EV(®, ().

e Displaying the 2D colored animation: Each extended face perpendicular to the X3 axis
of each 3D frame Fy contains the polygons to display. The colors to apply to those
polygons are referred through the X3 coordinate that contains the integrated red-green-
blue components. In the Figure 7.26 is presented the sequences of extended faces of the

3D frames F for the 2D animation presented in Figure 7.20.
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F1's extended faces F,’'s extended faces

F3's extended faces F4's extended faces
FIGURE 7.26
The sequences of extended faces (the polygons to display) of the 3D frames that represent a
color 2D-animation (from Figure 7.20; own elaboration).

Another application to explore and to analyze in our future research is the managing
of a color 3D-animation’s n frames, which can be performed in analogous way (we assume
that each 3D frame is defined through a voxelization, see section 6.3.2.2):

e The red-green-blue components of each voxel will be integrated into a single value.

Each voxel will now be extruded towards the fourth dimension where the value
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integrating its red-green-blue components will now be considered as its X, coordinate
(coordinates X3, X, and X3 correspond to the original voxels' coordinates). Let us call
xfy to the set composed by the 4D hyperprisms (the extruded voxels) of each extruded
frame fi.

Let pr; be a4D hyperprism in xfx and npr the number of prismsin that set. Since al the
hyperprisms in xf, are quasi digoint 4D-OPP's, we can easily obtain the 4D-OPP and its
respective extreme vertices of the whole 4D frame by computing the regularized union

of all the hyperprismsin xf.. Then we have to apply (see section 7.2.8):

EV(F,) =@ EV(pr, e xf,)

i=1
Where Fy is the 4D frame (a 4D-OPP) that represents the union of al the hyperprisms
in xfy.
Let us extrude Fy into the fifth dimension, and thus obtain a 5D hyperprism hyperprismy
whose bases are Fy and its length is proportional to the time fy is to be displayed. The

new fifth dimension will measure and represent the time.
Let p=Uhyperprismk, then p is a 5D-OPP that represents the given color
k=1

3D-animation. Since al the n hyperprisms are quasi disoint 5D-OPP's, then the EV(p)

for p can be obtained by applying:
EV(p) =®,_,EV (hyperprism,)

The sequence of sections of p corresponds to the sequence of 4D frames, i.e,

Sc(p)=F.



e Computation of 4D frames: Since S, (p)=S, ,(p) ®*®, (p) (see section 7.2.8) then
EV(F) =EV(F_) ®EV(D,(p)).
e Displaying the 3D colored animation: Each extended volume perpendicular to the X4

axis of each 4D frame Fy contains the voxels to display. The colors to apply to those

voxels are referred through the X4 coordinate that contains the integrated red-green-blue

components.

7.4 Application 2: Comparing Color 2D-Images Through Their

Extrusionsto the 5D Color space

The topic related to comparing color 2D-images has been widely considered in
several works by proposing specific methods to achieve this process, see for example
[Huttenlocher, 93], [Pass, 96] or [Jurisica, 00]. We propose now a method for comparing

color 2D-images which can be resumed in the following way:

a) Extruding color 2D-images towards the 5D colorspace (section 7.4.1).
b) Computing the 5D hypervolume of extruded images (section 7.4.2).
c) Determining if two color 2D-images are “ initially smilar” (section 7.4.3).
d) Computing the intersection between two extruded images (section 7.4.4).
e) Determining if two color 2D-images are similar (section 7.4.5).
Finally, in section 7.4.6 is presented the algorithm to perform the proposed comparison

method and an application is mentioned.
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7.4.1 Extruding color 2D-images towar dsthe 5D color space

The color 2D-images are extruded towards the 5D colorspace: where Xi, X2, X3, X4
and Xs coordinates correspond to the pixels' values X1, X2, R (the red component), G (the
green component) and B (the blue component), respectively [Duffin, 94]. By this way the
extrusion of each pixel will be a 5D hyperprism h; and n will indicate the total number of
hyperprisms obtained for a color 2D-image. As mentioned in previous section, we have to
avoid zero values for components R, G and B in order to obtain for each pixel its

corresponding 5D hyperprism.
7.4.2 Computing the 5D hypervolume of extruded images

Let H the set of 5D hyperprisms for a color 2D-image. Now, we will compute the
total 5D hypervolume HV of this set, i.e. the sum of the 5D hypervolume of each one of its

hyperprisms:

HV =" hypervolume(h, e H)
i=1

The hypervolume of a 5D hyperprism can be easily computed through the product
of its values x;Sde * x,Sde * R* G * B, where x;Sde = x,Sde = 1 correspond to the

dimensions of apixel in the original 2D-image.
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7.4.3 Determining if two color 2D-images are “initially amilar”

Let Hy and Hy be the mrrepondng sds of 5D hyperprisms for two color

2D-imagesa and b with their repedive computed 5D hypervolumesHV, and HV,. If we

assime that the olor comporents R, G and B are inside the range [1 — 25 (where 1

indicates the leas intensity), then we can exped that the hyperprism of a white pixel

(R=256,G=256, B=256) will have the maximum 5D hypervolume (in fad 256° u°), while

the hyperprism of a bladk pixel (R=1, G=1, B=1) will have the minimum 5D hypervolume

(13 u°). If the majority of the pixels of an image ae dark then its assciated 5D

hypervolume will be lessthan the assciated 5D hypervolume of aimage whosepixels ae

lighter and therefore, bah imageswill have numeric diff erencesrelated with the wlor of

their pixels. Thesediff erences ca be determined throughthe mmputation d the function

Qap between the total hypervolumesby acording to:

Qa,b (HVa ’ Hvb) =

HV
1- a

if  HV, <HV,
b
LMY,

if  HV, <HV,

0 if HV,=HV,

Let &, be an arbitrary assgned value such that 0< ¢, <1. Then, we will propcse

that two images a and b are “initially damilar” (because a seand comparison will be

considered) if the Q) of the 5D hypervolumesof the wrregpondng ses H, and Hy, sdisfies

theinequality (infad ¢, is an allowed dff erence):

Qa,b < {,‘1
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For example, consider the images presented in Figure 7.27 and &, = 0.05. Then

HV, (according to our implementation, see Appendix F) is 5,146,844 u® (where u° stands
for 5D hypercubical units) and HV}, is 4,996,787 u°. Therefore Qap(HVa,HVp) ~ 0.029 and

0.029 < 0.05which implies that the images are “ initially amilar” .

Image a Image b
FIGURE 7.27
Two images classified as“ initially smilar”
(seetext for details; images obtained from [Cenapred, 03]).
The images from Figur e 7.28 were classified, according to our proposed procedure,
asnot “initially smilar”. Let £,=0.05, HV, is equal to 10,742,439 u°, HV}, is 9,819,038 u°

and Q,p(HVa,HV) ~ 0.085. Therefore 0.085< 0.05 is not true.

Image a Image b
FIGURE 7.28
Two images classified as not “ initially dmilar”
(see text for details; images obtained from [Cenapred, 03]).
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7.4.4 Computing the inter section between two extruded images

Now we will compute the intersection between H, and Hy, (the corresponding sets of
5D hyperprisms for color 2D-images a and b) which were classified as “ initially amilar” .
If the sets of hyperprisms are represented through an scheme as the EVM-5D then this
Boolean operation would be performed through its corresponding algorithm (see section
7.2.8) by intersecting the corresponding 5D hyperprisms. However, this process can be
achieved in avery simple way by considering only two points of each 5D hyperprism: one
of the points will be (X1, X2, 0, 0, 0) while the other will be (x; + 1, X2 + 1, R, G, B). These
two points will define a segment which is the main diagonal that connects the bases of a 5D

hyperprism.

Let hy e Haand hy € Hp be two 5D hyperprisms with the same x; and x, coordinates.
The points coordinates of the diagonal associated to h; are then (xi, X2, O, 0, 0) and
(X1 + 1, X2 + 1, R;, Gj, Bj); while the points’ coordinates of the diagonal associated to h; will

be (X1, X2, 0,0, 0) and (x1 + 1, X2 + 1, R;, G;, B;).

The required Boolean operation, intersection, can be performed by selecting only
the minimum coordinates of the points (x;+1, Xo+1, R;, G;, B;) and (X1+1, X>+1, R;, Gj, B)),
that is, we have the new point:
(x1+1,x2+ 1, Ry, Gk, Bk)
Where
Ric=min{R;, R}
Gk = min{ G;, G}

Bk = mi n{ Bi, Bj}
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The new segment’s vertices (X1, X2, 0, 0, 0) and (x1 + 1, X2 + 1, Ry, Gy, By) will
correspond to the main diagonal of the 5D hyperprism hy which is the intersection between
5D hyperprisms h; and h;. The final set Hc of hyperprisms he will correspond to the

intersection between the 5D colorspace’s extrusions of image a and image b.

We will illustrate the above step by considering a ssmple example of the two color
1D-images presented in Table 7.9. We will assume in this case that there are only two
color components (R and G) whose values will be in {1, 2, 3}. Moreover, x;Sde will be
equal to one. These color 1D-images will be extruded to a 3D colorspace, where X, axis
will correspond to the red component while X3 axis will correspond to the green
component. The extrusions H, and Hy (each one with three prisms; the dotted lines indicate
their main diagonals) are also shown in Table 7.9.

TABLE 7.9

Two color 1D-images and their extrusion to the 3D colorspace
(seetext for details, own elaboration).

Color 1D-Image a Color 1D-Imageb
. R=3,6=2 R=2,6=2  R=16=2 _ R=36=3 = R=26=1 = R=1G=1
0 W @ (3) (0) B @ 3)
—p X —e

Image a Extrusion to 3D colorspace (Ha) | Imageb Extrusion to 3D color space (Hyp)

(1,3,2)

(2,2,2)

(3,1,2)
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In the Table 7.10 are shown the main dagoral’s pair of verticesof eat ore of the
prisms in the extrusions H, and Hy, from Table 7.9. One of the verticesin a diagoral will
have the values orregpondng to red and geeen comporents equal to zero; the intersedion
will be performed by considering the oppdasite vertex. In this casegiven two verticesi and
J, the new vertex k will be (x1 + 1, R, Gx) where Re=min{R;,R}} and G«=min{G;,Gj}.

Finally, the resulting nrew main dagonals can be seain Table 7.10'slag column.

TABLE 7.10
Performing the intersedion between prismsin H, and Hy, (from Table 7.9) throughtheir
correpondng main dagorals (seetext for detail s, own elaboration).

Pair of Vertices of the Vertices of the Ha n Hyp
Main Main diagonals’ for Main diagonals’ for (Hc'svertices of the
Diagonals prismsin Hy prismsin Hy main diagonals)
1 (0,0,0-(1,3,2 (0,0,0-(1,3,3 (0,0,0-(1,3,2
2 (1,0,0 -(2,2,2 (1,0,0 -(2,2,0 (1,0,0 -(2,2,0
3 (2,0,0-(3,1,2 (2,0,0-(3,1,) (2,0,0-(3,1,)

Finally, the new diagorals shown in Table 7.10 will descibe to three new prisms
that belong to the new se H.. See Table 7.11. Thesenew prisms ae the reallt of the
intersedion ketween the mrregpondng pEisms in H,y and Hy,. Finally, the prismsin He can

be intruded (or projeded) to get a wlor 1D-image ¢ (shown in Table 7.11).
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TABLE 7.11

The results of the intersection between the extrusions of two color 1D-images
from Table 7.9; see text for details. Own elaboration).
Hc = Ha M Hb

(1,3,2)

Color 1D-Imagec=an b
. R=3,6=2  R=2,6=1  R=16=l

(0) 1) (2) 3)

By reconsidering the application of these procedure over color 2D-images, we have
to add that in order to get the resultant color 2D-image of the intersection operation, only
we have to consider again its 5D hyperprisms main diagonals. The main diagonal’s first
point (X1, X2, 0, 0, 0) will indicate the coordinates of the original pixel (obviously x; and x2)
while the last three coordinates of the second point (X, + 1, X2 + 1, R, G, B) will indicate
their appropriate color. In the Figure 7.29 the color 2D-image, that is the result of

intersecting the 5D colorspace’s extrusions of images presented in Figure 7.27, is shown.
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Image a Image b

FIGURE 7.29
Computing the intersection between the 5D colorspace’s extrusions of two color
2D-images“ initially amilar” (from Figure 7.27; images a and b obtained from
[Cenapred, 03]; own elaboration).

7.4.5 Determining if two color 2D-images are similar

We will compute the 5D hypervolume HV, (according to step 2) of the set of prisms
which are the result of the intersection between H, and Hy, (the 5D extrusions of the images
being compared). The intersection between H, and Hp will imply that the set of prismsHc is
composed by the 5D hypervolume that is common to H, and Hp. Obviously there is 5D
hypervolume of H, not included in H and there is 5D hypervolume of Hy, not included in
Hc.. We will compute the proportion of the 5D hypervolume that belongs to H, but not
included in H. by the following function:

. HV,
Que =1=""""hv

a

In a similar way, the proportion of the 5D hypervolume that belongs to Hy, but not
included in H can be computed by:

HV
Qe =1="""h,
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Let ¢, be an arbitrary assigned value such that 0< g, <1. ¢, will indicate the

allowed proportion of 5D hypervolume of H, that is not included in Hc. In asimilar way, let
&, bean arbitrary value such that 0< ¢, <1 where ¢, will indicate the allowed proportion
of 5D hypervolume of Hy, not included in He. We will assume that two images a and b are
similar if their Qa4 and Q¢ satisfy both inequalities:

Quc <€,

Qb,c < gb

For example, consider the images and their intersection presented in Figure 7.29.
Since step ¢, we presented that HV, = 5,146,844 u° (U’ stands for 5D hypercubical units)
and HV,, = 4,996,787 u°. The 5D hypervolume HV, of the intersection between H, and Hy, is

3,744,778 u°. Then Qac ~ 0.272 and Que ~ 0.25. Let &, =&, = 0.30, then we have, that
through our procedure, both Q. <&, and Q, <&, are satisfied. Therefore, color 2D

ac —

imagesa and b in Figure 7.30 are classified as similar.

Image a Image b
FIGURE 7.30
Reproduction of Figure 7.27 (images a and b obtained from [ Cenapred, 03]).
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7.4.6 The Algorithm and Application

The whole proposed procedure (sections 7.4.1 to 7.4.5) for comparing two color

2D-images can be resumed through the following algorithm:

Boolean imagesAreSimilar(Image a, Image b, float e 1, float e a, float e _b)

{
/I We get the ses of 5D hyperprisms (exruded pixds) for imagesa and b.
Set Ha = getExtrudedPixel sFromlmage(a);
Set Hb = getExtrudedPixel sFromlmage(b);

Il We @lculate the 5D hypervolumesof the sés of the hyperprismsin Ha andHb.
Integer Hva = calculateHypervolume(Ha);
Integer Hvb = calculateHypervolume(Hb);

[* We alculate the numeric difference between the 5D hypervolumesof the sés of
hyperprisms. */
float Qab = calculateQab(Hva, Hvb);

[* If the numeric differenceislessor equd thanthe all owed dfferenceindicated by
theinpu value e 1then theimagesare “initially amilar” . */
If(Qab<=¢e 1)
{
I* We get the sé of 5D hyperprisms which isthe interse¢ion ketween the
5D hyperprismsin Ha andHb. */
Set Hc = intersection(Ha, Hb);

[* It is alculated the 5D hypervolume of the intersedion between the sés of
hyperprisms Ha andHb. */
Integer Hvc = calculateHypervolume(Hc);

/It is alculated the propartion d hypervolume in Ha na included in Hc.
float Qac = calculateQac(Hva, Hvc);

/It is alculated the propartion d hypervolume in Hb na included in Hc.
float Qbc = calculateQbc(Hvb, Hvb);

/' If both propartions of hypervolume not included in He are lessor equd
thanthe allowed propartionindicated by inpu valuese_a ande_bthen */
if((Qac<=e a) && (Qbc<=e h))

return true; // Theimagesare smilar.

return false; // Theimagesare not similar.

return false; // Theimagesare not “initially amilar” .
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The &owve proposed method for comparing images has been usal in an
experimental application related to Popocatépetl volcano (locaed in the limits of Puebla
state in México; and adive and undr monitoring since 1997 in order to evaluate its
fumarolesunder the context of Image Basal Rea®ning [Jurisica, 00. See Appendix F for

more detail s.
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