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Chapter 7 
Future Work 

 

 In this chapter we will discuss some lines of future work and some results based in 

our first approaches to these topics. Summarizing, there are two wide fields to consider in 

our future research: 

�� Precise determination of the new geometric transformation(s) that makes possible to 

determine the equivalencies between the 402 Hill 's configurations and the 253 Aguilera 

& Pérez's Configurations for the 4D-OPP's (section 7.1). 

�� Formal specifi cations of the theoretical foundations and algorithms related to the 

extension of the Extreme Vertices Model to the four and five-dimensional spaces 

(section 7.2) and their related applications (sections 7.3 and 7.4) for the analysis and 

visualization of multidimensional data. 

Although in this chapter we will present some results and applications based on the first 

approaches to these topics, the reader must consider them carefully because the basis in 

which they are supported still require a formal and careful inspection.  

 

7.1 Future Work: Towards the Determination of the Equivalencies 

Between Hill 's Configurations and Aguilera & Pérez's Configurations 

for the 4D-OPP's through a New Geometr ic Transformation 

 

 When Hill 's configurations are represented through their adjacencies counting (see 

section 5.7.2) it results that some of them (diff erent Hill 's configurations) have the same 

counting, and therefore they could be considered that belong to a same Aguilera & Pérez's 
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configuration. For example, in the Table 7.1 there are shown six hyper-boxes' sets that are 

representatives of six Hill 's configurations, however all of them have the same adjacencies 

counting. 

 

TABLE 7.1 
Six Hill 's configurations that supposedly belong to a same Aguilera & Pérez's configuration 

(own elaboration). 
Hill 's Configurations Aguilera & Pérez's Configuration 

Hyper-boxes' 
combinations 

Volume 
Adjacencies 

Face 
Adjacencies 

Edge 
Adjacencies 

Vertex 
Adjacencies 

0011110110000000 
1001011110000000 
0110101011000000 
1001101011000000 
0101011011000000 
1000000111101000 

4 6 4 1 

 

 As we saw in section 5.7.1 the determination of the Hill 's configurations is based in 

the fact that the 402 hyper-boxes' sets that represent these configurations cannot be reduced 

to a lesser number because all the possible compositions of rotations and reflections were 

exhaustively tested on them. In others words, the Hill 's configurations presented in Table 

7.1 cannot be reduced to the Aguilera & Pérez configuration with 4 volume, 6 face, 4 edge 

and 1 vertex adjacencies by using a composition exclusively integrated with rotations 

and/or reflections.  

 

 However, it should be possible to reduce the number of the Hill 's configurations by 

considering the application of new geometric transformations. Our initial approach is the 

following: we will consider the application of only one geometric transformation which is 

additional to the possible composition of rotations and reflections defined in section 5.7.1. 
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We will generate all possible matrices with 4 columns and 4 rows and whose values will be 

in {-1, 0, 1}. One of these matrices will be added to the compositions considered in the 

Hill 's configurations determination. The main idea behind this approach is that given two 

diff erent Hill 's configurations Cn1 and Cn2 but with the same adjacencies count, there is a 

composition Tn plus a matrix transformation TX (i.e. a possible new geometric 

transformation) such that: 

)( 21 CnTTCn X
n

��  

 

 The following is an implementation of this idea. We will generate all possible 

matrices with 4 columns and 4 rows and whose sixteen values will be in {-1, 0, 1}. Each 

one of the possible 316 = 43,046,721 matrices (matrix xTransformation) will be added to 

each one of the 20,480 possible combinations of rotations and/or reflections (see section 

5.7.1); by this way we get a possible composition X
n TT � . The algorithm will r eceive as 

input a set of diff erent Hill 's configurations (the vector HillConfigurations) but with the 

same adjacencies counting; and a binary string that represents an Aguilera & Pérez's 

configuration (obviously with the same adjacencies counting of the Hill 's configurations; 

one of the Hill 's configurations can be selected for this end; aguileraPerezConf in the 

code). In the calli ng of the function evaluateTransformationMatrixWithComposition, each 

Hill 's configuration will be transformed with all the possible X
n TT �  and evaluated against 

the aguileraPerezConf. We expect to find a valid transformation matrix when the Hill 's 

configuration is converted into the aguileraPerezConf. 
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void findTransformationMatrices(Vector Hill Configurations, 

BinaryString aguileraPerezConf) 

{  

for(int i = 0; i < Hill Configurations.size( ); i++) {  

int xTransformation[4][4] = {{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}}; 

BinaryString hill _conf = Hill Configurations.elementAt(i); 

for(int j = 1; j < 43046721; j++) {  

evaluateTransformationMatrixWithComposition 

(xTransformation, Hill _conf, aguileraPerezConf); 

getNextMatrix(xTransformation); 

}  

}  

}  
 

void evaluateTransformationMatrixWithComposition 

(int xTransformation[ ][ ] , BinaryString hill _conf, BinaryString aguileraPerezConf) 

{  

int composition[7] = {0,0,0,0,0,0,0}; 

for(int i = 0; i < 78125; i++) {  

BinaryString cn = hill _conf.clone( ); 

applyComposition(composition, cn);   

apply_XTransformation(xTransformation, cn); 

if(combinationIsValid(cn) == true) 

if(equals(cn, aguileraPerezConf) == true) 

/* It has been found a composition of rotations and/or reflections  

and x-transformation that converts a Hill 's configuration into a  

Aguilera & Pérez's Configuration. * / 

else 

return; //The matrix produces an invalid combination of hyper-boxes. 

getNextComposition(composition); 

}  

}  
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 Through this implementation we have found that there are at least two 

transformation matrices for any pair of Hill 's configurations with the same adjacencies 

counting that convert between them. By this way it is possible to convert the set of 402 

Hill 's configurations into the 253 Aguilera & Pérez's configurations. For example, in the 

Table 7.2 shows the transformation matrices found for two pairs of Hill 's configurations 

with 6 hyper-boxes; these four Hill 's configurations can belong to two Aguilera & Pérez's 

configurations through the application of their found transformation matrices between 

them. In the Appendix B are shown the possible equivalencies between the Hil l and 

Aguilera & Pérez's configurations. 
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TABLE 7.2 
The possible conversion of four Hill 's configurations into two Aguilera & Pérez's 

configurations (own elaboration). 

Hill 's Configurations and Associated Matr ix Transformation Aguilera & Pérez's 
Configurations 

Cn1 (Binary 
Representation) 

Transformation 
Matrix T(Cn1) = Cn2 

Cn2 (Binary 
Representation) 

Adjacencies 
Counting 

0101011110000000 

 

�
�
�
�

�

�

�
�
�
�

	




1100

0010

0101

0100

 

 

1011010110000000 

5 volume adjacencies  
5 face adjacencies 

0101011110000000 

 

�
�
�
�

�

�

�
�
�
�

	




1100

0101

0010

0100

 

 

1011010110000000 

4 edge adjacencies 
1 vertex adjacency 

0111010110000000 

 

�
�
�
�

�

�

�
�
�
�

	




1010

0100

0011

0010

 

 

1101100110000000 

5 volume adjacencies  
6 face adjacencies 

0111010110000000 

 

�
�
�
�

�

�

�
�
�
�

	




�

�

1101

0011

0100

0101

 

 

1101100110000000 

3 edge adjacencies 
1 vertex adjacency 

 

However, through this first approach we have found that there are some pairs of 

Hill 's configurations that have hundreds of valid transformation matrices. Moreover, we 

will have to assure, as part of our future work, that each one of the found valid matrices is 

not representing a composition of the considered transformations. By this way, we expect 

to count with a set of transformation matrices from which a new geometric 

transformation(s) should be determined. 
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7.2 The Extreme Vertices Model 

 

 In the following sections will be mentioned some of the basic concepts related to the 

Extreme Vertices Model for the representation of Orthogonal Pseudo-Polyhedra (EVM-3D) 

in a very concise form. This model also enables the development of simple and robust 

algorithms for performing the most usual and demanding tasks on solid modeling, such as 

closed and regularized Boolean operations, solid splitti ng, other set membership 

classifi cation operations and measure operations on 3D-OPP's. The EVM-3D was 

originally presented by Aguilera & Ayala in [Aguilera, 97] (for representing only 

Orthogonal Polyhedra) and widely described in [Aguilera, 98] (considering both 

Orthogonal Polyhedra and Pseudo-Polyhedra) where the aspects related to formalizations 

and proofs are treated with the proper detail .  

 

7.2.1 Br inks and Extreme Vertices in the 3D-OPP's 

 

A brink is defined as the maximal uninterrupted segment, built out of a sequence of 

colli near and contiguous two-manifold edges of a 3D-OPP with the following properties:  

�� Non-manifold edges do not belong to brinks. 

�� Every two-manifold edge belongs to a brink, whereas every brink consists of m  edges 

(m � 1), and contains m � 1 vertices. 

�� Two vertices of type V3, V4N1 or V6N1 (Table 7.3) are at either extreme of the brink 

(Extreme Vertices). These vertices have in common that they are the only ones that have 

exactly three incident two-manifold and perpendicular edges, regardless of the number 

of incident non-manifold edges, therefore those vertices mark the end of brinks in all 

three orthogonal directions. 
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�� The m � 1 vertices of type V4, V4N2, V5N or V6 (Table 7.3) are the only common 

point of two colli near edges of a same brink (interior vertices). 

�� Due to all six incident edges of a V6N2 vertex (Table 7.3) are non-manifold edges, none 

of them belongs to a brink, thus this vertex does not belong to any brink. 

 

TABLE 7.3 
Vertices in the 3D-OPP's and their relation with brinks 

(own elaboration). 

Extreme 
Vertices 

(The brinks' 
boundary)  

V3 
 

V4N1 

 

 
V6N1 

Brinks' 
Interior 
Vertices 

 

 
V4 

 
V4N2 

 
V5N 

 
V6 

Vertex that 
do not 

belong to 
any brink. 

 

 
V6N2 

 

Based in the previous analysis for brinks we have the following properties for the 

Extreme Vertices: 

�� Property 7.1: Every Extreme Vertex of a nD-OPP ( 31 

 n ) has exactly n incident 

manifold edges perpendicular to each other. This number is even for every non-extreme 

vertex. 

�� Property 7.2: Every Extreme Vertex of a 3D-OPP has an odd number of incident faces, 

and every non-extreme vertex has an even number of incident faces. 
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�� Property 7.3: Any Extreme Vertex of a nD-OPP ( 31 

 n ), when is locally described 

by a set of surrounding "boxes", is surrounded by an odd number of such "boxes". An 

even number of surrounding "boxes" either defines a non-extreme vertex, or does not 

define any vertex at all . See Table 7.4. 

 

TABLE 7.4 
The configurations from the nD-OPP's ( 31 

 n ) that describe 

Extreme Vertices (own elaboration). 
1D-OPP's 1 segment    

2D-OPP's 

1 rectangle 

b  

3 rectangles 

e  

3D-OPP's 

1 box 
 

 

b  

3 boxes 
 

f  g  h  

 

7 boxes 

u  

5 boxes 

o  p  q  
 

The Extreme Vertices of a 3D-OPP p are the ending vertices of all the brinks in p. 

Let V(p) be the set of vertices in p, then )()( pVpEV �  will denote to the set of the 

extreme vertices where )(16)(14)(3)( pNVpNVpVpEV ��� . #p will denote the 

cardinality of V(p). For a 3D-OPP p, its Extreme Vertices Model (EVM) is the model that 

will only store to all extreme vertices from p. For any 3D-OPP p, EV(P) will have an even 

number of vertices, that is, #p is even. See the Figure 7.1. 
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x

x 2

x 3

1

 
FIGURE 7.1 

Example of a 3D-OPP p and its set of Extreme Vertices 
(Continuous lines indicate manifold edges while the dotted lines indicate non-manifold 

edges; the points compose the set EV(P); own elaboration). 
 

 The brinks in a 3D-OPP can be classified according to the main axis to which they 

are parallel. Since the extreme vertices mark the end of brinks in the three orthogonal 

directions,  is  that any of the three possible sets of brinks (parallel to X1-axis, parallel to 

X2-axis or parallel to X3-axis, see Figure 7.2) will produce to the same set EV(p). 

 

 

x

x 2

x 3

1

 
a) 

 

x

x 2

x 3

1

 
b) 

 

x

x 2

x 3

1

 
c) 

FIGURE 7.2 
The brinks in a 3D-OPP (the OPP presented in Figure 7.1). 

a) The brinks parallel to X1-axis, b) the brinks parallel to X2-axis, 
c) the brinks parallel to X3-axis (own elaboration). 

 

7.2.2 Extended Faces and Extended Edges 

 

An extended face is the maximal set of faces lying on a plane perpendicular to one 

of the 3D space’s main axes X1, X2 or X3. These faces can be united by the edges or 
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vertices of a 3D-OPP. The faces of an extended face in a 3D-OPP can also be united by a 

non-manifold edge or by just one vertex which can be of the type V4, V5N, V6, V6N1 or 

V6N2. The EVM of an extended face (formerly a plane of vertices, according to the 

nomenclature presented in [Aguilera, 98]) of a 3D-OPP p is a subset from the EV(p). 

 

 An extended edge of a 2D-OPP p is the set of brinks that lie in a straight line that is 

parallel to a coordinate axis. The EVM of an extended edge (formerly a line of vertices, 

according to the nomenclature presented in [Aguilera, 98]) is a subset from the EV(p). 

 

Both extended faces of a 3D-OPP and extended edges of a 2D-OPP will be referred 

here as �  (formerly plv, according to [Aguilera,98]'s nomenclature) and each one will 

have an even number of vertices. A k-th extended face (or extended edge) of a 3D-OPP p 

will be referred as )( pk� . 

 

An EVM(p) can be considered as a sequence of extreme vertices models 

EVM( )(1 p� ), EVM( )(2 p� ), ..., EVM( )( pnp� ) from its corresponding np extended faces. 

The number of elements np in this sequence is the number of diff erent coordinates for the 

axis perpendicular to the extended faces )(1 p� , )(2 p� , ..., )( pnp� . See Figure 7.3. The 

EVM of each extended face is at the same time the sequence of EVM's from its extended 

edges, and the EVM of a brink is defined by a pair of extreme vertices. 
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x

x 2

x 3

1

 
a) 

x

x 2

x 3

1

 
b) 

x

x 2

x 3

1

 
c) 

FIGURE 7.3 
The sequences of extended faces in a 3D-OPP (the OPP presented in Figure 7.1). a) The 

extended faces perpendicular to X1-axis. b) The extended faces perpendicular to 
X2-axis. c) The extended faces perpendicular to X3-axis (own elaboration). 

 

7.2.3 Slices 

 

 An slice is the region of a 3D-OPP contained between the corresponding supporting 

planes of two consecutive extended faces. A k-th slice of a 3D-OPP p is denoted by 

slicek(p). Then �
1

)(
�

�

np

k
k pslicep . See Figure 7.4 for an example. 

 

x 1

x 2

x 3

 
FIGURE 7.4 

The slices of a 3D-OPP (presented in Figure 7.1. There are presented the regions from the 
3D-OPP between the supporting planes of the planes of vertices perpendicular to X1-axis; 

own elaboration). 
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7.2.4 Sections 

 

 A section is the resulting 2D-OPP from the intersection between a 3D-OPP and a 

plane which is perpendicular to one of the main axis. That 2D-OPP doesn't coincide with 

any extended face but it is parallel to all of them. Furthermore, it is called an internal 

section from p if the intersection between the 3D-OPP and the plane is not empty, 

otherwise it is called an external section. A k-th section of p between )( pk�  and )(1 pk �
�  

is referred by Sk(p). The slices of a 3D-OPP's are a set of one or more disjoint prisms whose 

base is the section of each slice. In Figure 7.5 are presented the sections for the 3D-OPP 

from Figure 7.1. 

 

x

x 2

x 3

1

 
a) 

x

x 2

x 3

1

 
b) 

x

x 2

x 3

1

 
c) 

FIGURE 7.5 
The sections of a 3D-OPP (the OPP presented in Figure 7.1). a) The internal sections 

perpendicular to X1-axis. b) The internal sections perpendicular to X2-axis. c) The internal 
sections perpendicular to X3-axis (own elaboration). 

 

7.2.5 Computing the Extended Faces Through Sections 

 

 Let p be a (d-1)-dimensional OPP embedded in Ed, then p  will denote to the 

projection of p on a (d-1)-dimensional hyperplane parallel to p. 
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 The projection of an extended face )( pk�  of a 3D-OPP p can be obtained by 

computing the regularized XOR between the projections of its previous section )(1 pSk�
 and 

its following section )( pSk . Then we have that:  

],1[,)()()( *
1 nppSpSp kkkk �����

�
 

 

7.2.6 Computing the Sections Through the Extended Faces 

 

 The projection )( pSk  of any section from a 3D-OPP p can be obtained by 

computing the regularized XOR between the projection of the section )(1 pSk�
 and the 

projection of the extended face )( pk� . Then we have that: 

�)(0 pS  � 

],1[,)()()( *
1 npppSpS kkkk �����

�
 

 

 Or in an equivalent way by computing the regularized XOR of the projection of all 

the previous extended faces: 

)(*)(
1

ppS i

k

i
k �� �

�

 

 

 The projection of the first and last extended faces of any 3D-OPP p must coincide 

with the projection of the first and last internal sections of p, that is to say, )()( 11 ppS ��  

and )()(1 ppS npnp ��
�

. 
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7.2.7 Virtual Extended Faces 

 

 An  empty  extended  face  is called a virtual extended face. Let p be an arbitrary 

3D-OPP, then we say that p has a virtual extended face )( pk�  which is perpendicular to 

one of the main axes if there are no vertices of p in such extended face. We know that 

starting from the consecutive sections Sk-1(p) and Sk(p) it is possible to obtain )( pk�  

through )()()( *
1 pSpSp kkk ���

�
. But if )()(1 pSpS kk �

�
 then obviously )( pk� =�. 

That means that any number of virtual extended faces can be considered, as required, 

without altering to p. 

 

7.2.8 Future Work: Towards the Extreme Vertices Model in the 4D and 5D Spaces 

 

 This section presents our first experimental results about the representation of 4D 

and 5D Orthogonal Pseudo-Polytopes (4D-OPP’s and 5D-OPP’s) through a single subset of 

their vertices. In order not to repeat the same words, sometimes we use parenthesis for the 

5D case. Although some of the following results are promising, the reader must consider 

them carefully because a deep inspection of the theoretical foundations and algorithms is 

still required.  
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 Consider the construction of a 4D-OPP as the union of several 4D-OPP's in the 

following way (Figure 7.6): 

�� We will have a hyperdimensional "L-shaped" polytope a in Figure 7.6, and 

�� Three four-dimensional hypercubes b, c and d. 

�� The polytope a will share a vertex with hypercube c and a face with hypercube b. 

�� The hypercube b will share an edge with hypercube d. 

See the final 4D-OPP in the Figure 7.7. We will use it the following sections to exemplif y 

some aspects about the EVM-4D. 

 

a)

b)

c)

d)

 
FIGURE 7.6 

The construction of a 4D-OPP by the union of several 4D-OPP's 
(a hyperdimensional "L-shaped" polytope and three hypercubes; own elaboration). 
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FIGURE 7.7 

A 4D-OPP resulting from the union of several 4D polytopes 
(seen in Figure 7.6; own elaboration). 

 

 The property 7.3 says that any Extreme Vertex of a nD-OPP ( 31 

 n ), when is 

locally described by a set of surrounding boxes, is surrounded by an odd number of such 

boxes. We will assume now that this is true for 1�n . Then, by instantiation, any vertex of 

a (5D) 4D-OPP when is surrounded by an odd number of (5D) 4D hyper-boxes should be 

an extreme vertex. In fact, there are 1 configuration with 1 or 15 hyper-boxes, 6 

configurations with 3 or 13 hyper-boxes, 20 configurations with 5 or 11 hyper-boxes and 

30 configurations with 7 or 9 hyper-boxes in the 4D-OPP's that should describe extreme 

vertices (see Appendix A). Moreover, through the 5D-OPP's configurations counting 

(presented in Section 5.3) there are 1 configuration with 1 or 31 hyper-boxes, 10 

configurations with 3 or 29 hyper-boxes, 66 configurations with 5 or 27 hyper-boxes, 236 

configurations with 7 or 25 hyper-boxes, 570 configurations with 9 or 23 hyper-boxes, 989 
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configurations with 11 or 21 hyper-boxes, 1,406 configurations with 13 or 19 hyper-boxes 

and 1,607 configurations with 15 or 17 hyper-boxes that should describe Extreme Vertices. 

 

We will consider that every (5D) 4D-OPP p is initially represented through a 

hypervoxelization (see section 6.4.3). Then, we will select only such vertices with an odd 

number of incident (5D) 4D hyper-boxes. We will call to the resultant set of vertices the 

extreme vertices of p, that is, EV(p). Figure 7.8 shows the set of extreme vertices of the 

4D-OPP of Figure 7.7. 

 

 
FIGURE 7.8 

A 4D-OPP (from Figure 7.7) and its set of Extreme Vertices (own elaboration). 

 

We will refer to a brink as the segment defined by two consecutive extreme vertices 

that lie on a line parallel to one of the (5D) 4D space's main axes. Moreover, brinks must be 

between and odd-numbered extreme vertex and an even-numbered extreme vertex in that 

order (see Figure 7.9). There is no brink between an even one and any odd one. In each 
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dimension, every extreme vertex has just one incident brink, thus in all the (five) four 

dimensions every extreme vertex has exactly (five) four incident brinks perpendicular to 

each other. 

 

1 2 3 4 5 6 7 8  

FIGURE 7.9 
Numbering the extreme vertices that lie on a line parallel to one of the space’s main axes 

and composing their corresponding brinks (own elaboration). 

 

 For example, in Figure 7.10 are respectively shown: 

�� The parallel brinks to X1-axis (7.10.a); 

�� The parallel brinks to X2-axis (7.10.b); 

�� The parallel brinks to X3-axis (7.10.c); 

�� The parallel brinks to X4-axis (7.10.d); 

From the 4D-OPP presented in Figure 7.7. 
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a) 

 

 
b) 

 

 
c) 

 

 
d) 

FIGURE 7.10 
A 4D-OPP (from Figure 7.7) and its brinks parallel to X1 (a), X2 (b), X3 (c) and X4 (d) axes 

(own elaboration). 
 

We will consider an extended (hypervolume) volume as the set of (hypervolumes) 

volumes of a (5D) 4D-OPP p lying on a (4D) 3D hyperplane perpendicular to one of the 

(5D) 4D space’s main axes X1, X2, X3, X4 (or X5). The (hypervolumes) volumes in an 
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extended (hypervolume) volume can be joined by lower dimensional elements as 

(volumes), faces, edges or vertices of a (5D) 4D-OPP. We will assume that the set of 

extreme vertices of a extended (hypervolume) volume is a subset of EV(p). 

 

 

 

Moreover, we will also refer to the extended (hypervolumes) volumes for (5D) 4D 

Orthogonal Pseudo-Polytopes as � . Moreover, )( pk�  will refer to the k-th (5D) 4D 

extended (hypervolume) volume of a (5D) 4D polytope p. We will also expect that the 

number np of � 's in a (5D) 4D-OPP p is the number of different coordinates for the axis 

perpendicular to these � 's. 

 

 For example, in Figure 7.11 are respectively shown (extended volumes): 

�� The � 's perpendicular to X1-axis (7.11.a); 

�� The � 's perpendicular to X2-axis (7.11.b); 

�� The � 's perpendicular to X3-axis (7.11.c); 

�� The � 's perpendicular to X4-axis (7.11.d); 

From the 4D-OPP presented in Figure 7.7. 
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a) 

 
b) 

 

 
c) 

 
d) 

FIGURE 7.11 
A 4D-OPP (from Figure 7.7) and its � 's (extended volumes) perpendicular 

to X1 (a), X2 (b), X3 (c) and X4 (d) axes (own elaboration). 
 

 

We will consider that a slice is the region contained in a (5D) 4D-OPP between the 

supporting (4D) 3D hyperplanes of two consecutive extended (hypervolumes) volumes. 

Therefore we can assume that Slicek(p) will denote the k-th slice of a (5D) 4D-OPP p. 

Hence �
np

k
k pslicep )(� .  
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 In the Figure 7.12.a are shown the regions between the extended volumes 

perpendicular to X1-axis of the 4D-OPP presented in Figure 7.7. Finally, in the Figure 

7.12.b are shown the 4D-OPP's slices. 

 

a)  

b)  

FIGURE 7.12 
The regions of a 4D-OPP (presented in Figure 7.7) between its extended volumes 

perpendicular to X1-axis (a) and its respective slices (b; Own elaboration). 
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We will say that a section is the (4D) 3D-OPP resulting from the intersection 

between a (5D) 4D-OPP and an orthogonal (4D) 3D hyperplane perpendicular to a 

coordinate axis which does not coincide with the supporting (4D) 3D hyperplane of any 

extended (hypervolume) volume. Furthermore, it will be called external or internal section 

of p, respectively, if this intersection is empty or not. 

 

 Sk(p) will refer to the k-th section of p between )( pk�  and )(1 pk �
� . 

 

For example, in Figure 7.13 are respectively shown: 

 

�� The sections perpendicular to X1-axis (7.13.a); 

�� The sections perpendicular to X2-axis (7.13.b); 

�� The sections perpendicular to X3-axis (7.13.c); 

�� The sections perpendicular to X4-axis (7.13.d); 

From the 4D-OPP presented in Figure 7.7. 
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a) 

 
b) 

 

 
c) 

 
d) 

FIGURE 7.13 
A 4D-OPP (from Figure 7.7) and its sections perpendicular to X1 (a), X2 (b), X3 (c) 

and X4 (d) axes (own elaboration). 
 

 A slice from a (5D) 4D-OPP is a set of one or more disjoint (5D) 4D hyperprisms 

whose base is the slice’s section. A (5D) 4D hyperprism is generated by the parallel motion 

of a (4D polytope) polyhedron; it is bounded by the (4D polytope) polyhedron in its initial 

and final positions and by several prisms [Sommervill e, 58] (a special case of a [5D] 4D 

hyperprism is a [5D] 4D hypercube generated according to section 2.2.1.1).  
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a)  b)  
 

c)  
FIGURE 7.14 

A 4D-OPP (presented in Figure 7.7) and a) its regions between its extended volumes 
perpendicular to X2-axis; b) its slices and c) its slices showing their respective sections 

(also perpendicular to X2-axis) as their bases (own elaboration). 
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All the orthogonal (4D) 3D hyperplanes intersecting a (5D) 4D-OPP in the same 

slice  give  the  same  section.  Hence,  every  n-dimensional  slice  has  its   representing 

(n-1)-dimensional section. See Figure 7.14. 

 

Consider  p  as  a  (four-)  three-dimensional  OPP  embedded  in   the   (fifth-)  

four-dimensional space, then p  will denote the projection of p onto a (4D) 3D hyperplane 

parallel to p. This way we can consider that the projection of the set of extended 

(hypervolumes) volumes )( pk�  of a (5D) 4D-OPP, p, can be obtained by computing the 

regularized XOR between the projections of its previous )(1 pS k �  and next )( pS k  sections 

(this is an extension of the procedure presented in [Aguilera, 98], see section 7.1.6): 

 

)()()( *
1 pSpSp kkk ��� � , ],1[ npk �� . 

 

 Moreover, the projection of any section )( pS k , of a (5D) 4D-OPP, p, can be 

obtained by computing the regularized XOR between the projection of its previous section 

)(1 pS k �  and the projection of its previous extended (hypervolume) volume )( pk� . Or, 

equivalently, by computing the regularized XOR of the projection of all the previous 

extended (hypervolumes) volumes (this is also an application of the procedure presented in 

[Aguilera, 98], see section 7.1.7):  

 

�
�
�

�����

��

� ],1[,)()()(

)(
*

1

0

npppSpS

pS

kkkk
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 That is: 

)(*)(
1

ppS i

k

i
k �� �

�

 

 

 The projection of the first and last extended (hypervolumes) volumes of any (5D) 

4D-OPP p should coincide with the projection of the first and last internal sections of p, 

that is: 

)()( 11 ppS ��  and )()(1 ppS npnp ��
�

. 

 

Now, we will extend some of the concepts originally presented in [Aguilera, 98] for 

the achievement of Boolean operations between (5D) 4D-OPP's. Let p and q be two (5D) 

4D-dimensional OPP's with EV(p) and EV(q) as their respective extreme vertices, then 

)()()( * qEVpEVqpEV ��� . This expression allow us to suggest formulas for 

computing the (4D) 3D-dimensional hyperplanes of vertices of the (5D) 4D-OPP's through 

their sections and vice versa. Then we can expect that: 

 

�� ))(())(())(( 1 pSEVpSEVpEV kkk ���
�

 

�� ))(())(())(( 1 pEVpSEVpSEV kkk ���
�

 

 

Moreover, two expressions can be also suggested for using the XOR operator. 

These expressions should allow the computing of the union and the diff erence of two (5D) 

4D-OPP's whose specifi c situations are previously known: 
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�� Let p and q be two disjoint or quasi-disjoint (5D) 4D-OPP's (that is, �� qp * �) with 

EV(p) and EV(q) as their respective sets of extreme vertices, then: 

)()()*( qEVpEVqpEV ��� . 

 

�� Let p and q two (5D) 4D-OPP's such that qp �  with EV(p) and EV(q) as their 

respective sets of extreme vertices, then: 

)()()*( qEVpEVqpEV ���  

 

 Let p and q be two (5D) 4D-OPP's and r = p op* q where op* is in },,,{ ****
���� . 

A Boolean regularized operation op* between p and q, each one expressed with its set of 

extreme vertices, should be performed by the same  op* by applying it over their sections 

also expressed through their sets of extreme vertices; these sections will be (4D) 3D-OPP's. 

These situation lead us to a recursive process, for computing the Boolean regularized 

operations, which descends in the number of dimensions [Aguilera, 98]. The recursion's 

basic case is defined by the Boolean operations between two 1D-OPP's (Table 7.5).  
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TABLE 7.5 
The Boolean regularized operations between two 1D-OPP's and their possible cases 

(own elaboration). 
If ab  & cd are: )( * cdabEVM �  )( * cdabEVM �  )( * cdabEVM �  )( * cdabEVM �  

a b

c d  
 �   

Disjoint: 
b < c 

{ a, b, c, d} � { a, b} { a, b, c, d} 

c d

a b

  �   

Disjoint 
d < a 

{ c, d, a, b} � { a, b} { c, d, a, b} 
a b

c d  
 �   

Contiguous: 
b = c 

{ a, d} � { a, b} { a, d} 
a b

c d  
 �   

Contiguous: 
a = d 

{ c, b} � { a, b} { c, b} 
a b

c d    � �

Coincident: 
a = c y b = d 

{ a = c, b = d} { a = c, b = d} � � 
a b

c d    � �

Inclusive 
( cdab � ): 

a < c < d < b 
a = c < d < b 
a < c < d = b 

 
{ a, b} 

{ a = c, b} 
{ a, d = b} 

 
{ c, d} 

{ a = c, d} 
{ c, d = b} 

{ a, c, d, b} 
{d, b}  
{ a, c}  

 
{ a, c, d, b} 

{d, b}  
{ a, c}  

c d

a b

 
  �  

Inclusive 
( cdab � ): 

c < a < b < d 
c = a < b < d 
c < a < b = d 

 
{ c, d} 

{ c = a, d} 
{ c, b = d} 

 
{ a, b} 

{ c = a, b} 
{ a, b = d} 

��

��

� 

{ c, a, b, d} 
{b, d}  
{ c, a}  

a b

c d      

Overlapping: 
a < c < b < d 

{ a, d} { c, b} { a, c}  { a, c, b, d} 
a b

c d      

Overlapping: 
c < a < d < b 

{ c, b} { a, d} {d, b}  { c, a, d, b} 
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 Now we will consider an example. Let A and B the two 4D-OPP's operands of the 

Table 7.6. The 4D-OPP A can be seen as a four-dimensional "cross-shaped" polytope and 

the 4D-OPP B can be considered as a four-dimensional "L-shaped" polytope (see Table 

7.6's first column). The operand A has three sections while operand B has only two (see 

Table 7.6's second column). Each 3D section will have only one 2D section (since they are 

only rectangular prisms; third column). Finally, each 2D section will have only one 1D 

section: a segment with their respective pair of extreme vertices (fourth column). The 1D 

sections' extreme vertices for operand A are labeled as ai and bi while the 1D sections' 

extreme vertices for operand B are labeled as ci and di. 

 

TABLE 7.6 
Two 4D-OPP's A & B and their corresponding sections since the 3D case until the 1D case 

(see text for details; own elaboration). 

4D-OPP's Sections 
(3D-OPP's) 

Sections 
(2D-OPP's) 

Sections 
(1D-OPP's) 

 

 
A 

 

  

a 1

a 2

a 3

b 1

b 2

b 3

 
 

 
B 

 

  c 1 c 2

d 1

d 2
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 The relative position for the Boolean operation is shown in Figure 7.15.a (the 

Boolean operation between the two 4D-OPP's). In the Figure 7.15.b is shown how interact 

the 3D sections for operands A and B (the Boolean operation between the 3D sections). In 

Figure 7.15.c are shown the interactions between the 2D sections (the Boolean operation 

between the 2D sections). Finally, in Figure 7.15.d are shown the interactions between the 

1D sections (the basic case for the Boolean operations). 

 

a)  b)  

c)  d)

a 1

a 2

a
3

b 1

b 2

b 3

c
1

c
2

d 1

d 2

 
FIGURE 7.15 

Two 4D-OPP's (presented in Table 7.6) with common interior regions (a). b) Their 3D 
sections (two of them have common interiors). c) The 2D sections from the 3D sections. d) 

The 1D sections from the 2D sections (own elaboration). 
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 Since the segments in Figure 7.15.d represent the basic case for the regularized 

Boolean operations between the 4D-OPP's A and B (of Figure 7.15.a), it must be applied 

the corresponding operator. We will exemplif y the operations of union, intersection and 

diff erence. In the Table 7.7 are shown the results of these operations. Table 7.7's columns 

1, 2 and 3 corresponds to BA *� , BA *�  and BA *�  respectively. The Boolean 

operations between 1D sections are performed according to Table 7.5. The resultant 1D 

sections will define 2D rectangular sections which in turn define the three or two 

(according to the operation) 3D sections of the resultant 4D-OPP.  
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TABLE 7.7 
Boolean Operations Between 1D Sections of two 4D-OPP's (whose relative positions are 
shown in Figure 7.15.a) and the resultant 4D-OPP's (see text for details; own elaboration). 

BA *�  BA *�  BA *�  

a 1

=a 2

b 1

b 2

=b 3

c 1 c 2

d 2

 
=a

2

a 3

=b 3

c 1

d 1

d 2

 
 

a 1

b 1

b 2

d 1  
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7.3 Application 1: Handling and Processing Animation Frames 

Using the EVM 

 

7.3.1 Black & White 2D Animation Using the EVM-3D 

 

This current application was originally suggested in [Aguilera, 98]. A black & white 

2D animation,  viewed as a sequence of n black & white 2D frames, can be handled as a 

3D-OPP in the following way: 

a) Let each frame fk in the animation be coded in the EVM as a 2D-OPP, where the inside 

of fk represents the black regions or pixels in the frame; and the outside, the white ones 

(See in Figure 7.16.a an example of a simple 2D black & white animation composed 

by four frames whose resolution is 9 x 9 pixels. Figure 7.16.b shows the result of the 

same frames considered as 2D-OPP's and their respective extreme vertices). 

a) 

 

 
f1 

 
f2 

 
f3 

 
f4 

b) 

 

 
f1 

 
f2 

 
f3 

 
f4 

FIGURE 7.16 
Example of a simple 2D black & white animation. a) Its frames with 9x9 pixels' resolution. 
b) The frames represented through 2D-OPP's and their extreme vertices (own elaboration). 
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b) Let us extrude fk into the third dimension, and thus obtain a prism prismk whose base is 

fk and its length is proportional to the time fk is to be displayed. The new dimension will 

measure and represent the time. See in Figure 7.17 the extrusion of the frames 

presented in Figure 7.16.b. 

 

 

 
prism1 

 
prism2 

 

 
prism3 

 
prism4 

FIGURE 7.17 
Extrusion of the frames of an animation (from Figure 7.16) and some of their extreme 

vertices (own elaboration).  
 

c) Let �
n

k
kprismp

1�

� , then p is a 3D-OPP that represents the given 2D animation (see 

Figure 7.18). Due to all the prisms are quasi disjoint 3D-OPP's, then the EVM for p can 

be obtained by applying [Aguilera, 98]: 

)()(
1 k

n

k
prismEVMpEVM � �

�  
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x  = t3  
FIGURE 7.18 

Composing the 3D-OPP that will r epresent an animation (from Figure 7.16) as the union of 
its extruded frames (own elaboration). 

 

 

Figure 7.19.a shows the � 's of the 3D-OPP that represents the animation from Figure 

7.16 which are perpendicular to the axis that represent the time. In Figure 7.19.b is 

shown separately each )( pk� . 
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a)

X 1

X 2

t

 

b) 

 

X 1

X 2

 
1�  

X 1

X 2

 
2�  

X 1

X 2

 
3�  

 

X 1

X 2

 
4�  

X 1

X 2

 
5�  

FIGURE 7.19 
The � 's, perpendicular to the corresponding axis for the time, of a 3D-OPP that represents 

an animation (from Figure 7.16; own elaboration). 
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By representing a given 2D animation using a 3D-OPP p and the EVM-3D we have 

the following characteristics: 

 

�� The sequence of sections of p corresponds to the sequence of frames, i.e., kk fpS �)( . 

 

�� Computation of frames: Since )(*)()( 1 ppSpS kkk ���
�

 (section 7.2.6) then, 

))(()()( 1 pEVMfEVMfEVM kkk ���
�

, i.e., the black regions at extended faces 

)( pk�  represent the regions of a previous frame fk-1 that need to be modified (changed 

from black to white, or from white to black) in order to update it to the following frame 

fk. Table 7.8 presents the sequence of the computation of the frames for the animation 

presented in Figure 7.16. 



 296 

 

TABLE 7.8 
Computing the frames for an animation (from Figure 7.16) represented through a 3D-OPP 

and the EVM (Own elaboration). 
 

)(1 pS k �
 )( pk�  

�)(0 pS  � 

 

 
)(1 p�  

 

 
)(1 pS = )(*)( 10 ppS ��  = f1 

 

)(2 p�  

 

 
)(2 pS = )(*)( 21 ppS ��  = f2 

 

)(3 p�  

 

 
)(3 pS = )(*)( 32 ppS ��  = f3 

 

)(4 p�  

 

 
)(4 pS = )(*)( 43 ppS ��  = f4 

 

 

)(5 p�  

)(5 pS = )(*)( 54 ppS �� = � 
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 The managing of a black & white 3D-animation’s n frames can be performed in 

analogous way: 

 

�� Let each 3D frame fk in the 3D-animation be coded in EVM as a 3D-OPP, where the 

inside of fk represents the black regions or voxels in the 3D frame; and the outside, the 

white ones. 

 

�� Let us extruded fk into the fourth dimension, and thus obtain a 4D hyperprism 

hyperprismk whose base is fk and its length is proportional to the time fk is to be 

displayed. 

 

�� Let �
n

hyperprismp
1�

�

�

�
 then p is a 4D-OPP that represents the given black & white 

3D-animation. 

 

�� By representing this 4D-OPP p through the EVM-4D we have that the sequence of 

sections of p corresponds to the sequence of 3D frames, i.e, kk fpS �)( . 

 

�� Computation of frames: Since )(*)()( 1 ppSpS kkk ���
�

 (see section 7.2.8) then, 

))(()()( 1 pEVfEVfEV kkk ���
�

, i.e., the black regions at extended volumes )( pk�  

represent the regions of a previous frame fk-1 that need to be modified (changed from 

black to white, or from white to black) in order to update it to the following frame fk. 
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7.3.1.1 Collision Detection 

 

 This application (which will be explored as part of our future research) was 

originally proposed in [Zhou, 91]. However, it can be considered under our context in the 

following way: 

 

If p and q are two (4D) 3D-OPP’s representing the black & white animation and/or motion 

of two (solids) polygons, then these two (solids) polygons collide iff ��� qp . 

Furthermore, if ��� qp  then the time coordinate values of qp �  indicate the precise 

instant  of  the  collision  (In  fact,  [Zhou, 91] proposed this application by representing 

3D-objects’ boundaries through the equations that define the set of points on the surfaces of 

spheres, ellipsoids, etc.). 

 

 

7.3.2 Representing Color 2D-Animations Through 4D-OPP's and Their 

Extreme Vertices 

 

 The procedure described in [Aguilera, 98] for processing black & white 2D 

animations can be directly extended to control colored frames through a 4D-OPP and its 

extreme vertices. We will label each colored frame in the animation as fk and n will be the 

number of such frames. In the Figure 7.20 an example of a simple color 2D-animation 

composed by four frames whose resolution is 9 x 9 pixels is shown. In each frame can be 

identified yellow, red, green and blue regions.  
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f1 

 

 
f2 

 

 
f3 

 

 
f4 

FIGURE 7.20 
Example of a simple color 2D-animation (own elaboration). 

 

A color animation can be handled as a 4D-OPP in the following way: 

a) The red-green-blue components of each pixel will be integrated into a single value (for 

example,  we  can  use  the  procedure  defined  in  [Gosling, 00]  to   represent   the 

red-green-blue components as an integer with 32 bits. Bits 0-7 correspond to the blue 

value, bits 8-15 correspond to the green value, bits 16-23 correspond to the red value 

and bits 24-31 to the alpha [transparency] value). Each pixel will now be extruded 

towards the third dimension where the value integrating its red-green-blue components 

will now be considered as its X3 coordinate (coordinates X1 and X2 correspond to the 

original pixels' coordinates). See Figure 7.21. 
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x  = color3

x 1x 2

 
FIGURE 7.21 

The 3D space defined for the extrusion of color 2D-pixels (own elaboration). 
 

 

Let us call xfk to the set composed by the rectangular prisms (the extruded pixels) of 

each extruded frame fk. It is very important to avoid the zero value in the X3 coordinate 

because a pixel couldn't be extruded and therefore its associated prism (a 3D-OPP) 

won't be obtained. See in Figure 7.22 the sets of prisms xfk which are the result of the 

extrusion of the frames fk of the animation presented in Figure 7.20. 
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xf1 

 

 
xf2 

 

 
xf3 

 

 
xf4 

FIGURE 7.22 
The sets of prisms which are the result of the extrusion of the frames of an animation 

(presented in Figure 7.20; own elaboration). 
 

b) Let prismi be a prism in xfk and npr the number of prisms in that set. Due to all the 

prisms in xfk are quasi disjoint 3D-OPP's, we can easily obtain the 3D-OPP and its 

respective EVM of the whole 3D frame by computing the regularized union of all the 

prisms in xfk. Then we have to apply (all the vertices in a prismi are extreme): 

)()(
1

ki

npr

i
k xfprismEVMFEVM �� �

�
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Where Fk is the 3D frame (a 3D-OPP) that represents the union of all the prisms in xfk. 

In the Figure 7.23 are shown the 3D frames Fk from the animation presented in Figure 

7.20). 

 

 
F1 

 
F2 

 
F3 

 
F4 

FIGURE 7.23 
The 3D frames that represent a 2D colored animation 

(presented in Figure 7.20. Some of their extreme vertices are shown; own elaboration). 
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c) Let us extrude Fk into the fourth dimension, and thus obtain a 4D hyperprism 

hyperprismk whose bases are Fk and its length is proportional to the time fk is to be 

displayed. The new fourth dimension will measure and represent the time. See in 

Figure 7.24 the process of extrusion of the 3D frame F1 presented in Figure 7.23. 

 

x  = color3

x 1x 2

x  = t ime4

 
FIGURE 7.24 

The process of extrusion of a 3D frame (F3, presented in Figure 7.23) in order to obtain a 
hyperprism1 (some of its extreme vertices are shown; own elaboration). 
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d) Let  �
n

k
khyperprismp

1�

� ,  then  p  is  a  4D-OPP  that  represents   the   given   color 

2D-animation. Due to all the n hyperprisms are quasi disjoint 4D-OPP's, then the EV(p) 

for p can be obtained by applying: 

)()(
1 k

n

k
hyperprismEVpEV � �

�  

In the Figure 7.25 are shown the )( pk� 's of the 4D-OPP p that represents the 

animation from Figure 7.20 which are perpendicular to the axis that represent the time. 
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)(1 p�  

 
 
 
 
 

)(2 p�  

 
)(3 p�  

 
)(4 p�  

 
)(5 p�  

FIGURE 7.25 
The extended volumes of the 4D-OPP p that represents a color 2D-animation (from Figure 

7.20. Their extreme vertices are shown. Own elaboration). 
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By representing a given color 2D-animation using a 4D-OPP p and its EV(p) we 

have the following characteristics: 

 

�� The sequence of sections of p corresponds to the sequence of 3D frames, i.e., 

kk FpS �)( . 

 

�� Computation of 3D frames: Since )(*)()( 1 ppSpS kkk ���
�

 (see section 7.2.8) then 

))(()()( 1 pEVFEVFEV kkk ���
�

. 

 

�� Displaying the 2D colored animation: Each extended face perpendicular to the X3 axis 

of each 3D frame Fk contains the polygons to display. The colors to apply to those 

polygons are referred through the X3 coordinate that contains the integrated red-green-

blue components. In the Figure 7.26 is presented the sequences of extended faces of the 

3D frames Fk for the 2D animation presented in Figure 7.20. 
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F1’s extended faces 

 
F2’s extended faces 

 
F3’s extended faces 

 
F4’s extended faces 

FIGURE 7.26 
The sequences of extended faces (the polygons to display) of the 3D frames that represent a 

color 2D-animation (from Figure 7.20; own elaboration). 
 

Another application to explore and to analyze in our future research is the managing 

of a color 3D-animation’s n frames,  which can be performed in analogous way (we assume 

that each 3D frame is defined through a voxelization, see section 6.3.2.2): 

�� The red-green-blue components of each voxel will be integrated into a single value. 

Each voxel will now be extruded towards the fourth dimension where the value 
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integrating its red-green-blue components will now be considered as its X4 coordinate 

(coordinates X1, X2 and X3 correspond to the original voxels' coordinates). Let us call 

xfk to the set composed by the 4D hyperprisms (the extruded voxels) of each extruded 

frame fk. 

�� Let pri be a 4D hyperprism in xfk and npr the number of prisms in that set. Since all the 

hyperprisms in xfk are quasi disjoint 4D-OPP's, we can easily obtain the 4D-OPP and its 

respective extreme vertices of the whole 4D frame by computing the regularized union 

of all the hyperprisms in xfk. Then we have to apply (see section 7.2.8): 

)()(
1

ki

npr

i
k xfprEVFEV �� �

�

 

Where Fk is the 4D frame (a 4D-OPP) that represents the union of all the hyperprisms 

in xfk. 

�� Let us extrude Fk into the fifth dimension, and thus obtain a 5D hyperprism hyperprismk 

whose bases are Fk and its length is proportional to the time fk is to be displayed. The 

new fifth dimension will measure and represent the time. 

�� Let  �
n

k
khyperprismp

1�

� ,  then  p  is  a  5D-OPP  that  represents   the   given   color 

3D-animation. Since all the n hyperprisms are quasi disjoint 5D-OPP's, then the EV(p) 

for p can be obtained by applying: 

)()(
1 k

n

k
hyperprismEVpEV � �

�  

�� The sequence of sections of p corresponds to the sequence of 4D frames, i.e., 

kk FpS �)( . 
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�� Computation of 4D frames: Since )(*)()( 1 ppSpS kkk ���
�

 (see section 7.2.8) then 

))(()()( 1 pEVFEVFEV kkk ���
�

. 

�� Displaying the 3D colored animation: Each extended volume perpendicular to the X4 

axis of each 4D frame Fk contains the voxels to display. The colors to apply to those 

voxels are referred through the X4 coordinate that contains the integrated red-green-blue 

components. 

 

7.4 Application 2: Comparing Color 2D-Images Through Their 

Extrusions to the 5D Colorspace 

 

 The topic related to comparing color 2D-images has been widely considered in 

several works by proposing specific methods to achieve this process, see for example 

[Huttenlocher, 93], [Pass, 96] or [Jurisica, 00]. We propose now a method for comparing 

color 2D-images which can be resumed in the following way: 

 

a) Extruding color 2D-images towards the 5D colorspace (section 7.4.1). 

b) Computing the 5D hypervolume of extruded images (section 7.4.2). 

c) Determining if two color 2D-images are “ initially similar”  (section 7.4.3). 

d) Computing the intersection between two extruded images (section 7.4.4). 

e) Determining if two color 2D-images are similar (section 7.4.5). 

Finally, in section 7.4.6 is presented the algorithm to perform the proposed comparison 

method and an application is mentioned. 
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7.4.1 Extruding color 2D-images towards the 5D colorspace 

 

The color 2D-images are extruded towards the 5D colorspace: where X1, X2, X3, X4 

and X5 coordinates correspond to the pixels’ values x1, x2, R (the red component), G (the 

green component) and B (the blue component), respectively [Duffin, 94]. By this way the 

extrusion of each pixel will be a 5D hyperprism hj and n will indicate the total number of 

hyperprisms obtained for a color 2D-image. As mentioned in previous section, we have to 

avoid zero values for components R, G and B in order to obtain for each pixel its 

corresponding 5D hyperprism.  

 

7.4.2 Computing the 5D hypervolume of extruded images 

 

Let H the set of 5D hyperprisms for a color 2D-image. Now, we will compute the 

total 5D hypervolume HV of this set, i.e. the sum of the 5D hypervolume of each one of its 

hyperprisms: 

�
�

��
n

i
i HhehypervolumHV

1

)(  

 

The hypervolume of a 5D hyperprism can be easily computed through the product 

of its values x1Side * x2Side * R * G * B, where x1Side = x2Side = 1 correspond to the 

dimensions of a pixel in the original 2D-image.  
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7.4.3 Determining if two color 2D-images are “ initially similar”  

 

Let  Ha  and  Hb  be  the  corresponding  sets  of  5D  hyperprisms  for  two color 

2D-images a and b with their respective computed 5D hypervolumes HVa and HVb. If we 

assume that the color components R, G and B are inside the range [1 – 256] (where 1 

indicates the least intensity), then we can expect that the hyperprism of a white pixel 

(R=256, G=256, B=256) will have the maximum 5D hypervolume (in fact 2563 u5), while 

the hyperprism of a black pixel (R=1, G=1, B=1) will have the minimum 5D hypervolume 

(13 u5). If the majority of the pixels of an image are dark then its associated 5D 

hypervolume will be less than the associated 5D hypervolume of a image whose pixels are 

lighter and therefore, both images will have numeric diff erences related with the color of 

their pixels. These diff erences can be determined through the computation of the function 

Qa,b between the total hypervolumes by according to: 
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Let 1�  be an arbitrary assigned value such that 10 1 

 � . Then, we will propose 

that two images a and b are “ initially similar”  (because a second comparison will be 

considered) if the Qa,b of the 5D hypervolumes of the corresponding sets Ha and Hb satisfies 

the inequality (in fact 1�  is an allowed diff erence): 

1, �
baQ  
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For example, consider the images presented in Figure 7.27 and 1�  = 0.05. Then 

HVa (according to our implementation, see Appendix F) is 5,146,844 u5 (where u5 stands 

for 5D hypercubical units) and HVb is 4,996,787 u5. Therefore Qa,b(HVa,HVb) "  0.029 and 

05.0029.0 
 which implies that the images are “ initially similar” . 

 
Image a 

 
Image b 

FIGURE 7.27 
Two images classified as “ initially similar”  

(see text for details; images obtained from [Cenapred, 03]). 
 

The images from Figure 7.28 were classified, according to our proposed procedure, 

as not “ initially similar” . Let 1� =0.05, HVa is equal to 10,742,439 u5, HVb is 9,819,038 u5 

and Qa,b(HVa,HVb) "  0.085. Therefore 05.0085.0 
  is not true. 

 
Image a 

 
Image b 

FIGURE 7.28 
Two images classified as not “ initially similar”  

(see text for details; images obtained from [Cenapred, 03]). 
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7.4.4 Computing the intersection between two extruded images 

 

Now we will compute the intersection between Ha and Hb (the corresponding sets of 

5D hyperprisms for color 2D-images a and b) which were classified as “ initially similar” . 

If the sets of hyperprisms are represented through an scheme as the EVM-5D then this 

Boolean operation would be performed through its corresponding algorithm (see section 

7.2.8) by intersecting the corresponding 5D hyperprisms. However, this process can be 

achieved in a very simple way by considering only two points of each 5D hyperprism: one 

of the points will be (x1, x2, 0, 0, 0) while the other will be (x1 + 1, x2 + 1, R, G, B). These 

two points will define a segment which is the main diagonal that connects the bases of a 5D 

hyperprism. 

 

Let hi �Ha and hj � Hb be two 5D hyperprisms with the same x1 and x2 coordinates. 

The  points’  coordinates  of  the  diagonal  associated  to  hi  are  then (x1, x2, 0, 0, 0) and 

(x1 + 1, x2 + 1, Ri, Gi, Bi); while the points’ coordinates of the diagonal associated to hj will 

be (x1, x2, 0, 0, 0) and (x1 + 1, x2 + 1, Rj, Gj, Bj). 

 

The required Boolean operation, intersection, can be performed by selecting only 

the minimum coordinates of the points (x1+1,  x2+1, Ri, Gi, Bi) and (x1+1, x2+1, Rj, Gj, Bj), 

that is, we have the new point: 

(x1 + 1, x2 + 1, Rk, GK, BK) 

Where 

Rk = min{Ri, Rj} 

GK = min{Gi, Gj} 

BK = min{Bi, Bj} 
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The new segment’s vertices (x1, x2, 0, 0, 0) and (x1 + 1, x2 + 1, Rk, Gk, Bk) will 

correspond to the main diagonal of the 5D hyperprism hk which is the intersection between 

5D hyperprisms hi and hj. The final set Hc of hyperprisms hk will correspond to the 

intersection between the 5D colorspace’s extrusions of image a and image b. 

 

 We will illustrate the above step by considering a simple example of the two color 

1D-images presented in Table 7.9. We will assume in this case that there are only two 

color components (R and G) whose values will be in {1, 2, 3}. Moreover, x1Side will be 

equal to one. These color 1D-images will be extruded to a 3D colorspace, where X2 axis 

will correspond to the red component while X3 axis will correspond to the green 

component. The extrusions Ha and Hb (each one with three prisms; the dotted lines indicate 

their main diagonals) are also shown in Table 7.9.  

 

TABLE 7.9 
Two color 1D-images and their extrusion to the 3D colorspace 

(see text for details; own elaboration). 
Color 1D-Image a Color 1D-Image b 

R=3,G=2 R=1,G=2R=2,G=2

(0) (1) (2) (3)

X 1  

R=3,G=3 R=1,G=1R=2,G=1

(0) (1) (2) (3)

X 1  
Image a Extrusion to 3D colorspace (Ha) Image b Extrusion to 3D colorspace (Hb) 

X 1

X  2 = R 

X  = G3

(0,0,0) (1,0,0) (2,0,0)

(1,3,2)
(2,2,2)

(3,1,2)

 X 1

X  2 = R 

X  = G3

(0,0,0)

(1,3,3)

(1,0,0) (2,0,0)

(2,2,1)

(3,1,1)
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 In the Table 7.10 are shown the main diagonal’s pair of vertices of each one of the 

prisms in the extrusions Ha and Hb from Table 7.9. One of the vertices in a diagonal will 

have the values corresponding to red and green components equal to zero; the intersection 

will be performed by considering the opposite vertex. In this case, given two vertices i and 

j, the new vertex k will be (x1 + 1, Rk, Gk) where Rk=min{Ri,Rj} and Gk=min{Gi,Gj}. 

Finally, the resulting new main diagonals can be seen in Table 7.10’s last column.  

 

TABLE 7.10 
Performing the intersection between prisms in Ha and Hb (from Table 7.9) through their 

corresponding main diagonals (see text for details; own elaboration). 
Pair of 
Main 

Diagonals 

Vertices of the 
Main diagonals’ for 

prisms in Ha 

Vertices of the 
Main diagonals’ for 

prisms in Hb 

Ha �  Hb 
(Hc’s vertices of the 

main diagonals) 
1 (0,0,0) – (1,3,2) (0,0,0) – (1,3,3) (0,0,0) – (1,3,2) 
2 (1,0,0) – (2,2,2) (1,0,0) – (2,2,1) (1,0,0) – (2,2,1) 
3 (2,0,0) – (3,1,2) (2,0,0) – (3,1,1) (2,0,0) – (3,1,1) 

 

 Finally, the new diagonals shown in Table 7.10 will describe to three new prisms 

that belong to the new set Hc. See Table 7.11. These new prisms are the result of the 

intersection between the corresponding prisms in Ha and Hb. Finally, the prisms in Hc can 

be intruded (or projected) to get a color 1D-image c (shown in Table 7.11). 
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TABLE 7.11 
The results of the intersection between the extrusions of two color 1D-images 

(from Table 7.9; see text for details. Own elaboration). 
Hc = Ha �  Hb 

 

X 1

X  2 = R 

X  = G3

(0,0,0) (1,0,0) (2,0,0)

(1,3,2)

(2,2,1)

(3,1,1)

 
Color 1D-Image c = a �  b 

 

R=3,G=2 R=1,G=1R=2,G=1

(0) (1) (2) (3)

X 1  
 

 

 

 

By reconsidering the application of these procedure over color 2D-images, we have 

to add that in order to get the resultant color 2D-image of the intersection operation, only 

we have to consider again its 5D hyperprisms’ main diagonals. The main diagonal’s first 

point (x1, x2, 0, 0, 0) will indicate the coordinates of the original pixel (obviously x1 and x2) 

while the last three coordinates of the second point (x1 + 1, x2 + 1, R, G, B) will indicate 

their appropriate color. In the Figure 7.29 the color 2D-image, that is the result of 

intersecting the 5D colorspace’s extrusions of images presented in Figure 7.27, is shown. 
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Image a 

�  

Image b 

= 

 
FIGURE 7.29 

Computing the intersection between the 5D colorspace’s extrusions of two color 
2D-images “ initially similar” (from Figure 7.27; images a and b obtained from 

[Cenapred, 03]; own elaboration). 
 

7.4.5 Determining if two color 2D-images are similar 

 

 We will compute the 5D hypervolume HVc (according to step 2) of the set of prisms 

which are the result of the intersection between Ha and Hb (the 5D extrusions of the images 

being compared). The intersection between Ha and Hb will imply that the set of prisms Hc is 

composed by the 5D hypervolume that is common to Ha and Hb. Obviously there is 5D 

hypervolume of Ha not included in Hc and there is 5D hypervolume of Hb not included in 

Hc. We will compute the proportion of the 5D hypervolume that belongs to Ha but not 

included in Hc by the following function: 

a

c
ca HV

HVQ ��1,  

 

 In a similar way, the proportion of the 5D hypervolume that belongs to Hb but not 

included in Hc can be computed by: 

b

c
cb HV

HVQ ��1,  
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Let a�  be an arbitrary assigned value such that 10 

 a� . a�  will indicate the 

allowed proportion of 5D hypervolume of Ha that is not included in Hc. In a similar way, let 

b�  be an arbitrary value such that 10 

 b�  where b�  will indicate the allowed proportion 

of 5D hypervolume of Hb not included in Hc. We will assume that two images a and b are 

similar if their Qa,c and Qb,c satisfy both inequalities: 

acaQ �
,  

bcbQ �
,  

 

For example, consider the images and their intersection presented in Figure 7.29. 

Since step c, we presented that HVa = 5,146,844 u5 (u5 stands for 5D hypercubical units) 

and HVb = 4,996,787 u5. The 5D hypervolume HVc of the intersection between Ha and Hb is 

3,744,778 u5. Then Qa,c "  0.272 and Qb,c "  0.25. Let a� = b� = 0.30, then we have, that 

through our procedure, both acaQ �
,  and bcbQ �
,  are satisfied. Therefore, color 2D 

images a and b in Figure 7.30 are classified as similar.  

 

 
Image a 

 
Image b 

FIGURE 7.30 
Reproduction of Figure 7.27 (images a and b obtained from [Cenapred, 03]). 
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7.4.6 The Algorithm and Application 

 

 The whole proposed procedure (sections 7.4.1 to 7.4.5) for comparing two color 

2D-images can be resumed through the following algorithm: 

 

Boolean imagesAreSimilar(Image a, Image b, float e_1, float e_a, float e_b) 
{ 
 // We get the sets of 5D hyperprisms (extruded pixels) for images a and b. 
 Set Ha = getExtrudedPixelsFromImage(a); 
 Set Hb = getExtrudedPixelsFromImage(b); 
 

 // We calculate the 5D hypervolumes of the sets of the hyperprisms in Ha and Hb. 
 Integer Hva = calculateHypervolume(Ha); 
 Integer Hvb = calculateHypervolume(Hb); 
 

 /* We calculate the numeric difference between the 5D hypervolumes of the sets of 
hyperprisms. */ 

 float Qab = calculateQab(Hva, Hvb); 
 

 /* If the numeric difference is less or equal than the allowed difference indicated by  
the input value e_1 then the images are “ initially similar” . */ 

If(Qab <= e_1) 
 { 
  /* We get the set of 5D hyperprisms which is the intersection between the  

5D hyperprisms in Ha and Hb. */ 
  Set Hc = intersection(Ha, Hb); 
 

 /* It is calculated the 5D hypervolume of the intersection between the sets of 
hyperprisms Ha and Hb. */ 

  Integer Hvc = calculateHypervolume(Hc); 
 

 // It is calculated the proportion of hypervolume in Ha not included in Hc. 
 float Qac = calculateQac(Hva, Hvc); 
 

 // It is calculated the proportion of hypervolume in Hb not included in Hc. 
 float Qbc = calculateQbc(Hvb, Hvb); 
 

 // If both proportions of hypervolume not included in Hc are less or equal  
than the allowed proportion indicated by input values e_a and e_b then */ 

 if((Qac <= e_a) && (Qbc <= e_b)) 
 

  return true; // The images are similar. 
 

 return false; // The images are not similar. 
 } 
 return false; // The images are not “ initially similar” . 
} 
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 The above proposed method for comparing images has been used in an 

experimental application related to Popocatépetl volcano (located in the limits of Puebla 

state in México; and active and under monitoring since 1997) in order to evaluate its 

fumaroles under the context of Image Based Reasoning [Jurisica, 00]. See Appendix F for 

more details. 

 

 

 

 

 

 


