Chapter 6
Some Schemes for the M odeling of n-Dimensional Polytopes

In this chapter we will describe some basic notions related to the Theory of Solid
Modeling (section 6.1) and the Regularized Boolean Operations (section 6.2). In the section
6.3 three of the most known schemes for the modeling of solids will be briefly described:
Boundary Representation, Cell Decomposition, Spatial Occupancy Enumeration and the
Classical OctTrees. In section 6.4 the generalizations of these schemes for the Modeling of
n-Dimensional Polytopes are presented and commented. In the section 6.4.2 the algorithm
of Cohen & Hickey for the n-dimensional Simplexation (a way of n-Dimensional Cell

Decomposition) of convex polytopes is described.

6.1 Solid Modeling

Solid Modeling is an area of wide development in several applications as the
Computer Aided Design and Manufacturing (CAD/CAM), electronic prototypes and

animation planning [Cardona, 01].

If asolid object can be modeled in away that its geometry is appropriately captured,
then it will be possible to apply, on such object, a range of useful operations. For example,
it would be possible to determine if two objects interfere between them. Due to the need of
modeling objects as solids, the development of a variety of specialized mechanisms to

represent them has arisen.
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[Requicha, 8( presents a seof formal criterions that every scheme for representing
solids must have rigorously defined:

e Domain: The se of entitieswhich are represaited by the stieme. The domain's size
must be enoughto allow the representation d a us€ul se of objeds, and therefore, it
charaderizesthe sdhieme's power.

e Completeness: The represantation can nad be anbiguows. There ae no doults dou
what is represeited. A representation must correpond to ore and orly ore lid
[Foley, 94.

e Uniqueness. A represantationis uniqueif it can be usead to codify a cetain solid in just
one way.

e Validity: A represaitation scheme must diseble the aedion d an invalid
representation, a in aher words, a represeatation that doesn't correpondto a lid.
Additionally, the objed must keep the dosure under rotation, translation and aher
operations [Foley, 96. In this way, the operations between valid solids must return

valid solids.

Furthermore, [Requicha, 8( descibesthreeinformal properties (becaisethey can
not be rigorously defined) but with a grea pradicd role in the sdiemesfor represeaiting
solids:

e Conciseness: It refers to the represantations size The cncise represantations $oud
contain minimal redundant information.
e Ease of Creation: The useas tods for creding the desgns soud be smple. The

conciserepresatations ae generally easer to credae.
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e Efficacy in the Context of Applications. The representation must all ow the aeaion of

effi cient algorithms for computing the desred physicd properties[Foley, 96.

The representation schemes for solid oljeds ae frequently divided in two large
caegories (athough no al the representations ae completely inside in ore of them):
Boundary Representations and Spatial Partitioning Representations [Hean, 95. The most

important ageds of these shemes aie descibed in sedions 6.3and 6.4.

6.2 Regularized Boolean Operations

Independently of the objeds represeantation, it shoud be feasble to combine them
to compaose new objeds. One of the most common methods to combine objeds ae the se
theoreticd Boolean operations, asthe union, dfference intersedion and exclusive OR.
However, the gplicaion o an adinary sd theoreticd Boolean operation ontwo solid
objeds does't necessaly produce a slid ojed. For example, the ordinary intersedion

between two cubeswith a dmmmon \ertex is apaint.
Instead of using adinary se theoreticd Boolean operators, The Regularized
Boolean Operators [Requicha, 77 will be usel. Each regularized Boolean operator is

defined in function d an ordinary operator in the following way:

A op* B = Closure (Interior(A op B))
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In such way we will have:

A u* B =Closure (Interior(A U B)) Regularized Union

A n* B =Closure (Interior(A N B)) Regularized Intersedion
A ®* B = Closure (Interior(A ® B)) Regularized Exclusive OR
A -* B =Closure (Interior(A - B)) Regularized Diff erence

Theseoperators ae defined asthe dosure of the interior of the @rregpondng se
theoreticd Boolean operation [Aguilera, 98. In this way, the regularized operations
between solids dways will generate lids. Recaturing the previous example, the

regularized intersedion between two cubeswith a ommon vertex is the null objed.

6.3 Some Schemes for the M odeling of Solids

6.3.1 Boundary Representations

In this model the lids are determined by the points that compaosetheir boundxry,
becaise they separate the lid's interior points from the exterior points. The boundxry is
represated by a digoint s of facesthat can be planar or curved. When the faces e
planar, ead ore is delimited by a ring perimeter of edgesthat intersed in the vertices If
the face has hdles it is delimited by ore or more alges internal rings. This type of
represantationis dso knowvn asSolid's Polyhedral Representation [Navazo, 89 or asB-Rep

[Rossgnac 99.
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The assciated information to the comporents on a payhedron's boundry (faces
edges ad erticeg is ammposed bytwo parts:
e The Geometry: It considers the dimensions and locdizdion in the gace for eah
comporent. In thisway, the points, edges and danes ae defined.
e The Topdogy: It descibesthe cnredions between the dements. By this way, a point
isidentifi ed as avertex that limits aline that defines an edge. A ring d edges @mposes

apoygonasthe boundry of a surfacethat defines aface

Independently of the representation that has been chosen for the boundiry's
geometry and topdogy, we must consider the redrictions for guaranteeng that an ohjed is
avalid solid. The dharaderisticsthat a olid's boundry must fulfil | are [Foley, 99 :

e Ead edge must contain oy two vertices
o Ead edge must be fared by exadly two faces
e Atleas three @lgesmust be joined in ead vertex.

e Thefaces ca na penetrate between them.

Thaose ®lids that fulfill t he previous properties séisfy the Euler's formulag which
expresses @ invariable relation ketween the number of vertices edges and faces
[Foley,9q):

V-E+F=2
Where V isthe vertices number, E isthe aelges number and F is the facesnumber from the
objed. The Euler's generalized equationis gplicable to thaseobjeds with hdes faceswith
hoesor several comporents:

V-E+F-H=2(C-G)
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Where H is the number of haesin the faces G is the number of holesthat crossthe objed
and C is the number of separate components (parts) of the objed. The lids that fulfill t he
redrictions dready mentioned and Euler's euation are those whose definition was
presented in Sedion 2.1.1,that is to say, pdyhedra whose @lges ad \ertices ae dl

manifold.

One of the most common representations requires four information listings or

vedors. In [Arguelles 07 eat vedor is defined in the foll owing way:

The first vedor contains diredly the geometric information d all the objed's vertices

in ather words, the mordinates(Xs, Xz, X3) for ead pant.

e The seond \edor contains the topdogicd information for the objed's alges that is to
s&/, eat ore of its dements @ntains two panters to the vertices listing for the initial
vertex and the final vertex of eat edge from the lid.

e The third vedor contains the topdogicd information for the objed’'s palygors. Each
one of its dements mntains pointers to the alges listing for ead ore of the aelges of
eat pdygonfrom the lid, which are generall y sorted courterclockwise

e Findly, thereis afourth listing that contains the topdogicd information for the objed’s

faces Each ore of its dements mntains pointers to the paygors' listing for eat ore of

the palygors that compose eah solid's face from which generally the fir st one hasthe
bigged surface ad represents the external contour of a face and the following, if there

are, theinternal contours (haleg of the face

226



[Requicha, 00 descibes that this type of representation is equivalent to a graph
structure, cdled incidence graph [Hansen, 93, whosenodesbelongto the faces edges ad
verticeson the slid's boundxry. The edges between the nodes &pressinformation abou
the mnredivity. Together they constitute the combinatory structure (the topdogy) of the
representation. The vertices coordinates ontain the metric information (the geometry)

as®ciated with the representation.

The boundiry representations can be combined using the Boolean operators for the
cregdion d new boundry represetations [Requicha, 85. The adievement of Bodean
operations between solids, through a brute force procedure, are expensive in terms of the
time for the computations. Becaise dl the slid's facesmust be evaluated against al the
facesof other solid, and acwrding to the gedfic operation, to dedde which must be

preseved [Arguelles 01].

6.3.2 Spatial Partitioning Representations

In the Spatial Partitioning Represeantations, a lid is decomposeal in a @lledion o
attadhed solids, withou intersedions, and more primitive than the original solid, although
they are not necessaly of the sane kind [Foley, 96]. The primitives ca vary in type, size,
pasition, parameterization and aientation. The mverage of the objeds decomposition
depends on hawv primitive the lids must be, to perform, in an eay way, the required

operations.



6.3.2.1 Cell Decomposition

One of the most general representations for the gatial partitioning is the Cell
Demmposition. The g/stems of cdl decompositions define a séof primitive cdls that are
typicdly parameterized [Aguilera, 98. A solid can be represented by decomposing it in
cdlswith noninterseding interiors and byrepresenting ead cdl i n the decompasition. The
Cell Demmposition representations provide cnvenient methods for the cmputing o
certain topdogicd propertiesfor the objeds. For example, to determine whether an ojea

hasjust one comporent or it hashoes[Requicha, 80 .

An spedfic lids decompasition is the tetrahedrizaion. The tetrahedrizaion of a
polyhedron is its decomposition in tetrahedrons which must be ather digoint or to share a
face edge or vertex [Requicha, 8Q (the 2D analogows of this sdieme is a paygons

decompasitionin triangleswhich define atrianguation).

6.3.2.2 Spatial Occupancy Enumeration

The olid isdecomposdal in identicd cdls eat ore paositioned in afixed and regular
grid [Requicha, 8(. These cl#s ae cdled voxels (volumetric cdls). The most common
type of cdl isthe aube (in [Herman, 99 iswidely disaussd the useof other typesof cdls).
The representation d the gace as aegular array of cubesis cdled a voxelizaion. Each
cdl can berepresaited by the wordinatesof one of its paints (the cdl's centroid, the vertex
with minimal coordinates etc.) andits szeis given bythe grid's sze Seein Figure 6.1 an

example of a3D grid which can contain upto 8 voels.
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FIGURE 6.1
A 3D grid for positioning upto 8 uritary voxels
(own elaboration).

By represainting an oljed throughthis stieme, only the preseance or absence of eah
cdl in the grid is controlled. The mlledion d cdls can be dficiently codified as athree
dimensional array Cijx of binary data. The aray represents the wloration d ead cube (cel)
[Mantyla, 88:

e If G = 1, the bladk cube Cjjx represents a slid region d the gace

e If Cjjk = 0, the white aube Cjjx represents an empty region d the pace

There is no concept of "partia” occupation. Therefore, some objeds only can be
approximated. If the cdls ae abes then the only oljeds that can be exadly represented

are the 3D-OPPswhaosevertices oincide exadly with the grid [Aguilera, 99].

The desgn d agorithms for processng the objeds represeted by this sdieme is

dired. A badc example is the computing d the Bodean sd operations. By using the



representation througha binary matrix, the dgorithms just perform the operations between

the bits for all the dements.

There ae severa applicaions that require the listing d the verticesfor ead voxel.
Asauming that Co is the origin and the dimensions of ead cubic cdl are given by x;Sde,

x2Sde and xsSde, then the eght verticesfor ead voxel Cjjx arelisted in the Table 6.1.

TABLE 6.1
Listingavoxel’s aght vertices(seethe text for detail s.
Taken from [Aguilera, 9§).

Vertex X1 X2 X3
0 i - x,Sde j - xSide k - XsSde
1 i - x;Sde j - X.Sde (k+ 1) - xsSde
2 i - x;Sde (+1) - xSde k- xsSde
3 i - x;Sde (+1) - xSde|(k+ 1) - xsSde
4 (i+1 - xSde j - X Sde k- xsSde
5 (i+1) - xSde j - X.Sde (k+ 1) - x3Sde
6 (i+1) - xSde| (j+1) - xSde k - xsSde
7 (i+1) - xSde| (j+1) - xSde | (k+ 1) - xsSde

6.3.2.3 Classical OctTrees

It consists of ahierarchicd tree s$ructure generated bythe reaursive subdvision d a
finite aubic universe In this gructure, ead nocke is ather aled or it has eght children. The
tree divides the universés gacein cubeswhich can be inside or outside the objed. The
treés root represents to the universe a aibe. This aube is divided in eight equal cubes

denominated octants. Each octant is represeited through ore of the roat's eght sorted

23C



children. If an octant is partially inside the objeq, it is sibdvided in ancther eight cubes
Thesenew octants will be represented as dildren o the referred octant. The previous
processis reaursively repeaed urtil there ae obtained octants totally inside or outside of
the objed; or when the octants have an edge length sufficiently small (a minimal

relution) that represent the level of predsion d the objed [Arglelles 07.

The sze and locaion d a octant are determined by the level and the position d its
as®ciated nock inside the tree There ae threetypesof nodes
e Gray Nodes The nodes assciated with subdvided octants.
e Bladk Nodes The nodes assciated to octants totally inside the lid.

e White Nodes The nodes assciated to octants totally outside the slid.

One of the most common schemes for representing the dasscad OctTreesis the
TreeCoding with Pointers. [Arguelles 01] descibesit in the foll owing way:
e Wehave atreewhosenodeshave 9 or 10fields.
e Oneof thefieldsindicaesthe type of node (white, black or gray).
e Eight fields ae pointers to the octants in which the given noce is divided. If the node is
aled then these eght pointers aenil.
e |t is posgble to have an additiona field that is apointer to the node from which the

given nockis an octant.

This model presents sme of the most smple dgorithms for performing the Boolean

operations. The only redriction indicaes that the initial cubicd universe of the treesto
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operate must have the sane sze and locaion. The topic related to the Bodlean operations

between OctTreeswill be reconsidered in sed¢ion 6.4.4.

6.4 Polytopes Modeling

The extension d the lid modeling schemes by considering their applicaion to
spaces beyond the threedimensional, have dlowed the modeling d n-dimensional
polytopes [Paoluzzi, 93. In sed¢ion 6.1 we mentioned the posshility of grouping the
representation schemesfor solid oljeds in two categories Boundary Representations and
Spatial Partitioning Representations. Since the following sedions will ded with the
extensions of the stiemes (for the modeling d solids) previously commented (in sed¢ion
6.3), isthat we can proposetwo categoriesfor groupgng them:

e The n-Dimensional Boundary Representations. Where the paytopes ae determined by
the poaints that compose their boundxry, i.e. the paints that separate the paytopess
interior points from the exterior points.

e Hyperspatial Partitioning Representations: Where a polytope is demmpaosel in a
colledion d attached n-dimensional cdls, withou intersedions, and more primitive
than the original poytope. Inside this cdegory we ca find schemes as the

n-Dimensional Cell Decmposition, the Hypervoxelization and the 2"-trees

(hyperoctress.

In the following sedions we will descibe the fundaments behind the nD boundxry
represeantations (6.4.1), the n-Dimensional " Smplexation” of Convex Polytopes(an spedfic
cdl decompaosition; sedion 6.4.3, the hypervoxelizaions (6.4.3 and, findly in sedion

6.4.4 the 2"-trees
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6.4.1 The n-Dimensional Boundary Representations

A boundrry model for athreedimensional solid ojed is adesciption d the faces
edges and ertices that compose its boundry together with the information abou the
conredivity between those dements [Requicha, 80. However, the boundry
representations can be reaursively applied na only to solids or surfacesor seggments, bu to

hyperdimensional objeds, or in ather words, n-dimensional Polytopes[Hansen, 93.

A way to represent n-dimensional Polytopes through a boundiry model is to

consider n information listings or vedors. Each vedor could be defined in the following

way':

e Thefirst vedor contains the geometric information abou all the paytope's vertices that
isto say, the mordinates(Xi, Xz, X3, ..., %) of ead ore of its paints.

e The seond \edor contains the topdogicd information abou the polytope's edges
Each ore of its dements will contain two padnters to the verticeslisting for the initial
andfinal verticesof ead edge of the paytope.

e The third vedor contains the topdogicd information abou the polytope's paygors.
Each ore of its dements will contain panters to the elgeslisting for ead ore of the

edgesin eat ore of the palytope's paygors.
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A k-th vedor (1<k<n) will contain the topdogicd information abou the cdls Ik
from the polytope. Each element will have a séof pontersto the listing d the cdls

ITx.1 for ead ore of the Iy.1'sin ead ore of the paytope'sTIi's.

For example, the representation for a4D hypercube (n = 4) will require four listings:

First Vedor: It storesthe aordinates(x1, Xz, Xs, X4) for its 16 vertices

Seoond Vedor: It stores 32 elements, ore for ead edge and with two pdnters to the
verticeslisting.

Third Vedor: It stores 24 elements, ore for eat face ad with four pointers to the
edges listing.

Fourth Vedor: It stores 8 elements, ore for ead vdume and with six panters to the

faceslisting.

Abou the representations through gaphs, [Hansen, 93 considers two passhiliti es

Extension d the concept of Incidence Graph: whose nodes belong to the cdlis
Iy, Tp.g,... 13, T1o on the polytope's boundxry. The elges between the graph's nodes
express the information abou the @nredivity. Together, they constitute the
combinatoria structure (the topdogy) of the represeantation. The vertices n coordinates
contain the metric information (the geometry) as®ciated with the representation. In the

Figure 6.2 is presented the incidence graph for a4D simplex.
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FIGURE 6.2
The incidence graph for the dements on the boundxry of a4D simplex
(own elaboration).

e Boundary Tree (originaly propcsad by Putnam & Subrahmanyan): Where eat nock
of the incidence graph is lit into a comporent for ead element that it bound. An
element (vertex, edge, etc.) will be represeaited several timesinside the tree ore for

ead boundiry that it belongs to. SeeFigure 6.3 for a4D simplex's boundxry tree
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FIGURE 6.3
The boundary tree for a4D simplex (own elaboration).
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Independently of the representation to use we must consider the hyperdimensional
entities to be modeled. For example, the boundry models defined by [Hansen, 93 or
[Gomes 99 dlow the represantation d n-dimensional objeds whose boundry can be
orientable or not orientable, incomplete, or even withou boundary. In ou context, and in
the way that was esablished in sedion 1.6.4,we will only consider the Polytopes
modeling. In sedion 6.3.1was mentioned the use of Euler's formulae with the end o
verifying whether a poyhedron representation was valid. Such recommendation can be
applied inside the Polytopes representation. The Euler's formulae that any simply
conreded 4D polytope (that is, withou holes on its cdls or completely crossng the

paytope and with orly one comporent) must fulfill will be [Coxeter, 63:
N3-No+ N;-Ng=0

Where N3 is the number of volumes (I15’s), N is the number of faces(I1,'s), N; is the
number of edges(I1;'s) and Np is the number of vertices(Ily's). Furthermore, there exists

the generalization d the Euler's formulaefor the smply conreded n-dimensiona polytopes

[Sommervill e, 58:
D (=D Ny =Nn1—Nnz+ Npg=Npg + .+ (1) 'No = 1 - (-1)"
k=1

Where N.1 isthe number of (n-1)-dimensional cdls (the IT,1’'S), Nn2 isthe number of
(n-2)-dimensional cdls (IT,.2's) and so forth urtil No which is the number of verticesin the

polytope.



A Bodean operation hbetween two pdytopes represented under a boundry
represantation scheme can be performed, acwording to the [Hansen, 93's procedure,

throughtwo main steps, that is, "cuts' and "sewvings":

e Thepodytopes ae ubdvided (or "cut") in their intersed¢ing boundry elements.
e Later on, the poytopes subdvided elements ae dternated and "sewn", after the
consideration d which of them are preseved (acording to the Boolean operation), to

composethe new boundxry or boundxries

In the Table 6.2 is diown an example of the Bodean operations between two 4D
hypercubes (A and B) that have a @mmon "corner” (1). The intersedions between bah
hypercubes volumes faces ad edges ae mmputed. The boundry elements ae "cut"
acording to ther intersedions and this way their boundries ae now subdvided. The
intersedions will descibe anew hypercube enbedded in bah arigina hypercubeswhose
boundiry is cmmpaosed by their common parts (2). Depending onthe Bodean operation to
perform, we must dedde what subdvided elements from the hypercubes must be
considered and "sewn". In the table's cdl 3 we have the union (AU B), in the cdl 4 the

intersedion ( An B), in cdl 5 the diff erence A— B andfinaly, inthe cdl 6,B - A.
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TABLE 6.2
The Bodean operations between two 4D hypercubes
(seethe text for detail s, own elaboration).

6.4.2 The n-Dimensional Simplexation of Convex Polytopes

In this setion we will descibe the Cohen & Hickey's dgorithm for the
n-dimensional Simplexation d convex pdytopes In this sdbieme, anD palytope is sibdvi-

ded in a sé& of nD simplexesthat not intersed between them. However, these sme smple-
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xes ca share me of their boundry elements, that is, we can find vertex, edge, face etc.
adjacencies In fad, a paygons 2D simplexation is atrianguation; and a payhedron's 3D
simplexationis atetrahedrizaion (sed¢ion 6.3.2.). In first placewe will consider some de-
finitions (6.4.2.) and subsequently the dgorithm will be descibed (6.4.2.9. The apeds

concerning to formalizations and proofs ae treaed with the adequate detail in [Cohen,79.

6.4.2.1 Definitions

Cell: A cdl isdencted by:

H index

dimensions

Then we have that:

IT, denctesthei-th vertex of a polytope.
IT! denotesthe j-th edge of a palytope.

IT denotesthe k-th faceof a pdytope.

[T} denotesto the polytope itséf.

The function y : Let z,//(Hid) be the sé of verticesfrom the i-th cdl of d dmensiors, i.e.

the TT,’sin T1,.
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11;(0,2) ® I, (12)

e I, (2.)

Hl
1
I, (00) ® ®7; (20)

FIGURE 6.4
A polygon I1} and its cells IT,, and TT! (own elaboration).

For example, by considering the polygon T1; presented in Figure 6.4, we have:

()= {mt, m2, o3, g, e

Thefunction 7: The mapping of acell to avertex is given by the function
n(HE)z I1) where j = min{i |IT, e W(H('j), i.e. the vertex with the least index}
For example, in the polygon of Figure 6.4 we have:

(1) = min, (p (01} )= {01g, 10, 115, 115, 11 )= 115

Thefunction F;: Let F be:
F= '//(Hin—l)
In other words, F; isthe set of verticesin a (n-1)-dimensional cell i.

The sets of vertices for the edges in the polygon of Figure 6.4 will be:
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6.4.2.2 The Algorithm for the nD Simplexation of Convex Polytopes

The Cohen & Hickey’s dgorithm performs the smplexation d a poytope p by

choasing any vertex ve p as a apex and conreding it with the (n-1)-dimensional

simplexesthat are the reault of the smplexation d all the cdlsin p that do nd contain v.

Then, the pyramids with apex 7(I1,) (remember that function 7 returns the vertex with the
leas index) and the bases mongthe cdls IT_, with (I ) ¢ I1_, will compose adissetion

of the palytope [Bueler, 0(.

The reaursive gplicaion d this procedure on al the IT_, will form a se of
deaeasng cdls I1, oI1 , ..o I, oI1, such that »(IT) = 7(I1,) for 1<i,j<n and
i # ). Then, the mrrepondng sda of simplexes S={n(I1,), ..., n(I1))} defines a

simplexation d p. Seein Figure 6.5 an example of this processrelated to the compasition
of atetrahedron inside a @be. In Figure 6.5.a is $1own the sdéedion d ead ore of the

four required n(I1,), n(I1,), n(I1,) and n(I1,). When we read the basc casethesefour

vertices will compose the sé¢ S that contains the vertices of a tetrahedron, that is,

S={n(11,),n(11,) ,n(I1,),n(I1,)} (Figure6.5.b).
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n (HZ)
D n(m) n(m,)
— =S — o = .
Recursive Recursive Basic
a) Case Case Case
n (11,)
n (I1,)

b) n (I1,) n (1)

FIGURE 6.5
Forming atetrahedroninside a wbe (seetext for detail s; own elaboration).

The implementation d this reaursive procedure requires that the cdls I1 , be

represated as sés of vertices i.e. throughfunction F. By starting from this representation

we passfrom a cdl II, to IT, , by interseding the sé of verticesin II, with the cdlsII ,
from p that not contain the vertex 7(I1,). To avoid the multiple generation o a cdl we
maintain alist that contains dl the cdls I1, ealier generated; only the céls not included in

thelist are processd [Bueler, 0.

The dgorithm will requireinitialy threeinpu parameters:
e d: Number of dimensions.
e last: A sd that contains dl the verticesfrom the polytope, i.e. y/(Hf]).
e S The sa that contains the vertices of the nD simplex in construction. In the

agorithm's main cal S={ IT;}.
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simplexation (d, last, S)

{
/I m: the number of (n-1)-dimensional cellsin the original polytope.
Il Fi: The set of vertices of each (n-1)-dimensional cell in the original polytope.
/I'L: A list of sets.
If (d>0)
{
L={{}}
For k=1 until m
{
| = last ~ F, // | isacandidate set to represent y/(I1} ).
If (1 L) //1tisevaluated if the set was not earlier obtained.
{
L={I} U L/ Theset y(I1}) isadded tothelist L.
If (n(1) ¢ S) I* Verifying if vertex 77(l) isnot contained in
current ssimplex. */
simplexation (d-1, I, n(1)u S)
}
}
}
else
S contains the vertices of a n-dimensional simplex.
}

For example, by applying this algorithm on a cube with the coordinates presented in
Figure 6.6, we obtained its smplexation (i.e. a tetrahedrization) which is composed by six

tetrahedrons whose respective vertices are shown in Figure 6.7. In Figure 6.8 is shown the

graphical result.

3 Vertex X1 X5 X3
2 “ : 0 0 0| 0
5 1 1 0 0
2 0 1 0
3 1 1 0
4 0 0 1
: : 5 1 0 1
— | 6 0 [ 1| 1
1 7 1 1 1

FIGURE 6.6

A cube and its coordinates (own elaboration).
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FIGURE 6.7
The verticesof the 6 tetrahedrons that composethe 3D simplexation o a aube
(from Figure 6.6, own elaboration).

FIGURE 6.8

The reaultant six tetrahedrons from the "trianguation” of a abe throughthe
Cohen & Hickey's dgorithm (own elaboration).
In ancther example, by applying the Cohen & Hickey’s dgorithm on a 4D
hypercube with the mordinates presented in Figure 6.9, we obtained its 4D simplexation
which is mmpaosed by 24simplexeswhaoseregedive vertices ae sown in Figure 6.10. In

Figure6.11 is shown the graphicd reault.
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. Vertex| X1 Xy Xz Xg |Vertex| X1 Xy Xz X4

0 0 0 0 O 8 0 0 0 1

s 1 1 0 0 O 9 1 0 0 1
2 0 1 0 0] 10 0o 1 o 1

3 1 1 0 o] 12 |1 1 o0 1

4 0 0 1 0] 122 0o 0o 1 1

N 5 1 0 1 o] 13 |1 o 1 1
s 6 0 1 1 0] 14 |o 1 1 1

7 1 1 1 o] 158 |1 1 1 1

FIGURE 6.9

A cube and its coordinates (own elaboration).

S | Vo| V1| Vo| Vs | Vyu
1 0 8 |10 | 11 | 15
2 0 8 |10 | 14 | 15
3 0 8 9 | 11 | 15
4 0 8 9 | 13 | 15
5 0 8 | 12| 14 | 15
6 0 8 | 12| 13 | 15
7 0 2 |10 | 11 | 15
8 0 2 | 10| 14 | 15
9 0 2 3 |11 15
10| O 2 3 7 | 15
11| O 2 6 | 14| 15
12| O 2 6 7 | 15
13| 0 1 9 | 11| 15
14 | O 1 9 | 13 | 15
15| 0 1 3 111 15
16| O 1 3 7 | 15
17 | O 1 5|13 | 15
18| O 1 5 7 | 15
19| O 4 | 12 | 14 | 15
201 O 4 |12 | 13 | 15
21| O 4 6 | 14 | 15
22| 0 4 6 7 | 15
23| 0 4 5113 | 15
24 | 0 4 5 7 | 15
FIGURE 6.10

The vertices of the 24 simplexes that compose the 4D simplexation of a4D hypercube
(from Figure 6.9; own elaboration).
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FIGURE 6.11
The reaultant 24 simplexesfrom the smplexation d a4D hypercube (from Figure 6.9)
through the Cohen & Hickey's dgorithm (own elaboration).



In fad, [BUeler, 0Q points out that the time complexity for the sSmplexation d a

n-dimensional hypercube throughthe Cohen & Hickey's dgorithm is O(n°n!).

6.4.3 Hypervoxelization
The represeantation d a poaytope through a stieme of Hyperspatial Occupancy
Enumerationis essatialy alist of identica hyperspatia cdlsoccupied bythe paytope. An
spedfi c type of cdls, cdled hypervoxels [Jonas 99 are hyper-boxesof afixed sizethat lie
inafixed gridin the n-dimensional space [Jonas 95 definestwo kinds of hypervoxels:
e Centered Hypervoxel: a n-dimensional hyper-box whose dimensions ae given by
x;9de, x,Sde, ..., x,.Sdeandit isrepresated bythe aordinatesof its cantroid.
e Shifted Hypervoxel: whose taraderistics ae same that those for the centered
hypervoxel, except that its representationis given by some of its 2" vertices
By instantiation, we know that a 2D hypervoxel is apixel while a3D hypervoxel is avoxel;
the term rexel is suggeded for referencing a 4D hypervoxel [Jonas95]. Seein the Figure

6.12 an example of a4D grid which can contain upto 16rexels or 4D hypervoxels.

0

Wi

A\

FIGURE 6.12
A 4D grid for positioning upto 16 uritary rexels (own elaboration).
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The olledion d hyperboxes ca be wdified as an-dimensional array C of

X31Xg50%n

binary data. The aray will r epresent the wloration o ead hypervoxel:

If C

X1 X2 yeey

«, =1, the blad hypervoxel C, represents an occupied region from the

----- X
n-dimensional space

If C

X1, X2 4 Xn

=0, the white hypervoxel C, represets an empty region from the

..... Xq

n-dimensional space

By using the representation througha binary matrix, the computation d the Bodean

set operations just control the operations between hits for all the dements. Let C* and C? be

two ndimensional grids of hypervoxels, then the Bodean operations between their

repedive cdls, C; , op C;  ,aredefinedas $iownintheFigure6.13.

CooxVCi |1 O C..xNCi |1 0 Cox ®Ci . |1 0
1 1 1 1 1 0 1 0 1
0 1 0 0 0 O 0 1 0

C>]<-1 ..... Xn _Cfl ..... X 1 0 Cx1 ..... Xn Cx1 ..... Xn

1 0 1 1 0

0 0O O 0 1

FIGURE 6.13

Boolean operations between two hypervoxels grids C* and C?
(own elaboration).

In the Figure 6.14 (a aand b are presaited two 5D-OPPs embedded in a 5D

hypercubic universe (in Figure 3.3 can be obseved the ceantral projedion d a 5D

hypercubes as aD hypercube inside ancther 4D hypercube). In the Figures 6.14.c and d

are shown their representations through B hypervoxels (both 5D-OPPs required 24cdls).
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8 5D-OPPA o b) 5D-OPPB

0 9
FIGURE 6.14
Two 5D-OPPs (a and b embedded in a 5D hypercubic universe(dotted line9 and their
representation through hygrvoxels (c and d,regedively; own elaboration).

In Figure 6.15 are shown the Bodean operations between the 5D-OPPs from
Figure 6.14. For ead case union (a and b, intersedion (c and d), difference A - B (e andf)
and dff erenceB - A (g and h), are shown bah their representation through B hypervoxels
and their central projedion. The reaultant paytope from the union (Figure 6.15.a) has 36

hypervoxels; the reailtant 5D-OPPs from the intersedion, dfference A - B and the

diff erenceB - A (Figures 6.15.c, e and g, reedively) have 12 hypervoxels.
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FIGURE 6.15
Reaults of the Bodean Operations between the two 5D-OPPs from Figure 6.14 (the | eft
column show the representation through hygrvoxels, the right column show their central
projedion; own elaboration).
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We will extend the procedure commented in section 6.3.2.2 in order to list the 2"

vertices of ahypervoxel. Consider an-dimensional grid where C,,, , istheorigin and the

dimensions of each hypercubic cell are given by x;Sde, x,Sde, X3S de, ..., x,.Sde. In section
2.2.1.4 was presented the general set of the coordinates for a n-dimensional unitary

hypercube:

(0,0,..00), (_1,0,.,0,0), s, (1...1,0,..,0), 1o, (1L, _0 ), (11,...11) =
w1 i IR w1 L T

n n—. n—I n-1 n

1°,0m, @,0™, .., @,0m), .., @04, (1",0°

Where the coordinates must be permuted according to the distribution:

n !
Where C(J =7 (nn_ 0 defines the number of those coordinates that have i ones and n-i

zeros. Such set will be adapted with the end of obtaining the set of coordinates for a

n-dimensional hypervoxel C, . Therefore, we only need to apply the translation

X

(i, j,k,...) and the scaling (x;Sde, x.Sde, x3Sde, ..., x,.Sde) to the genera coordinates for
L

n

obtaining the set of specific coordinates. For example, in Table 6.3 is presented the listing

of the 16 verticesfromarexel C, ;,, .
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TABLE 6.3
Listingarexel's sxteen vertices(seetext for detail s; own elaboration).

Vertex X1 X2 X3 X4
0 i - x;Sde j - x.Sde k - x3Sde ¢ - x4Sde
1 i - xSde j - xSide k- xsSde (¢+1) - x4Sde
2 i - x;Sde j - XSde (k+1) - x3Sde ¢ - x4Sde
3 i - x;Sde ] - XoSde (k+1) - xsSde | (£+1) - x4Sde
4 i - x;Sde (j+1) - x.Sde k - x3Sde ¢ - x4Sde
5 i - X;Sde (j+1) - x.Sde k - x3Sde (¢+1) - x4Sde
6 i - x;Sde (+1) - xo.Sde | (k+1) - x3Sde 0 - X4Sde
7 i - x;Sde (j+1) - xoSde | (k+1) - xsSde | (/+1) - x4Sde
8 (i+1) - x;Sde j - XxSde k - x3Sde 0 - X4Sde
9 (i+1) - x,Sde j - XSde k - xsSde (¢ +1) - x,.Sde
10 | (i+1) - x;Sde j - X.Sde (k+1) - xsSde ? - xX4Sde
11 | (i+1) - x,Sde j - xSide (k+1) - x3Sde | (£+1) - x,Sde
12 | (i+1) - x,Sde | (j+1) - x,Sde k - x3Sde ¢ - X4Sde
13 | (i+1) - x,Sde | (j+1) - x.Sde k- xsSde (¢ +1) - xs.Sde
14 | (i+1) - ;Sde | (j+1) - xoSde | (k+1) - xsSde ? - X4Sde
15 | (i+1) - ;Sde | (j+1) - xoSde | (k+1) - xsSde | (¢ +1) - x4Sde

6.4.4 The HexTrees and 2"-trees (Hyper octr ees)

As ommented in sedion 6.3.23, the octtrees & @mposal starting from the

reaursive sibdvision d a 3D cubic acein eight octants until ead octant is reduced

(arbitrary) in the possble smples way. The mnsideration d this method d reaursive

subdvision lead us to the definition d a hextree of 16 hyper-octants. Moreover, the

generdizaion d this hierarchicd tree ¢$ructure lead ws to thereaursive division d a

n-dimensional space in 2" hyper-octants which is cdled a 2"-tree or hyperoctree

[Srihari,83).

Such as the 2D and 3D casesthe 2"-treewill have threetypesof nodes

e Gray Nodes The nodesthat corregpondto hyper-octants nat completely full nor not

completely empty. Thesenodesmust be subdvided.
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e Black Nodes: The nodes that correspond to hyper-octants completely occupied.

e White Nodes: The nodes that correspond to hyper-octants completely empty.

The root node from the 2"-tree corresponds to the entire n-dimensional space, that
IS, a n-dimensional hypercube that contains (or encloses) a n-dimensional polytope. The
conceptual procedure for the building of the tree is the same that is applied to the quadtrees
or octtrees: If acell isfull or empty, then it must be marked as black or white, respectively;

otherwise it must be marked as gray and subdivide it recursively [Requicha, 00].

By representing a 2"-tree through a Tree Codification with Pointers we would have
to consider the following characteristics:
e Each node of the tree will contain 2" + 1 or 2" + 2 fields.
e One of thefieldswill indicate the kind of node (white, black or gray).
o 2" fields will be pointers to the hyper-octants in which the given node is divided. If the
nodeis aleaf then these 2" pointers will be nil.
e |t is possible to have an additional field that is a pointer to the node from which the

given node is an hyper-octant.

The achievement of Boolean operations between two 2"-trees follows the same
procedures that are applicable to quadtrees or octtrees [Srihari, 83]. Only a consideration
must be observed, that is, theinitial nD hypercubic universe from both trees to operate must

have the same size and location.
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The adievement of the complement operation consists in traversethe codifi caion

of a 2"-tree danging the white nodesby bladk noces ad vice versa Now, the procedure

for the computing d the union a intersedion T; between two treesT; and T, will be

descibed (spedficdly the union's casg

1. A pardlel descedingtraversein bah treesis performed.

2. Eadh correpondng hanologots pair of nodes(that is, with the sane sze and locaion)

Is examined. If some of the nodesin the pair is blad, then it is alded a corregpondng

bladk nockin Ts.

3. If one of the nodesin the pair is white, then it is aeded in T3 the rregpondng noa

with the value of the other noce in the pair.

4. If both nocesin the pair are gray, then it is alded a gray noce in Tz and the dgorithm is

reaursively applied to the pair's sons. In this casehe ns of the new node in Tz must be

inspeded after the goplicaion d the dgorithm. If al are blad, then they are diminated

anditsfather in T3 changesfrom gray to badk.

The intersedion ketween two treesfollows the sane procedure before descibed ony

considering the aiteriato apply acwrding to the mrregpondng peir of nodes In the Figure

6.16 are presated the reallts of the operations of union and intersedion between two noces

and the complement for anoce.

Tlf\ T2

B
\W
G

OsSwow

2222

Qoo

The operations of union, intersedion and complement for the nodesfrom 2"-trees
(B: Bladk node, W: White node, G: Gray node, G*: reaursive caseown elaboration).

O s wH

Qws|H

T1U T2 B W G

B B B B

W B W G

G B G G*
FIGURE 6.16
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Other operations such as the Diff erence or Exclusive Or can be eady derived
throughthe threeoperations before descaibed (union, intersedion and complement). By this

way, the diff erence can be determined starting from the well known expresson:

A-B=AnB

Whil e the Exclusive ORis cdculated through
A®B=(AuB)-(AnB)

In Figure 6.17 are preseited the reallts of the Difference and Exclusive OR

operations between two nocks

T,-T, B W G T1®T, | B W G
B |W W W B B W G
W |W B G W (W B G
G |W G G G G G G

FIGURE 6.17

The operations of diff erence and Exclusive OR for the nodesfrom 2"-trees
(B: Black nodce, W: White node, G: Gray noce, G : Gray nock's complement,
G*: reaursive caseown elaboration).

25¢€



