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Chapter 6 
Some Schemes for the Modeling of n-Dimensional Polytopes 

 

 In this chapter we will describe some basic notions related to the Theory of Solid 

Modeling (section 6.1) and the Regularized Boolean Operations (section 6.2). In the section 

6.3 three of the most known schemes for the modeling of solids will be briefly described: 

Boundary Representation, Cell Decomposition, Spatial Occupancy Enumeration and the 

Classical OctTrees. In section 6.4 the generalizations of these schemes for the Modeling of 

n-Dimensional Polytopes are presented and commented. In the section 6.4.2 the  algorithm   

of Cohen & Hickey  for  the  n-dimensional  Simplexation  (a  way  of n-Dimensional Cell 

Decomposition) of convex polytopes is described.  

 

6.1 Solid Modeling 

 

Solid Modeling is an area of wide development in several applications as the 

Computer Aided Design and Manufacturing (CAD/CAM), electronic prototypes and 

animation planning [Cardona, 01]. 

 

If a solid object can be modeled in a way that its geometry is appropriately captured, 

then it will be possible to apply, on such object, a range of useful operations. For example, 

it would be possible to determine if two objects interfere between them. Due to the need of 

modeling objects as solids, the development of a variety of specialized mechanisms to 

represent them has arisen. 
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[Requicha, 80] presents a set of formal criterions that every scheme for representing 

solids must have rigorously defined: 

�� Domain: The set of entities which are represented by the scheme. The domain's size 

must be enough to allow the representation of a useful set of objects, and therefore, it 

characterizes the scheme's power. 

�� Completeness: The representation can not be ambiguous. There are no doubts about 

what is represented.  A representation must correspond to one and only one solid 

[Foley, 96]. 

�� Uniqueness: A representation is unique if it can be used to codify a certain solid in just 

one way. 

�� Validity: A representation scheme must disable the creation of an invalid 

representation, or in other words, a representation that doesn't correspond to a solid. 

Additionally, the object must keep the closure under rotation, translation and other 

operations [Foley, 96]. In this way, the operations between valid solids must return 

valid solids. 

 

Furthermore, [Requicha, 80] describes three informal properties (because they can 

not be rigorously defined) but with a great practical role in the schemes for representing 

solids: 

�� Conciseness: It refers to the representations' size. The concise representations should 

contain minimal redundant information. 

�� Ease of Creation: The users' tools for creating the designs should be simple. The 

concise representations are generally easier to create. 
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�� Efficacy in the Context of Applications: The representation must allow the creation of 

effi cient algorithms for computing the desired physical properties [Foley, 96]. 

 

The representation schemes for solid objects are frequently divided in two large 

categories (although not all the representations are completely inside in one of them): 

Boundary Representations and Spatial Partitioning Representations [Hearn, 95]. The most 

important aspects of these schemes are described in sections 6.3 and 6.4. 

 

6.2 Regularized Boolean Operations 

 

Independently of the objects' representation, it should be feasible to combine them 

to compose new objects. One of the most common methods to combine objects are the set 

theoretical Boolean operations, as the union, diff erence, intersection and exclusive OR. 

However, the application of an ordinary set theoretical Boolean operation on two solid 

objects doesn't necessarily produce a solid object. For example, the ordinary intersection 

between two cubes with a common vertex is a point. 

 

Instead of using ordinary set theoretical Boolean operators, The Regularized 

Boolean Operators [Requicha, 77] will be used. Each regularized Boolean operator is 

defined in function of an ordinary operator in the following way: 

 

A op* B = Closure (Interior(A op B)) 
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In such way we will have: 

A *�  B = Closure (Interior(A �  B))  Regularized Union 

A *�  B = Closure (Interior(A �  B))  Regularized Intersection 

A *�  B = Closure (Interior(A �  B))  Regularized Exclusive OR 

A   -*    B = Closure (Interior(A  -   B))  Regularized Diff erence 

 

These operators are defined as the closure of the interior of the corresponding set 

theoretical Boolean operation [Aguilera, 98]. In this way, the regularized operations 

between solids always will generate solids. Recapturing the previous example, the 

regularized intersection between two cubes with a common vertex is the null object. 

 

6.3 Some Schemes for the Modeling of Solids 

 

6.3.1 Boundary Representations 

 

In this model the solids are determined by the points that compose their boundary, 

because they separate the solid's interior points from the exterior points. The boundary is 

represented by a disjoint set of faces that can be planar or curved. When the faces are 

planar, each one is delimited by a ring perimeter of edges that intersect in the vertices. If 

the face has holes, it is delimited by one or more edges' internal rings. This type of 

representation is also known as Solid's Polyhedral Representation [Navazo, 86] or as B-Rep 

[Rossignac, 99].  
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The associated information to the components on a polyhedron's boundary (faces, 

edges and vertices) is composed by two parts: 

�� The Geometry: It considers the dimensions and localization in the space for each 

component. In this way, the points, edges and planes are defined. 

�� The Topology: It describes the connections between the elements. By this way, a point 

is identifi ed as a vertex that limits a line that defines an edge. A ring of edges composes 

a polygon as the boundary of a surface that defines a face. 

 

Independently of the representation that has been chosen for the boundary's 

geometry and topology, we must consider the restrictions for guaranteeing that an object is 

a valid solid. The characteristics that a solid's boundary must fulfil l are [Foley, 96]:  

�� Each edge must contain only two vertices. 

�� Each edge must be shared by exactly two faces. 

�� At least three edges must be joined in each vertex. 

�� The faces can not penetrate between them. 

 

Those solids that fulfill t he previous properties satisfy the Euler's formulae, which 

expresses an invariable relation between the number of vertices, edges, and faces 

[Foley,96]: 

V - E + F = 2 

Where V is the vertices' number, E is the edges' number and F is the faces' number from the 

object. The Euler's generalized equation is applicable to those objects with holes, faces with 

holes or several components:  

V - E + F - H = 2(C - G) 
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Where H is the number of holes in the faces, G is the number of holes that cross the object 

and C is the number of separate components (parts) of the object. The solids that fulfill t he 

restrictions already mentioned and Euler's equation are those whose definition was 

presented in Section 2.1.1, that is to say, polyhedra whose edges and vertices are all 

manifold. 

 

One of the most common representations requires four information listings or 

vectors. In [Argüelles, 02] each vector is defined in the following way: 

 

�� The first vector contains directly the geometric information of all the object's vertices, 

in other words, the coordinates (x1, x2, x3) for each point. 

�� The second vector contains the topological information for the object's edges, that is to 

say, each one of its elements contains two pointers to the vertices' listing for the initial 

vertex and the final vertex of each edge from the solid. 

�� The third vector contains the topological information for the object's polygons. Each 

one of its elements contains pointers to the edges' listing for each one of the edges of 

each polygon from the solid, which are generally sorted counterclockwise. 

�� Finally, there is a fourth listing that contains the topological information for the object's 

faces. Each one of its elements contains pointers to the polygons' listing for each one of 

the polygons that compose each solid's face, from which generally the first one has the 

biggest surface and represents the external contour of a face, and the following, if there 

are, the internal contours (holes) of the face.   
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[Requicha, 00] describes that this type of representation is equivalent to a graph 

structure, called incidence graph [Hansen, 93], whose nodes belong to the faces, edges and 

vertices on the solid's boundary. The edges between the nodes express information about 

the connectivity. Together they constitute the combinatory structure (the topology) of the 

representation. The vertices' coordinates contain the metric information (the geometry) 

associated with the representation.  

 

The boundary representations can be combined using the Boolean operators for the 

creation of new boundary representations [Requicha, 85]. The achievement of Boolean 

operations between solids, through a brute force procedure, are expensive in terms of the 

time for the computations. Because all the solid's faces must be evaluated against all the 

faces of other solid, and according to the specifi c operation, to decide which must be 

preserved [Argüelles, 01]. 

 

6.3.2 Spatial Partitioning Representations 

 

 In the Spatial Partitioning Representations, a solid is decomposed in a collection of 

attached solids, without intersections, and more primitive than the original solid, although 

they are not necessarily of the same kind [Foley, 96]. The primitives can vary in type, size, 

position, parameterization and orientation. The coverage of the objects' decomposition 

depends on how primitive the solids must be, to perform, in an easy way, the required 

operations. 
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6.3.2.1 Cell Decomposition 

 

 One of the most general representations for the spatial partitioning is the Cell 

Decomposition. The systems of cell decompositions define a set of primitive cells that are 

typically parameterized [Aguilera, 98]. A solid can be represented by decomposing it in 

cells with non intersecting interiors and by representing each cell i n the decomposition. The 

Cell Decomposition representations provide convenient methods for the computing of 

certain topological properties for the objects. For example, to determine whether an object 

has just one component or it has holes [Requicha, 80]. 

 

An specifi c solids' decomposition is the tetrahedrization. The tetrahedrization of a 

polyhedron is its decomposition in tetrahedrons which must be either disjoint or to share a 

face, edge or vertex [Requicha, 80] (the 2D analogous of this scheme is a polygon's 

decomposition in triangles which define a triangulation). 

 

6.3.2.2 Spatial Occupancy Enumeration 

 

The solid is decomposed in identical cells each one positioned in a fixed and regular 

grid [Requicha, 80]. These cells are called voxels (volumetric cells). The most common 

type of cell i s the cube (in [Herman, 98] is widely discussed the use of other types of cells). 

The representation of the space as a regular array of cubes is called a voxelization. Each 

cell can be represented by the coordinates of one of its points (the cell 's centroid, the vertex 

with minimal coordinates, etc.) and its size is given by the grid's size. See in Figure 6.1 an 

example of a 3D grid which can contain up to 8 voxels.  
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(0,0,0)

(2,2,2)

 
FIGURE 6.1 

A 3D grid for positioning up to 8 unitary voxels 
(own elaboration). 

 

By representing an object through this scheme, only the presence or absence of each 

cell i n the grid is controlled. The collection of cells can be effi ciently codifi ed as a three-

dimensional array Cijk of binary data. The array represents the coloration of each cube (cell) 

[Mäntylä, 88]: 

�� If Cijk = 1, the black cube Cijk represents a solid region of the space. 

�� If Cijk = 0, the white cube Cijk represents an empty region of the space. 

 

 There is no concept of "partial" occupation. Therefore, some objects only can be 

approximated. If the cells are cubes, then the only objects that can be exactly represented 

are the 3D-OPP's whose vertices coincide exactly with the grid [Aguilera, 98]. 

 

The design of algorithms for processing the objects represented by this scheme is 

direct. A basic example is the computing of the Boolean set operations. By using the 
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representation through a binary matrix, the algorithms just perform the operations between 

the bits for all the elements. 

 

 There are several applications that require the listing of the vertices for each voxel. 

Assuming that C0,0,0 is the origin and the dimensions of each cubic cell are given by x1Side, 

x2Side and x3Side, then the eight vertices for each voxel Cijk are listed in the Table 6.1. 

 

TABLE 6.1 
Listing a voxel’ s eight vertices (see the text for details. 

Taken from [Aguilera, 98]). 
Vertex X1 X2 X3 

0 i �  x1Side j �  x2Side k �  x3Side 

1 i �  x1Side j �  x2Side (k + 1) �  x3Side 

2 i �  x1Side (j + 1) �  x2Side k �  x3Side 

3 i �  x1Side (j + 1) �  x2Side (k + 1) �  x3Side 

4 (i + 1) �  x1Side j �  x2Side k �  x3Side 

5 (i + 1) �  x1Side j �  x2Side (k + 1) �  x3Side 

6 (i + 1) �  x1Side (j + 1) �  x2Side k �  x3Side 

7 (i + 1) �  x1Side (j + 1) �  x2Side (k + 1) �  x3Side 

 

6.3.2.3 Classical OctTrees 

 

 It consists of a hierarchical tree structure generated by the recursive subdivision of a 

finite cubic universe. In this structure, each node is either a leaf or it has eight children. The 

tree divides the universe's space in cubes which can be inside or outside the object. The 

tree's root represents to the universe, a cube. This cube is divided in eight equal cubes 

denominated octants. Each octant is represented through one of the root's eight sorted 
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children. If an octant is partially inside the object, it is subdivided in another eight cubes. 

These new octants will be represented as children of the referred octant. The previous 

process is recursively repeated until there are obtained octants totally inside or outside of 

the object; or when the octants have an edge length suffi ciently small (a minimal 

resolution) that represent the level of precision of the object [Argüelles, 02]. 

 

The size and location of a octant are determined by the level and the position of its 

associated node inside the tree. There are three types of nodes: 

�� Gray Nodes: The nodes associated with subdivided octants. 

�� Black Nodes: The nodes associated to octants totally inside the solid. 

�� White Nodes: The nodes associated to octants totally outside the solid. 

 

One of the most common schemes for representing the classical OctTrees is the 

Tree Coding with Pointers. [Argüelles, 01] describes it in the following way: 

�� We have a tree whose nodes have 9 or 10 fields. 

�� One of the fields indicates the type of node (white, black or gray). 

�� Eight fields are pointers to the octants in which the given node is divided. If the node is 

a leaf then these eight pointers are nil . 

�� It is possible to have an additional fi eld that is a pointer to the node from which the 

given node is an octant. 

 

 This model presents some of the most simple algorithms for performing the Boolean 

operations. The only restriction indicates that the initial cubical universe of the trees to 
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operate must have the same size and location. The topic related to the Boolean operations 

between OctTrees will be reconsidered in section 6.4.4. 

 

6.4 Polytopes Modeling 

 

The extension of the solid modeling schemes, by considering their application to 

spaces beyond the three-dimensional, have allowed the modeling of n-dimensional 

polytopes [Paoluzzi, 93]. In section 6.1 we mentioned the possibilit y of grouping the 

representation schemes for solid objects in two categories: Boundary Representations and 

Spatial Partitioning Representations. Since the following sections will deal with the 

extensions of the schemes (for the modeling of solids) previously commented (in section 

6.3), is that we can propose two categories for grouping them: 

�� The n-Dimensional Boundary Representations: Where the polytopes are determined by 

the points that compose their boundary, i.e. the points that separate the polytopes's 

interior points from the exterior points. 

�� Hyperspatial Partitioning Representations: Where a polytope is decomposed in a 

collection of attached n-dimensional cells, without intersections, and more primitive 

than  the  original  polytope.  Inside  this  category  we   can   find   schemes   as   the  

n-Dimensional Cell Decomposition, the Hypervoxelization and the 2n-trees 

(hyperoctress). 

 

In the following sections we will describe the fundaments behind the nD boundary 

representations (6.4.1), the n-Dimensional "Simplexation" of Convex Polytopes (an specifi c 

cell decomposition; section 6.4.2), the hypervoxelizations (6.4.3) and, finally in section 

6.4.4, the 2n-trees. 
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6.4.1 The n-Dimensional Boundary Representations 

 

A boundary model for a three-dimensional solid object is a description of the faces, 

edges and vertices that compose its boundary together with the information about the 

connectivity between those elements [Requicha, 80]. However, the boundary 

representations can be recursively applied not only to solids or surfaces or segments, but to 

hyperdimensional objects, or in other words, n-dimensional Polytopes [Hansen, 93]. 

 

A way to represent n-dimensional Polytopes through a boundary model is to 

consider n information listings or vectors. Each vector could be defined in the following 

way: 

 

�� The first vector contains the geometric information about all the polytope's vertices, that 

is to say, the coordinates (x1, x2, x3, ..., xn) of each one of its points. 

�� The second vector contains the topological information about the polytope's edges. 

Each one of its elements will contain two pointers to the vertices listing for the initial 

and final vertices of each edge of the polytope. 

�� The third vector contains the topological information about the polytope's polygons. 

Each one of its elements will contain pointers to the edges listing for each one of the 

edges in each one of the polytope's polygons. 
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�� A k-th vector ( nk ��1 ) will contain the topological information about the cells 	k 

from the polytope. Each element will have a set of pointers to  the listing of the cells 

	k-1 for each one of the 	k-1's in each one of the polytope's 	k's. 

 

For example, the representation for a 4D hypercube (n = 4) will r equire four listings: 

 

�� First Vector: It stores the coordinates (x1, x2, x3, x4) for its 16 vertices. 

�� Second Vector: It stores 32 elements, one for each edge and with two pointers to the 

vertices' listing. 

�� Third Vector: It stores 24 elements, one for each face and with four pointers to the 

edges' listing. 

�� Fourth Vector: It stores 8 elements, one for each volume and with six pointers to the 

faces' listing. 

 

About the representations through graphs, [Hansen, 93] considers two possibiliti es: 

 

�� Extension of  the concept of  Incidence  Graph:  whose  nodes  belong  to  the  cells 

	n, 	n-1,...,	1,�	0 on the polytope's boundary. The edges between the graph's nodes 

express the information about the connectivity. Together, they constitute the 

combinatorial structure (the topology) of the representation. The vertices' n coordinates 

contain the metric information (the geometry) associated with the representation. In the 

Figure 6.2 is presented the incidence graph for a 4D simplex. 
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FIGURE 6.2 

The incidence graph for the elements on the boundary of a 4D simplex 
(own elaboration). 

 

 

�� Boundary Tree (originally proposed by Putnam & Subrahmanyan): Where each node 

of the incidence graph is split i nto a component for each element that it bounds. An 

element (vertex, edge, etc.) will be represented several times inside the tree, one for 

each boundary that it belongs to. See Figure 6.3 for a 4D simplex's boundary tree. 
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FIGURE 6.3 

The boundary tree for a 4D simplex (own elaboration). 
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Independently of the representation to use, we must consider the hyperdimensional 

entities to be modeled. For example, the boundary models defined by [Hansen, 93] or 

[Gomes, 99] allow the representation of n-dimensional objects whose boundary can be 

orientable or not orientable, incomplete, or even without boundary. In our context, and in 

the way that was established in section 1.6.4, we will only consider the Polytopes' 

modeling. In section 6.3.1 was mentioned the use of Euler's formulae with the end of 

verifying whether a polyhedron  representation was valid. Such recommendation can be 

applied inside the Polytopes' representation. The Euler's formulae that any simply 

connected 4D polytope (that is, without holes on its cells or completely crossing the 

polytope and with only one component) must fulfill will be [Coxeter, 63]: 

 

N3 - N2 + N1 - N0 = 0 

 

Where N3 is the number of volumes (	
’ s), N2 is the number of faces (	2’ s), N1 is the 

number of edges (	1’ s) and N0 is the number of vertices (	0’ s). Furthermore, there exists 

the generalization of the Euler's formulae for the simply connected n-dimensional polytopes 

[Sommervill e, 58]: 

 

�
�




��

n

k
kn

k N
1

1)1( Nn-1 – Nn-2 + Nn-3 – Nn-4 + ... + (-1)n-1N0 = 1 – (-1)n 

 

Where  Nn-1 is the number  of (n-1)-dimensional cells  (the 	n-1’ s), Nn-2 is the  number  of 

(n-2)-dimensional cells (	n-2’ s) and so forth until N0 which is the number of vertices in the 

polytope. 



 238 

 

 

A Boolean operation between two polytopes represented under a boundary 

representation scheme can be performed, according to the [Hansen, 93]'s procedure, 

through two main steps, that is, "cuts" and "sewings": 

 

�� The polytopes are subdivided (or "cut") in their intersecting boundary elements. 

�� Later on, the polytopes' subdivided elements are alternated and "sewn", after the 

consideration of which of them are preserved (according to the Boolean operation), to 

compose the new boundary or boundaries. 

 

 In the Table 6.2 is shown an example of the Boolean operations between two 4D 

hypercubes (A and B) that have a common "corner" (1). The intersections between both 

hypercubes' volumes, faces and edges are computed. The boundary elements are "cut" 

according to their intersections and this way their boundaries are now subdivided. The 

intersections will describe a new hypercube embedded in both original hypercubes whose 

boundary is composed by their common parts (2). Depending on the Boolean operation to 

perform, we must decide what subdivided elements from the hypercubes must be 

considered and "sewn". In the table's cell 3 we have the union ( BA� ), in the cell 4 the 

intersection ( BA� ), in cell 5 the diff erence A – B and finally, in the cell 6, B - A. 
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TABLE 6.2 
The Boolean operations between two 4D hypercubes 

(see the text for details; own elaboration). 
1 

Hipercube A Hipercube B   

2 

 
3 

 
BA�  

4 

 
BA�  

5 

 
A – B 

6  

 
B – A 

 

6.4.2 The n-Dimensional Simplexation of Convex Polytopes 

 

In  this   section  we   will   describe   the   Cohen   &  Hickey's  algorithm  for  the 

n-dimensional Simplexation of convex polytopes. In this scheme, a nD polytope is subdivi-

ded in a set of nD simplexes that not intersect between them. However, these same simple-
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xes can share some of their boundary elements, that is, we can find vertex, edge, face, etc. 

adjacencies. In fact, a polygon's 2D simplexation is a triangulation; and a polyhedron's 3D 

simplexation is a tetrahedrization (section 6.3.2.1). In first place we will consider some de-

finitions (6.4.2.1) and subsequently the algorithm will be described (6.4.2.2). The aspects 

concerning to formalizations and proofs are treated with the adequate detail i n [Cohen,79]. 

 

6.4.2.1 Definitions 

 

Cell: A cell i s denoted by: 

index
dimensions	  

 

Then we have that: 

i
0	  denotes the i-th vertex of a polytope. 

j
1	  denotes the j-th edge of a polytope. 

k
2	  denotes the k-th face of a polytope. 

�  

1
n	  denotes to the polytope itself . 

 

The function � : Let � �i
d	�  be the set of vertices from the i-th cell of d dimensions, i.e. 

the i
0	 ’ s in i

d	 .  
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FIGURE 6.4 

A polygon 1
2	  and its cells i

0	  and j
1	  (own elaboration). 

 

For example, by considering the polygon 1
2	  presented in Figure 6.4, we have: 

� � � �5
0

4
0

3
0

2
0

1
0

1
2 ,,,, 					�	�  

� � � �2
0

1
0

1
1 , 		�	�  

� � � �1
0

1
0 	�	�  

 

The function � : The mapping of a cell to a vertex is given by the function 

� � jk
d 0	�	�  where � �,|min{ 0

k
d

iij 	�	� �  i.e. the vertex with the least index} 

For example, in the polygon of Figure 6.4 we have: 

� � � �� �	�	
1
2

1
2 min �� i � ��5

0
4
0

3
0

2
0

1
0 ,,,, 					 = 1

0	  

 

The function Fi: Let Fi be: 

� �i
niF 1

	��  

In other words, Fi is the set of vertices in a (n-1)-dimensional cell i. 

The sets of vertices for the edges in the polygon of Figure 6.4 will be: 
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F1 = � � � �2
0

1
0

1
1 ,		�	�  

F2 = � � � �3
0

2
0

2
1 ,		�	�  

F3 = � � � �4
0

3
0

3
1 ,		�	�  

F4 = � � � �5
0

4
0

4
1 ,		�	�  

F5 = � � � �5
0

1
0

5
1 ,		�	�  

 

6.4.2.2 The Algorithm for the nD Simplexation of Convex Polytopes 

 

The Cohen & Hickey’s algorithm performs the simplexation of a polytope p by 

choosing any vertex pv �  as an apex and connecting it with the (n-1)-dimensional 

simplexes that are the result of the simplexation of all the cells in p that do not contain v. 

Then, the pyramids with apex )(
n

	�  (remember that function �  returns the vertex with the 

least index) and the bases among the cells 1
	

n  with 1
)(


	�	

nn
�  will compose a dissection 

of the polytope [Büeler, 00]. 

 

The recursive application of this procedure on all the 1
	

n  will f orm a set of 

decreasing cells 011
... 	�	��	�	

nn  such that )()(
ji

	�	 ��  for nji �� ,1  and 

ji � . Then, the corresponding set of simplexes S={ )(
0

	� , …, )(
n

	� } defines a 

simplexation of p. See in Figure 6.5 an example of this process related to the composition 

of a tetrahedron inside a cube. In Figure 6.5.a is shown the selection of each one of the 

four required )(
3

	� , )(
2

	� , )(
1

	�  and )(
0

	� . When we reach the basic case, these four 

vertices will compose the set S that contains the vertices of a tetrahedron, that is, 

S={ )(
3

	� , )(
2

	� , )(
1

	� , )(
0

	� } (Figure 6.5.b). 
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� ( � )
3
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Case

Basic
Case

� ( � )
2

� ( � )
1 � ( � )

0

 

b)

� ( � )
2

� ( � )
1 � ( � )

0

� ( � )
3

 
FIGURE 6.5 

Forming a tetrahedron inside a cube (see text for details; own elaboration). 

 

The implementation of this recursive procedure requires that the cells 1
	

n  be 

represented as sets of vertices, i.e. through function Fi. By starting from this representation 

we pass from a cell k
	  to 1

	
k  by intersecting the set of vertices in k

	  with the cells 1
	

n  

from p that not contain the vertex )(
k

	� . To avoid the multiple generation of a cell we 

maintain a list that contains all the cells k
	  earlier generated; only the cells not included in 

the list are processed [Büeler, 00]. 

 

The algorithm will r equire initially three input parameters: 

�� d: Number of dimensions. 

�� last: A set that contains all the vertices from the polytope, i.e. � �1
n	� . 

�� S: The set that contains the vertices of the nD simplex in construction. In the 

algorithm's main call S={ 1
0	 }.  
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simplexation (d, last, S) 
{ 
 // m: the number of (n-1)-dimensional cells in the original polytope. 
 // Fk: The set of vertices of each (n-1)-dimensional cell in the original polytope. 
 // L: A list of sets. 
 If (d > 0) 
 { 
  L = {{ }} 
  For k = 1 until m 
  { 
   I = kFlast �  // I is a candidate set to represent � �j

d	� . 

   If ( LI � ) // It is evaluated if the set was not earlier obtained. 
   { 
    L = {I} �  L // The set � �j

d	�  is added to the list L. 

    If ( SI �)(� ) /* Verifying if vertex )(I�  is not contained in  

   current simplex. */ 
     simplexation (d-1, I, SI �)(� ) 
   } 
  } 
 } 
 else 
  S contains the vertices of a n-dimensional simplex. 
} 
 

For example, by applying this algorithm on a cube with the coordinates presented in 

Figure 6.6, we obtained its simplexation (i.e. a tetrahedrization) which is composed by six 

tetrahedrons whose respective vertices are shown in Figure 6.7. In Figure 6.8 is shown the 

graphical result.  
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Vertex X1 X2 X3 
0 0 0 0 
1 1 0 0 
2 0 1 0 
3 1 1 0 
4 0 0 1 
5 1 0 1 
6 0 1 1 
7 1 1 1 

 

FIGURE 6.6 
A cube and its coordinates (own elaboration). 
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Si V0 V1 V2 V3 
1 0 4 5 7 
2 0 4 6 7 
3 0 1 5 7 
4 0 1 3 7 
5 0 2 6 7 
6 0 2 3 7 

FIGURE 6.7 
The vertices of the 6 tetrahedrons that compose the 3D simplexation of a cube 

(from Figure 6.6; own elaboration). 
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FIGURE 6.8 
The resultant six tetrahedrons from the "triangulation" of a cube through the 

Cohen & Hickey's algorithm (own elaboration). 
 

In another example, by applying the Cohen & Hickey’s algorithm on a 4D 

hypercube with the coordinates presented in Figure 6.9, we obtained its 4D simplexation  

which is composed by 24 simplexes whose respective vertices are shown in Figure 6.10. In 

Figure 6.11 is shown the graphical result. 
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Vertex X1 X2 X3 X4 Vertex X1 X2 X3 X4 
0 0 0 0 0 8 0 0 0 1 
1 1 0 0 0 9 1 0 0 1 
2 0 1 0 0 10 0 1 0 1 
3 1 1 0 0 11 1 1 0 1 
4 0 0 1 0 12 0 0 1 1 
5 1 0 1 0 13 1 0 1 1 
6 0 1 1 0 14 0 1 1 1 
7 1 1 1 0 15 1 1 1 1  

FIGURE 6.9 
A cube and its coordinates (own elaboration). 

 

Si V0 V1 V2 V3 V4 
1 0 8 10 11 15 
2 0 8 10 14 15 
3 0 8 9 11 15 
4 0 8 9 13 15 
5 0 8 12 14 15 
6 0 8 12 13 15 
7 0 2 10 11 15 
8 0 2 10 14 15 
9 0 2 3 11 15 
10 0 2 3 7 15 
11 0 2 6 14 15 
12 0 2 6 7 15 
13 0 1 9 11 15 
14 0 1 9 13 15 
15 0 1 3 11 15 
16 0 1 3 7 15 
17 0 1 5 13 15 
18 0 1 5 7 15 
19 0 4 12 14 15 
20 0 4 12 13 15 
21 0 4 6 14 15 
22 0 4 6 7 15 
23 0 4 5 13 15 
24 0 4 5 7 15 

FIGURE 6.10 
The vertices of the 24 simplexes that compose the 4D simplexation of a 4D hypercube 

(from Figure 6.9; own elaboration). 
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FIGURE 6.11 

The resultant 24 simplexes from the simplexation of a 4D hypercube (from Figure 6.9) 
through the Cohen & Hickey's algorithm (own elaboration). 



 248 

In fact, [Büeler, 00] points out that the  time complexity  for the simplexation  of a 

n-dimensional hypercube through the Cohen & Hickey’s algorithm is O(n3n!). 

 

6.4.3 Hypervoxelization 

 The representation of a polytope through a scheme of Hyperspatial Occupancy 

Enumeration is essentially a list of identical hyperspatial cells occupied by the polytope. An 

specifi c type of cells, called hypervoxels [Jonas, 95] are hyper-boxes of a fixed size that lie 

in a fixed grid in the n-dimensional space. [Jonas, 95] defines two kinds of hypervoxels:  

�� Centered Hypervoxel: a n-dimensional hyper-box whose dimensions are given by 

x1Side, x2Side, ..., xnSide and it is represented by the coordinates of its centroid. 

�� Shifted Hypervoxel: whose characteristics are same that those for the centered 

hypervoxel, except that its representation is given by some of its 2n vertices. 

By instantiation, we know that a 2D hypervoxel is a pixel while a 3D hypervoxel is a voxel; 

the term rexel is suggested for referencing a 4D hypervoxel [Jonas,95]. See in the Figure 

6.12 an example of a 4D grid which can contain up to 16 rexels or 4D hypervoxels. 

(0,0,0,0)

(2,2,2,2)

 
FIGURE 6.12 

A 4D grid for positioning up to 16 unitary rexels (own elaboration). 
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The collection of hyperboxes can be codifi ed as a n-dimensional array 
nxxxC ,...,, 21
 of 

binary data. The array will r epresent the coloration of each hypervoxel: 

�� If 1,...,, 21
�

nxxxC , the black hypervoxel 
nxxxC ,...,, 21
 represents an occupied region from the 

n-dimensional space. 

�� If  0,...,, 21
�

nxxxC ,  the  white hypervoxel 
nxxxC ,...,, 21
 represents an empty region from the 

n-dimensional space. 

 

By using the representation through a binary matrix, the computation of the Boolean 

set operations just control the operations between bits for all the elements. Let C1 and C2 be 

two n-dimensional grids of hypervoxels, then the Boolean operations between their 

respective cells, 1
,...,1 nxxC  op 2

,...,1 nxxC , are defined as shown in the Figure 6.13. 

 

2
,...,

1
,..., 11 nn xxxx CC �  1 0  2

,...,
1

,..., 11 nn xxxx CC �  1 0  2
,...,

1
,..., 11 nn xxxx CC �  1 0 

1 1 1  1 1 0  1 0 1 
0 1 0  0 0 0  0 1 0 

 
2

,...,
1

,..., 11 nn xxxx CC   1 0  
nxxC ,...,1
 

nxxC ,...,1
 

1 0 1  1 0 
0 0 0  0 1 

 
FIGURE 6.13 

Boolean operations between two hypervoxels' grids C1 and C2 
(own elaboration). 

 

In the Figure 6.14 (a and b) are presented two 5D-OPP's embedded in a 5D 

hypercubic universe (in Figure 3.3 can be observed the central projection of a 5D 

hypercubes as a 4D hypercube inside another 4D hypercube). In the Figures 6.14.c and d 

are shown their representations through 5D hypervoxels (both 5D-OPP's required 24 cells). 
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a) 5D-OPP A 

 
b) 5D-OPP B 

 
c) 

 
d) 

FIGURE 6.14 
Two 5D-OPP's (a and b) embedded in a 5D hypercubic universe (dotted lines) and their 

representation through hypervoxels (c and d, respectively; own elaboration). 
 

In Figure 6.15 are shown the Boolean operations between the 5D-OPP's from 

Figure 6.14. For each case, union (a and b), intersection (c and d), diff erence A - B (e and f) 

and diff erence B - A (g and h), are shown both their representation through 5D hypervoxels 

and their central projection. The resultant polytope from the union (Figure 6.15.a) has 36 

hypervoxels; the resultant 5D-OPP's from the intersection, diff erence A - B and the 

diff erence B - A (Figures 6.15.c, e and g, respectively) have 12 hypervoxels. 
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a) BA �  b) BA �  

c) BA �  d) BA �  

e) BA   f) BA   

g) AB   h) AB   
FIGURE 6.15 

Results of the Boolean Operations between the two 5D-OPP's from Figure 6.14 (the left 
column show the representation through hypervoxels, the right column show their central 

projection; own elaboration). 
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 We will extend the procedure commented in section 6.3.2.2 in order to list the 2n 

vertices of a hypervoxel. Consider a n-dimensional grid where 
�����

n

C 0,...,0,0,0  is the origin and the 

dimensions of each hypercubic cell are given by x1Side, x2Side, x3Side, ..., xnSide. In section 

2.2.1.4 was presented the general set of the coordinates for a n-dimensional unitary 

hypercube: 

 

(
�����

n

0,0,...0,0 ), (
� ���

11

0,0,...,0,1
n

), ..., (
� ���

ini 

0,...,0,1,...,1 ), ..., (
�

11

0,1,...,1,1
���

n

), (
�����

n

1,1,...,1,1 ) = 

)0,1(),0,1(...,),0,1(...,),0,1(),0,1( 011110 nnininn   

 

Where the coordinates must be permuted according to the distribution: 

 

C
n

C
n
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n
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n
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n

n0 1 1

�
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�
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�
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�

�
�, , ..., , ..., ,  

 

Where C
n

i

n

i n i

�

�
�

�

�
� �



!

!( )!
 defines the number of those coordinates that have i ones and n-i 

zeros.  Such  set  will  be  adapted  with  the  end  of obtaining the set of coordinates for a 

n-dimensional hypervoxel 
nxxC ,...,1
. Therefore, we only need to apply the translation 

(
���

n

kji ,...,, ) and the scaling (x1Side, x2Side, x3Side, ..., xnSide) to the general coordinates for 

obtaining the set of specific coordinates. For example, in Table 6.3 is presented the listing 

of the 16 vertices from a rexel �,,, kjiC . 
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TABLE 6.3 
Listing a rexel's sixteen vertices (see text for details; own elaboration). 

Vertex X1 X2 X3 X4 
0 i �  x1Side j �  x2Side k �  x3Side �  �  x4Side 

1 i �  x1Side j �  x2Side k �  x3Side ( �+1) �  x4Side 

2 i �  x1Side j �  x2Side (k+1) �  x3Side �  �  x4Side 

3 i �  x1Side j �  x2Side (k+1) �  x3Side ( �+1) �  x4Side 

4 i �  x1Side (j+1) �  x2Side k �  x3Side �  �  x4Side 

5 i �  x1Side (j+1) �  x2Side k �  x3Side ( �+1) �  x4Side 

6 i �  x1Side (j+1) �  x2Side (k+1) �  x3Side �  �  x4Side 

7 i �  x1Side (j+1) �  x2Side (k+1) �  x3Side ( �+1) �  x4Side 

8 (i+1) �  x1Side j �  x2Side k �  x3Side �  �  x4Side 

9 (i+1) �  x1Side j �  x2Side k �  x3Side ( �+1) �  x4Side 

10 (i+1) �  x1Side j �  x2Side (k+1) �  x3Side �  �  x4Side 

11 (i+1) �  x1Side j �  x2Side (k+1) �  x3Side ( �+1) �  x4Side 

12 (i+1) �  x1Side (j+1) �  x2Side k �  x3Side �  �  x4Side 

13 (i+1) �  x1Side (j+1) �  x2Side k �  x3Side ( �+1) �  x4Side 

14 (i+1) �  x1Side (j+1) �  x2Side (k+1) �  x3Side �  �  x4Side 

15 (i+1) �  x1Side (j+1) �  x2Side (k+1) �  x3Side ( �+1) �  x4Side 
 

6.4.4 The HexTrees and 2n-trees (Hyperoctrees) 

 

 As commented in section 6.3.2.3, the octtrees are composed starting from the 

recursive subdivision of a 3D cubic space in eight octants until each octant is reduced 

(arbitrary) in the possible simplest way. The consideration of this method of recursive 

subdivision lead us to the definition of a hextree of 16 hyper-octants. Moreover, the 

generalization  of  this  hierarchical  tree  structure  lead  us  to  the recursive division of a 

n-dimensional space in 2n hyper-octants which is called a 2n-tree or hyperoctree 

[Srihari,83]. 

 

 Such as the 2D and 3D cases, the 2n-tree will have three types of nodes: 

�� Gray Nodes: The nodes that correspond to hyper-octants not completely full nor not 

completely empty. These nodes must be subdivided. 
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�� Black Nodes: The nodes that correspond to hyper-octants completely occupied.  

�� White Nodes: The nodes that correspond to hyper-octants completely empty. 

 

 The root node from the 2n-tree corresponds to the entire n-dimensional space, that 

is, a n-dimensional hypercube that contains (or encloses) a n-dimensional polytope. The 

conceptual procedure for the building of the tree is the same that is applied to the quadtrees 

or octtrees: If a cell is full or empty, then it must be marked as black or white, respectively; 

otherwise it must be marked as gray and subdivide it recursively [Requicha, 00]. 

 

 By representing a 2n-tree through a Tree Codification with Pointers we would have 

to consider the following characteristics: 

�� Each node of the tree will contain 2n + 1 or 2n + 2 fields. 

�� One of the fields will indicate the kind of node (white, black or gray). 

�� 2n fields will be pointers to the hyper-octants in which the given node is divided. If the 

node is a leaf then these 2n pointers will be nil. 

�� It is possible to have an additional field that is a pointer to the node from which the 

given node is an hyper-octant. 

 

 The achievement of Boolean operations between two 2n-trees follows the same 

procedures that are applicable to quadtrees or octtrees [Srihari, 83]. Only a consideration 

must be observed, that is, the initial nD hypercubic universe from both trees to operate must 

have the same size and location. 
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The achievement of the complement operation consists in traverse the codifi cation 

of a 2n-tree changing the white nodes by black nodes and vice versa. Now, the procedure 

for the computing of the union or intersection T3 between two trees T1 and T2 will be 

described (specifi cally the union's case): 

1. A parallel descending traverse in both trees is performed. 

2. Each corresponding homologous pair of nodes (that is, with the same size and location) 

is examined. If some of the nodes in the pair is black, then it is added a corresponding 

black node in T3. 

3. If one of the nodes in the pair is white, then it is created in T3 the corresponding node 

with the value of the other node in the pair. 

4. If both nodes in the pair are gray, then it is added a gray node in T3 and the algorithm is 

recursively applied to the pair's sons. In this case the sons of the new node in T3 must be 

inspected after the application of the algorithm. If all are black, then they are eliminated 

and its father in T3 changes from gray to black.  

The intersection between two trees follows the same procedure before described only 

considering the criteria to apply according to the corresponding pair of nodes. In the Figure 

6.16 are presented the results of the operations of union and intersection between two nodes 

and the complement for a node. 

 

T1 � T2 B W G  T1 � T2 B W G  T T  
B B W G  B B B B  B W 
W W W W  W B W G  W B 
G G W G*  G B G G*  G G* 

FIGURE 6.16 
The operations of union, intersection and complement for the nodes from 2n-trees 

(B: Black node, W: White node, G: Gray node, G*: recursive case; own elaboration). 
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Other operations such as the Diff erence or Exclusive Or can be easily derived 

through the three operations before described (union, intersection and complement). By this 

way, the diff erence can be determined starting from the well known expression: 

BABA ��  

 

While the Exclusive OR is calculated through: 

)()( BABABA ����  

 

 In Figure 6.17 are presented the results of the Diff erence and Exclusive OR 

operations between two nodes. 

 

T1 - T2 B W G  T1 � T2 B W G 
B W W W  B B W G 
W W B G   W W B G  
G W G G*  G G  G G* 

FIGURE 6.17 
The operations of diff erence and Exclusive OR for the nodes from 2n-trees 

(B: Black node, W: White node, G: Gray node, G : Gray node's complement, 
G*: recursive case; own elaboration). 

 
 


