
 171

Chapter 5
Determining the Configurations for the nD-OPP’s (n � 4)

In this chapter is described the “Test-Box” Heuristic, presented in [Pérez, 03], that

gives a solution to the problem of determining the configurations that can represent the

n-Dimensional Orthogonal Pseudo-Polytopes (the configurations for the 2D, 3D and

4D-OPP’s were presented in section 4.2). This heuristic presents a complexity that is minor

compared to the exhaustive searching method. The heuristic has as one of its fundaments

the extrusion of the (n-1)-dimensional configurations to obtain the n-dimensional

configurations. Among the obtained results there are mentioned the configurations for the

5D and 6D-OPP’s (section 5.3). Finally, in section 5.7, we will consider the diff erences

between the procedures for obtaining the configurations for the 4D-OPP's according to the

methods described by [Hill , 98] and Aguilera & Pérez in [Pérez, 01].

5.1 The Problem of Determining the Configurations for nD-OPP’s (n>4)

For the Euclidean n-Dimensional space we have 2n possible hyper-octants (4

quadrants for 2D space, 8 octants for 3D space, and 16 hyper-octants for 4D space). As

observed in sections 4.2.1, 4.2.2 and 4.2.3 (configuration for 2D, 3D and 4D-OPP’s

respectively), the number of hyper-octants has a repercussion over the possible number of

combinations of vertices described through the presence or absence of hyper-boxes each

one in every hyper-octant. In general, we have that the total number of combinations in nD

space is [Hill ,98]:

)2(2
n

 172

It was before discussed that in 4D space we have 216 = 65,536 combinations.

[Pérez,01] determined that there are 253 configurations for 4D-OPP’s through exhaustive

searching. However, if we want to determine the configurations for 5D-OPP’s through

exhaustive searching, we would have to consider that there are 32 hyper-octants in 5D

space, and for instance to analyze 232 = 4,294,967,296 combinations [Hill ,98].

TABLE 5.1
Comparing the number of configurations with the number of combinations

for the nD-OPP’s (Taken from [Pérez, 03]).

nD
Space Combinations Configurations

Percentage
(Configurations Vs.

Combinations)
1D 4 3 75 %
2D 16 6 37.5 %
3D 256 22 8 %
4D 65,536 253 0.3 %
5D 4,294,967,296 ? << 0.3 %

Moreover, if the number of configurations is associated with the total number of

combinations, it is evident that the first one is much lesser than the second one. For

example, in 3D space we have 22 configurations for 256 possible combinations, this can be

translated as that only the 8% of the combinations can perform the role of representatives

(equivalence classes) of the others. See Table 5.1 for the application of this comparison

over the configurations in 1D, 2D, 3D and 4D spaces.

These situations lead us to conclude that the complexity imposed by the exhaustive

searching makes diffi cult to determine the configurations for OPP’s in spaces of 5

dimensions and beyond [Hill ,98]. In the following section we will describe a heuristic for

obtaining the configurations in a more direct way. The heuristic's first step is to obtain a

subset of the nD configurations’ fi nal set through the extrusion of (n-1)D configurations.

 173

5.2 The “ Test-Box” Heur istic for Obtaining Configurations for nD-OPP’s

5.2.1 Extruding Configurations

The extrusion of a n-dimensional configuration implies that each one of its boxes

will be extruded in a direction that is perpendicular to the space in which it is embedded.

The extrusion of each box will describe a hyper-box (this process is analogous to obtaining

the hypercube through the method proposed by Bragdon [Rucker,77], section 2.2.1.1). It is

important to consider that an (n+1)-dimensional configuration obtained through the

extrusion of a n-dimensional configuration is not unique, because there are two possible

translation directions for each box. For example, in Table 5.2 it is presented the extrusion

of the 2D configuration e for obtaining 3D configurations f, g and h.

TABLE 5.2
Extrusion of 2D configuration "e" and the obtained 3D configurations

(the arrows indicate the extrusion direction of each rectangle. Taken from [Pérez, 03]).

f

g

h

 174

Through extruding configurations it is possible to obtain some configurations from

(n+1)-dimensional space by using the configurations from n-dimensional space which are

obtained through (n-1)-dimensional configurations and so on. By this way, we obtain then a

recursive process whose basic case are the configurations for 1D-OPP’s (Table 5.3).

TABLE 5.3
The three configurations for 1D-OPP’s (taken from [Pérez, 03]).

a

b

c

5.2.2 Obtaining the Configurations Through a “Test-Box”

The “Test-Box” heuristic starts with the following principle: to have access to

(n-1)-dimensional configurations for obtaining the n-dimensional configurations. Each

(n-1)-dimensional configuration is extruded just one time and in just one direction, this

means that, the boxes that compose it are extruded towards the same perpendicular

direction from space in which they are embedded. Once this process is applied,

the (n-1)-dimensional configuration is not required again. For example, five configurations

for 2D-OPP’s are extruded just one time and towards the same direction for obtaining five

configurations for 3D-OPP’s (Table 5.4).

 175

TABLE 5.4
Extruding 2D configurations in the same direction and
Obtaining their 3D analogous (Taken from [Pérez, 03]).

2D Configuration Extrusion:
3D Configuration 2D Configuration Extrusion:

3D Configuration

b b c

c

d d e

f

f

i

Once the configurations from (n-1)-dimensional space have been extruded, we have

now the same number of n-dimensional configurations. The next step is the use of each

n-dimensional configuration for obtaining the remaining configurations. We will use a

“Test-Box” (a rectangle, a cube, a hypercube, etc.). For each configuration, we will add it a

“Test-Box” in one of its empty hyper-octants. This addition will produce a new

combination which must be compared with the set of the configurations already identifi ed,

for determining whether a new configuration has been obtained or not. This process is

repeated until all the configuration’s empty hyper-octants have been evaluated with a

“Test-Box” . In Table 5.5 are shown the 3D combinations obtained from the configuration f

and by applying a “Test-Box” in all it s empty octants.

 176

TABLE 5.5
Obtaining new configurations through 3D configuration f

and a “Test-Box” (shown as wireframe model. Taken from [Pérez, 03]).

i k l

j j

We have now the elements to propose an algorithm applying extrusions and a

“Test-Box” . The algorithm is resumed in [Pérez, 03] with the following main procedures:

1. For a number n of dimensions we obtain the (n-1)-dimensional configurations. If n = 1

then we have the basic case which returns the configurations from Table 5.3 (1D

configurations).

2. The (n-1)-dimensional configurations are extruded in n-dimensional configurations.

3. To each n-dimensional configuration it is added a “Test-Box” in their empty

hyper-octants, this operation will produce new combinations.

4. Each new produced combination will be evaluated with the set of already identifi ed

configurations. If it i s a new configuration then it will be added to the set of identifi ed

configurations and considered to be evaluated with a “Test-Box” , because it could

produce new configurations.

We present now the proposed algorithm [Pérez, 03]:

 177

Input: The number of dimensions > 0 for the configurations to obtain.
Output: The set of configurations for the specified space.
getConfigurationsForSpaceUsingTestBox(dimensions)
{
 if(dimensions == 1)
 // Basic Case: just return the three configurations for 1D space.
 return getConfigurationsFor1DSpace();
 else
 {
 /* Recursive call : the configurations from (n-1)D space are obtained and they are added
 to the set ‘previousConfigurations’ . * /
 previousConfigurations = getConfigurationsForSpaceUsingTestBox(dimensions - 1);
 For each configuration c in the set previousConfigurations
 {
 /* Configuration ‘c’ is (n-1)D. The configuration ‘newC’ (n-dimensional) is the
 result of extruding configuration ‘c’ . * /
 newC = extrudeConfiguration(c);
 /* The configuration ‘newC’ is added to the set ‘configurations’ (the configurations
 from current nD space). * /
 configurations.add(newC);
 }
 /* Starts the cycle for generating new combinations from the configurations contained in the
 set ‘configurations’ using a “T est-Box” (rectangle, cube, hypercube,etc.) whose
 position (hyper-octant to occupy) is indicated by variable ‘ testBoxPosition’ . * /
 hyperOctants = 2dimensions;
 For each configuration c in the set configurations
 {
 testBoxPosition = 0;
 /* Starts the cycle for generating new combinations from configuration ‘c’ using a
 “T est-Box” . * /
 while(testBoxPosition < hyperOctants)
 {
 /* The combination ‘newC’ is obtained from configuration ‘c’ and the
 “T est-Box” added in the hyper-octant specified by ‘ testBoxPosition’ . * /
 newC = getNewConfiguration(c, testBoxPosition);
 /* It is verified if combination ‘newC’ was before obtained. If not, then it
 is added to set ‘configurations’ and for instance a new configuration
 has been found. * /
 if(configurations.isContained(newC) == false)
 configurations.add(newC);
 testBoxPosition++;
 }
 }
 /* All the possible configurations have been found. The set ‘configurations’ is returned as
 output.
 return configurations;
 }
}

 178

5.3 “Test-Box” Heur istic’s Results and Complexity

For determining the number of combinations analyzed to obtain the n-dimensional

configurations through the “Test-Box” heuristic it is necessary to analyze the output’s size,

i.e., the number of configurations. Since we will not know the number of configurations

until the algorithm finishes, we have then an output-sensitive complexity analysis

[deBerg,97].

Definiti on 5.1: Let CTB (Configurations-by-Test-Box) be the number of

configurations obtained by the algorithm and 2n the number of hyper-octants for

the nD space. Then the number of combinations to analyze is at most:

nCTB 2�

This is an upper bound because we are considering that for each configuration (with

1, 2, 3, etc. hyper-boxes) there are 2n empty hyper-octants (this is possible only for

configurations with 0 hyper-boxes). We must consider, in fact, that configurations with 1

box have 2n-1 empty hyper-octants, configurations with 2 boxes have 2n-2 empty

hyper-octants and so on.

Definiti on 5.2: Let CTB i be the number of those configurations with i boxes,

then we have that the exact number of combinations to analyze in a nD space is:

�
�

��

n

i

n
i iCTB

2

0

)2(

The algorithm in section 5.2.2 has confirmed the expected configurations for 2D,

3D [Aguilera,98] and 4D [Pérez,01] spaces. Specifi cally, the greatest number of

combinations to analyze for obtaining the configurations in 4D space is 253 * 24 = 4,048.

 179

Although this is an upper bound, it is much better than the obtained through exhaustive

searching by [Pérez,01] (216 = 65,536).

Through the “Test-Box” heuristic we have found 20,983 configurations for the

5D-OPP’s [Pérez, 03] whose distribution is shown in Table 5.6.

TABLE 5.6
Configurations’ distribution for 5D-OPP’s (Taken from [Pérez, 03]).

Number of 5D
hyper-boxes (i) CTBi

Number of 5D
hyper-boxes (i) CTBi

0 1 32 1
1 1 31 1
2 5 30 5
3 10 29 10
4 38 28 38
5 66 27 66
6 164 26 164
7 236 25 236
8 454 24 454
9 570 23 570
10 887 22 887
11 989 21 989
12 1,388 20 1,388
13 1,406 19 1,406
14 1,754 18 1,754
15 1,607 17 1,607
16 1,831

The precise number of analyzed 5D combinations is:

728,335

011125310438

566616472368454957010887

1198912388,113406,114754,115607,1

16831,117607,118754,119406,120388,1

2198922887235702445425236

26164276628382910305311321

)2(
52

0

5

�

�
�
�
�

�

��
�
�

�

	

�
�
�
�

��
�
�

�

�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�

����
�i

i iCTB

 180

This result represents a great improvement compared with the number of

combinations to analyze through exhaustive searching:

� �

296,967,294,4728,335

2)2(
5

5

2
2

0

5

��

�����
�i

i iCTB

For obtaining the configurations for the 6D-OPP’s we would have to analyze,

through exhaustive searching, a total of 264 = 18,446,744,073,709,551,616 combinations.

Through the “Test-Box” heuristic, we found 15,440,344 configurations [Pérez, 03] whose

distribution is shown in Table 5.7.

TABLE 5.7
Configurations’ distribution for 6D-OPP’s (Own elaboration).

Boxes (i) CTBi Boxes (i) CTBi Boxes (i) CTBi Boxes (i) CTBi
0 1 17 148,714 34 702,460 51 41,230
1 1 18 198,627 35 659,016 52 30,040
2 6 19 230,447 36 669,618 53 17,047
3 16 20 296,731 37 600,894 54 11,368
4 77 21 331,481 38 598,040 55 5,631
5 193 22 401,828 39 535,773 56 3,281
6 643 23 431,952 40 506,158 57 1,317
7 1,317 24 506,158 41 431,952 58 643
8 3,281 25 535,773 42 401,828 59 193
9 5,631 26 598,040 43 331,481 60 77
10 11,368 27 600,894 44 296,731 61 16
11 17,047 28 669,618 45 230,447 62 6
12 30,040 29 659,016 46 198,627 63 1
13 41,230 30 702,460 47 148,714 64 1
14 64,892 31 674,771 48 120,156
15 83,257 32 709,012 49 83,257
16 120,156 33 674,771 50 64,892

In the following section (5.4) some formulations related to nD-OPP’s configurations

will be presented. Finally in section 5.5 some properties of the 'Test-Box' heuristic will be

discussed.

 181

5.4 Some Formulations for the Configurations in the nD-OPP’s

Theorem 5.1: The sum of adjacencies for any configuration with x hyper-boxes

independently of the Euclidean n-dimensional space, is (see section 4.2.4):

� �xx
xx

��
� 2

2

1

2

)1(

Proof: A first hyper-box of the configuration will have x-1 adjacencies (one for each x-1

hyper-boxes); a second hyper-box will have x-2 adjacencies (not including the adjacency

with the first hyper-box because it is in that first hyper-box counting); a third hyper-box will

have x-3 adjacencies (not including the adjacencies with the first and second hyper-boxes

because they are in these hyper-boxes' respective counting); in general, a k-th hyper-box

(k < x) will have x-k adjacencies. The adjacencies' total counting (i.e. the sum of all hyper-

boxes' adjacencies) is then defined by the well known expression to compute the sum of the

first x-1 positive integers:

22

)1(21

1

xxxx
k

x

k

�
�

�
��

�

�

Observation 5.1: In a n-dimensional configuration consider a m-dimensional

subspace (nm ��0) that passes through the origin. The maximum number of

adjacencies embedded in that m-dimensional subspace is 2n-1.

For example, let n = 3 and consider the configuration with 8 boxes ("v", Table 4.2).

In each one of its three main planes there are 2n-1 = 23-1 = 4 face adjacencies. In each one of

its three main axis there are 4 edge adjacencies. Finally, in the origin there are 4 vertex

adjacencies.

 182

Lemma 5.1: In the n-dimensional space, the maximum number of

m-dimensional adjacencies for the configuration with 2n boxes (the

configuration with a hyper-box in all its hyper-octants) is:

12 ����
�

�
��
�

� n

m

n
C , nm ��0

Proof: ��
�

�
��
�

�

m

n
C is the number of m-dimensional subspaces, which are composed by the m

axes from the n-dimensional space, and there are 2n-1 m-dimensional adjacencies for each

one (by Observation 5.1).

For example, let n = 3 and m = 2, then, there will be 3
2

3
���

�

�
��
�

�
C main planes, and

each one with 22=4 face adjacencies, giving a total of 12 face adjacencies in the 3D

configuration with 8 boxes ("v", Table 4.2).

Corollary 5.1: The total number of adjacencies in a configuration with 2n boxes

(the configuration with a hyper-box in all its hyper-octants) is:

�
�

�

����
�

�
��
�

�1

0

12
n

m

n

m

n
C

Proof: Each one of its terms will provide the number of m-dimensional adjacencies for the

configuration with 2n boxes. The upper limit for m is n-1 since nm ��0 (see Observation

5.1).

 183

For example, let n = 4, then we will have:

32483282
3

4
2

2

4
2

1

4
2

0

4
2

4 3333
14

0

14

����
�

�
��
�

�

���

�

�
��
�

�

���

�

�
��
�

�

���

�

�
��
�

�
����

�

�
��
�

�
�

�

�

�

m m
C

Which represents that, in the 4D configuration with 16 boxes, there are 8 vertex

adjacencies, 32 edge adjacencies, 48 face adjacencies and 32 volume adjacencies.

Corollary 5.2: The sum of adjacencies for the n-dimensional configuration with

2n hyper-boxes (i.e., with all its hyper-octants filled) is:

� �nn 22
2

1 2 �

Proof: Theorem 5.1 provides a formula for the sum of adjacencies in a configuration with

x boxes: (x2 - x) / 2. By doing x = 2n it will be obtained the sum of adjacencies for the

configuration with all its hyper-octants filled:

� � � �� � � �nnnn 22
2

1
22

2

1 22
���

Theorem 5.2: A closed form for evaluating the sum in Corollary 5.1 is given by

Corollary 5.2

� �nn
n

m

n

m

n
C 22

2

1
2 2

1

0

1 �����
�

�
��
�

�
�

�

�

�

Proof: It is well known that n
n

m m

n
C 2

0

���
�

�
��
�

�
�

�

 and since 1���
�

�
��
�

�

n

n
C , then �

�

�

����
�

�
��
�

�1

0

12
n

m

n

m

n
C .

 184

Therefore

� �nn

nn

nn

n

m

n
n

m

n

m

n
C

m

n
C

22
2

1
22

)12(2

22

2

112

1

1

0

1
1

0

1

��

��

���

��
�

�
��
�

�
�����

�

�
��
�

�

��

�

�

�

�
�

�

� ��

For example, consider the 10-dimensional configuration with 210 = 1024 boxes.

Then we can expect that the number of adjacencies embedded in each subspace is as

presented in Table 5.8.

TABLE 5.8
The adjacencies in the 10D configuration with 1024 boxes (Own elaboration).

5122
0

10 9 ����
�

�
��
�

�
C Vertex adjacencies

120,52
1

10 9 ����
�

�
��
�

�
C Edge adjacencies

040,232
2

10 9 ����
�

�
��
�

�
C Face adjacencies

440,612
3

10 9 ����
�

�
��
�

�
C Volume adjacencies

520,1072
4

10 9 ����
�

�
��
�

�
C 4D hypervolume adjacencies

024,1292
5

10 9 ����
�

�
��
�

�
C 5D hypervolume adjacencies

520,1072
6

10 9 ����
�

�
��
�

�
C 6D hypervolume adjacencies

440,612
7

10 9 ����
�

�
��
�

�
C 7D hypervolume adjacencies

040,232
8

10 9 ����
�

�
��
�

�
C 8D hypervolume adjacencies

120,52
9

10 9 ����
�

�
��
�

�
C 9D hypervolume adjacencies

�
�

����
�

�
��
�

�9

0

9 776,5232
10

m m
C � � 776,52310241024

2

1 2 ��

 185

Corollary 5.3: The total number of adjacencies in a configuration with 2n-1

boxes is:

�
�

�

� ����
�

�
��
�

�1

0

1)12(
n

m

n

m

n
C

Proof: We know by Observation 5.1 and Lemma 5.1 that there are at most 2n-1

adjacencies in each one of the possible ��
�

�
��
�

�

m

n
C m-dimensional subspaces in the

configuration with 2n hyper-boxes. By removing a hyper-box from this configuration we

remove an adjacency in each one of these m-dimensional subspaces.

 For example, consider the 3D configuration with eight boxes ("v", Table 4.2).

Configuration "v" has four face, edge and vertex adjacencies embedded in each one of their

2D, 1D and 0D-dimensional subspaces respectively (it has a total of 12 face adjacencies, 12

edge adjacencies and 4 vertex adjacencies). By removing a box we obtain the configuration

"u" (see Table 4.2) with seven boxes. It has three face, edge and vertex adjacencies in each

one of their 2D, 1D and 0D-dimensional subspaces respectively giving finally 9 face

adjacencies, 9 edge adjacencies and 3 vertex adjacencies.

 186

Corollary 5.4: The sum of adjacencies for the n-dimensional configuration with

2n-1 hyper-boxes is:

� � � �� � 12221212
2

1 1122

������ �� nnnnn

Proof: Theorem 5.1 provides a formula for the sum of adjacencies in a configuration with

x boxes (x2 - x) / 2. By doing x = 2n-1 it is obtained the sum of adjacencies for the

configuration with 2n-1 hyper-boxes.

Theorem 5.3: A closed form for evaluating the sum in Corollary 5.3 is given by

Corollary 5.4

1222)12(112
1

0

1
�������
�

�
��
�

� ��
�

�

�� nnn
n

m

n

m

n
C

Proof: It is well known that n
n

m m

n
C 2

0

���
�

�
��
�

�
�

�

 and since 1���
�

�
��
�

�

n

n
C , then �

�

�

����
�

�
��
�

�1

0

12
n

m

n

m

n
C .

Therefore

1222

)12()12(

)12()12(

112

1

1

0

1
1

0

1

���

����

��
�

�
��
�

�
�������

�

�
��
�

�

��

�

�

�

�
�

�

� ��

nnn

nn

n

m

n
n

m

n

m

n
C

m

n
C

For example, consider the 10-dimensional configuration with 210 - 1= 1023 boxes.

Then we can expect that the number of adjacencies embedded in each subspace is as

presented in Table 5.9.

 187

TABLE 5.9
The adjacencies in the 10D configuration with 1023 boxes (Own elaboration).

511)12(
0

10 9 �����
�

�
��
�

�
C Vertex adjacencies

110,5)12(
1

10 9 �����
�

�
��
�

�
C Edge adjacencies

995,22)12(
2

10 9 �����
�

�
��
�

�
C Face adjacencies

320,61)12(
3

10 9 �����
�

�
��
�

�
C Volume adjacencies

310,107)12(
4

10 9 �����
�

�
��
�

�
C 4D hypervolume adjacencies

772,128)12(
5

10 9 �����
�

�
��
�

�
C 5D hypervolume adjacencies

310,107)12(
6

10 9 �����
�

�
��
�

�
C 6D hypervolume adjacencies

320,61)12(
7

10 9 �����
�

�
��
�

�
C 7D hypervolume adjacencies

995,22)12(
8

10 9 �����
�

�
��
�

�
C 8D hypervolume adjacencies

110,5)12(
9

10 9 �����
�

�
��
�

�
C 9D hypervolume adjacencies

�
�

�����
�

�
��
�

�9

0

9 753,522)12(
10

m m
C 753,522)10231023(

2

1 2 ��

5.5 Some Properties of the “ Test-Box” Heur istic

The algorithm described in section 5.2.2 will be considered except for the steps 1

and 4, in other words, the (n-1)D configurations won't be generated nor extruded (step 1)

and a boxes’ combination won't be compared with others to determine if it i s a

configuration (step 2). That implies that the algorithm will start with the configuration with

zero boxes.

 188

Figure 5.1 presents the graph generated when the 2D configurations are obtained.

In level 0 there is only the configuration with zero boxes, which contains four empty

quadrants and therefore there are four possible positions for adding a “test-box” (level 1).

By adding a second “ test-box” at each of the three remaining positions, all possible

permutations with two boxes will be obtained (level 2). By adding a box at each of the

remaining two positions, all possible permutations with three boxes are obtained (level 3)

and finally, by adding a fourth box in the last empty position, all possible permutations with

four boxes are obtained (level 4).

0

1

2

3

4
FIGURE 5.1

The graph generated by the “Test-Box” algorithm for determining the 2D configurations
(See the text for details. Own elaboration).

Property 5.1: The graph generated by the “T est-Box” algorithm has 2n + 1

levels. This property is obvious and arises from the fact that n-dimensional

space has 2n hyper-octants which can be occupied by 1, 2, 3, …, 2n boxes.

Moreover, it must considered the case when all the hyper-octants are empty.

 189

For example, the graph generated by the “Test-Box” algorithm for determining the

7D Orthogonal Pseudo-Polytopes’ configurations will have 27+1=129 levels.

Property 5.2: The graph generated by the “T est-Box” algorithm is a

permutation tree. In level 1 a box will be positioned in each one of the 2n empty

hyper-octants. In level 2 only 2n – 1 hyper-octants will be available to be

occupied by a second box according to all the possibiliti es, and so forth. By

associating the available positions for a box in each one of the possible levels

we will have:

� �

)!2()1(...)22()12()2(
2321

n

levellevel

n

level

n

level

n

n

�������
����������

Where (2n)! provides the count of the permutations with 2n boxes (all the hyper-

octants occupied) in the 2n-th level.

For example, in the level 512 (n = 9, i.e. 9D space) the generated permutation tree

will have 512! possible permutations of the configuration with all it s hyper-octants

occupied.

Property 5.3: Each level i from the permutation tree, ni 20 �� , has

)!2(

!22

i
P

n

n

i

n

�
� permutations, because each box is occupying each one of the

possible available hyper-octants. Obviously the total number of permutations in

the tree will be equal to:

�
�

n
n

i
i P

2

0

2

 190

For example, see Figure 5.1 (n=2). The number of permutations in each level is

presented in the Table 5.10.

TABLE 5.10
Counts of the permutation tree’s levels for generating the configurations for the 2D-OPP’s

(own elaboration).

Level (i)
)!2(

!22

i
P

n

n

i

n

�
�

0 1
1 4
2 12
3 24
4 24

Total: �
�

n
n

i
i P

2

0

2 = 65

Property 5.4: It is known that there is one configuration with 0 boxes and one

configuration with 1 boxes. Then by considering the application of step 4, in the

algorithm presented in section 5.2.2, from all the generated permutations with a

box in tree’s level 1 only one of them will be considered, which automatically

discards to 12
1 �P
n

 sub-trees whose root is an element from level 1.

For example, in Figure 5.2 is presented the possible sub-tree chosen by the “Test-

Box” algorithm for determining the 2D-OPP’s configurations. The three remaining sub-

trees are not considered again.

 191

0

1

2

3

4

FIGURE 5.2
The first sub-tree chosen by the “Test-Box” algorithm

(See the text for details, own elaboration).

Starting from this section, when referring to the term “permutation tree” we will

consider to the sub-tree mentioned in Property 5.4.

Property 5.5: The number of elements in each level i from the permutation tree

is given by the function E’(i,n):

�
�
�

��
�

�

�

��
��

��

�

�

�

n

nn

n

n

ii i
i

P

P

P

i

i

niE
n

n

n

21
)!2(2

!2

2

11

01

),('
2

2
1

2

When the level i is greater than 1, the number of the possible permutations in

each level must be divided by the number of permutations with one box.

For example, the number of permutations in each level from the generated tree for

determining the 3D configurations is presented in Table 5.11.

 192

TABLE 5.11
Counts of the permutation tree’s levels for generating the configurations for the 3D-OPP’s

(own elaboration).
Level (i) E’(i,3)

0 1
1 1
2 7
3 42
4 210
5 840
6 2,520
7 5,040
8 5,040

Property 5.6: We know that there are only n configurations with two boxes.

Therefore by considering step 4, from the algorithm presented in section 5.2.2,

only n permutations will be selected from the possible E’(2,n). Which

automatically discards to the E’(2,n) – n sub-trees whose root is one of the

permutations from level 2.

For example, in Figure 5.3 are indicated the two selected sub-trees (one for each

configuration with 2 boxes in level 2) by the “Test-Box” algorithm. The remaining sub-tree

is not considered again.

0

1

2

3

4
FIGURE 5.3

The two sub-trees selected in level 2 by the “Test-Box” algorithm
(See the text for details, own elaboration).

 193

Starting from this section, when referring to the term “permutation tree” we will

consider the tree whose levels 0, 1 and 2 has 1, 1 and n configurations respectively.

Property 5.7: The number of elements in each level i from the permutation tree

is given by the function E2(i,n):

�
�
�

��
�

�

�

��
�

�
�

�

�

�

�

�

ni
n

n

i i
P

Pn

P

nP
in

i

i

niE

n

n

n

n

22
2

2

2

11

01

),(

2
2

2

2
2

2

2

The factor
P

n
n

n

2
2

2�
 arises from

),2(' nE

n
 which indicates the relation between the

n configurations with 2 boxes and the E’(2,n) possible permutations.

For example, the number of permutations in each level from the tree for determining

the 3D configurations is presented in Table 5.12.

TABLE 5.12
Using the function E2(i,n) for determining the counts of the permutation tree’s levels for

generating the configurations for the 3D-OPP’s (own elaboration).
Level (i) E2(i,3)

0 1
1 1
2 3
3 18
4 90
5 360
6 1,080
7 2,160
8 2,160

 194

Property 5.8: We know that there are n configurations with 2n – 2 boxes

(because they are the complementary configurations with 2 boxes). Therefore

the “T est-Box” algorithm will select only n permutations from the possible

E2(2,n). Moreover, we know that there are one configuration with 2n – 1 boxes

and one configuration with 2n boxes (because they are the complementary

configurations with 1 and 0 boxes respectively) which will be selected by the

algorithm from the possible E2(2n-1,n) and E2(2n,n) respectively. Finally, the

level 2n from the permutation tree will have just one element, level 2n-1 also will

have one element and level 2n-2 will have n elements.

Figure 5.4 presents the permutation tree generated by the algorithm for obtaining

the 2D configurations (n = 2). In this case level 2 and level 2n-2 are the same.

0

1

2

3

4
FIGURE 5.4

The permutation tree for obtaining the 2D configurations
(own elaboration).

Definition 5.3: The number of elements in each level i from the permutation

tree generated by the “T est-Box” algorithm is determined by the function

E(i,n):

 195

�
�
�
�
�

�
�
�
�
�

�

�

�

��

��

���
�

�

�

�

�

n

n

n

ni

i

i

in

i
P

Pn

in

i

i

niE n

n

21

121

22

222

2

11

01

),(
2
2

2

Then, for example, if n=7 we can expect that its permutation tree in level 49 will

have 96
98

128
2

128
49 10394.3

16256

)1031.4(1287
)7,49(x

x

P

P
E �

�
�

�
� elements.

The described properties until this moment create a link between the “Test-Box”

Heuristic and a permutation tree. However, determining the configurations for the

nD-OPP’s through exhaustive searching links that procedure with the generation of

combinations of boxes (see section 4.2). It is obvious that an analysis based in

combinations will have a minor complexity compared with other whose base is an analysis

based in permutations. However, it must be considered that for each level of the tree related

with the “Test-Box” heuristic some permutations are discarded, which rebounds in the sub-

trees whose roots are precisely the discarded nodes, because they are not considered again

by the algorithm. With the following property we will j ustify this asseveration.

 196

Property 5.9: A node with x boxes in the permutation tree can generate exactly

2n - x permutations, one for each of the empty hyper-octants. Each one of the

2n – x generated permutations will produce 2n – x – 1 boxes and so forth. Then

the number of generated nodes starting from a node with x boxes will be:

� �
�

�

�

�

���
�

x

j

j

i

nnn

n

ixxx
2

2

1

1

)2()2()2(1

nx 20 ��

The first term (1, level 0) counts to the node with x boxes itself, the second term

(2n-x, level 1) counts the number of permutations generated from the given node. Each one

of the 2n-x nodes generated through the root can generate up to 2n-x-1 nodes (level 2) each

one, until this level we would have counted to)12()2()2(1 ����
�
 xxx nnn nodes. In

general, the number of nodes in a level j will be equal to the product of the generated nodes

through just one node in level j-1 by the number of nodes in that level (j-1). At its time, the

number of nodes in the level j-1 will be equal to the product of the generated nodes through

just one node in level j-2 by the number of nodes in that level (j-2) and so forth until level 1

whose number of nodes is 2n-x. Then, such count will be given by the product:

�
�

�

���

1

1

)2()2(
j

i

nn ixx

Due to starting from a node with x boxes it is necessary to analyze 2n-x levels for which

their number of nodes will be counted, then finally we obtain the third term in the given

formula:

� �
�

�

�

�

���
x

j

j

i

nn

n

ixx
2

2

1

1

)2()2(

 197

If a node x is ignored by the “Test-Box” algorithm, then also the nodes that could be

generated starting from it will be ignored (i.e. the sub-tree whose root is x). Then, the above

formula allows us to determine the ignored sub-tree’s number of elements.

The following example will show how by not considering a node the number of

permutations to analyze is reduced drastically:

Let n=4, 2n=16, and suppose a ignored 4D configuration with x=4 boxes, then we will

have:

��� �
�

��

�

�

�

�

�

����
�

1

1

12

2

416

2

1

1

)12(12121)416()416()416(1
j

ijj

j

i

ii

In the level 0 we have the permutation itself with 4 boxes (1 node). Such permutation

generates in total 12 permutations with 5 boxes (level 1). For each term in the sum

��
�

�
��
�

�
��

�

�

1

1

)12(12
j

i

i we have:

Level j=2
(permutations
with 6 boxes),

�
�

�
1

1

)12(12
i

i

= 12(12-1) = 132

Level j=3
(permutations
with 7 boxes),

�
�

�
2

1

)12(12
i

i

= 12(12-1)(12-2) = 1,320

Level j=4
(permutations
with 8 boxes),

�
�

�
3

1

)12(12
i

i

= 12(12-1)(12-2)(12-3) = 11,880

Level j=5
(permutations
with 9 boxes),

�
�

�
4

1

)12(12
i

i

= 12(12-1)(12-2)(12-3)(12-4) = 95,040

 198

Level j=6
(permutations

with 10 boxes),

�
�

�
5

1

)12(12
i

i

= 12(12-1)(12-2)(12-3)(12-4)(12-5) = 665,280

Level j=7
(permutations

with 11 boxes),

�
�

�
6

1

)12(12
i

i

= 12(12-1)(12-2)(12-3)(12-4)(12-5)(12-6) = 3,991,680

Level j=8
(permutations

with 12 boxes),

�
�

�
7

1

)12(12
i

i

= 12(12-1)(12-2)(12-3)(12-4)(12-5)(12-6)(12-7) = 19,958,400

Level j=9
(permutations

with 13 boxes),

�
�

�
8

1

)12(12
i

i

= 12(12-1)(12-2)(12-3)(12-4)(12-5)(12-6)(12-7)(12-8) = 79,833,600

Level j=10
(permutations

with 14 boxes),

�
�

�
9

1

)12(12
i

i

= 12(12-1)(12-2)(12-3)(12-4)(12-5)(12-6)(12-7)(12-8)(12-9) = 239,500,800

Level j=11
(permutations

with 15 boxes),

�
�

�
10

1

)12(12
i

i

= 12(12-1)(12-2)(12-3)(12-4)(12-5)(12-6)(12-7)(12-8)(12-9)(12-10) = 479,001,600

Level j=12
(permutations

with 16 boxes),

�
�

�
11

1

)12(12
i

i

= 12(12-1)(12-2)(12-3)(12-4)(12-5)(12-6)(12-7)(12-8)(12-9)(12-10)(12-11)
= 479,001,600

And by adding all the terms finally it is found that there are:

345,061,302,1)12(12121
1

1

12

2

��

 ��
�

��

j

ij

i ignored permutations.

Let n = 6 (the 6D space), 2n = 64 (hyper-octants), and the ignored permutation with

x = 23 boxes, then we will fi nd that the number of permutations in the sub-tree ignored by

the “Test-Box” algorithm (whose root is the given permutation) is:

90,933,395,208,605,785,401,971,970,164,779,391,644,753,259,799,242

 199

This computation was possible due to an implementation of the formula in the high

level language Java and by using the class BigInteger which provides the possibilit y of the

handling of “ Immutable arbitrary-precision integers”. The referred implementation is the

following:

BigInteger getSubTreeSize(int X, int n)
{

// X: number of boxes in the ignored permutation.
// n: number of dimensions in the space.
// Formula’s first term.
BigInteger firstTerm = new BigInteger("1");
// Formula’s second term.
BigInteger secondTerm = new BigInteger(Integer.toString((int) Math.pow(2,n) - X));
int j = 2;
int k = (int) Math.pow(2,n) - X;
BigInteger finalCount = firstTerm.add(secondTerm);
// The formula’s sum will be executed.
while(j <= k)
{

BigInteger firstProduct = new BigInteger(Integer.toString((int) Math.pow(2,n) - X));
BigInteger secondProduct = new BigInteger("1");
int i = 1;
// The formula’s product will be executed.
while(i <= j - 1)
{

// The formula’s product i-esimal term.
secondProduct=
secondProduct.multiply(new BigInteger(Integer.toString((int) Math.pow(2,n)-X- i)));
i++;

}
// The formula’s sum j-esimal term.
BigInteger finalProduct = firstProduct.multiply(secondProduct);
finalCount = finalCount.add(finalProduct);
j++;

}
// The final count.
return finalCount;

}

 200

5.6 Binary Representation for the Configurations in the nD-OPP's

 In this section we will consider a useful representation for the configurations in the

nD-OPP's. We will define such representation specifi cally for the 3D case (section 5.6.1)

and then to the nD case (section 5.6.2).

5.6.1 Binary Representation for the Configurations in the 3D-OPP's

 A 3D-OPP's configuration can be represented through a binary string of eight bits.

These bits will i ndicate the 3D space's octants. If a bit has a value equal to one then its

referred octant is occupied by a box; otherwise, the octant is empty. Since we will have

eight bits in the binary string, the position of each bit can be interpreted as a binary number

with three digits (0002 … 1112). These three digits will be associated with each one of the

3D space's main axes by considering the most signifi cant bit as a reference to the X1 axis,

the subsequent bit as a reference to the X2 axis and the least signifi cant bit as a reference to

the X3 axis. Moreover, if a bit is 0 then we will consider the positive part of the

corresponding axis; otherwise, we will consider its negative part. Then, through the binary

representation of the position of a bit in the configuration's string we can infer its

corresponding octant. For example, if the 6-th bit has a value equal to one, then we know

that there is a box in the octant xxx 321 because 610 = 1102 (a superposed bar on
k

x

indicates that we are considering the negative part of the referred axis). The

correspondences between the bits' positions in the configuration's binary string with their

octants are presented in Table 5.13.

 201

TABLE 5.13
Correspondences between bits' positions in a 3D configuration's binary string

and their octants (own elaboration).

Bit' s
Positi on's Binary
Representation

Corresponding
Octant

Positi on Most
Signifi cant

Bit

 Least
Signifi cant

Bit

(Descriptive
Axes)

0 0 0 0 xxx 321

1 0 0 1 xxx 321

2 0 1 0 xxx 321

3 0 1 1 xxx 321

4 1 0 0 xxx 321

5 1 0 1 xxx 321

6 1 1 0 xxx 321

7 1 1 1 xxx 321

 For example, the combination with four boxes in Figure 5.5 corresponds to the

string 01010011. By associating the positions of those bits whose value is equal to one with

its corresponding octants (Table 5.14) it is determined that the four boxes are distributed in

the octants xxx 321 , xxx 321 , xxx 321 and xxx 321 .

a)

X 2

X 1

X 3

0 1 0 1 0 0 1 1

b)
FIGURE 5.5

a) A boxes' combination for 3D configuration "j" and b) its binary representation
(own elaboration).

TABLE 5.14
Octants occupied by the boxes indicated in a 3D combination's binary string (own elaboration).

Configuration's
Binary Str ing

0 1 0 1 0 0 1 1

Positi ons 0 1 2 3 4 5 6 7
Positi ons' Binary
Representations

000 001 010 011 100 101 110 111

Corresponding
Octants xxx 321

 xxx 321
 xxx 321

 xxx 321
 xxx 321

 xxx 321
 xxx 321

 xxx 321

 202

Definition 5.4: Let C(a, b) be the number of bits that don't change from binary

string 'a' respect to binary string 'b'.

 For example:

C(110, 001) = 0 (no bit remains unchanged)

C(110, 011) = 1 (bit 1 does not change)

C(110, 111) = 2 (bits 0 and 1 do not change)

 By comparing the binary representations of the positions of two boxes we can infer

the type of adjacency between them. If C(a2, b2) is equal to two, it implies that two bits

don't change and therefore these unchanged bits will refer to the positive or negative parts

of two main axes which define specifi cally a shared face. For example, by considering two

boxes whose binary positions are a = 101 and b = 100, we have that C(101, 100) = 2, i.e.

there is a shared face (face adjacency) which is defined by the first and second unchanged

bits in both binary strings and whose corresponding axes are xx 21 . If C(a2, b2) = 1 then we

have an edge adjacency between two boxes which is defined by the positive or negative

part of the axis defined by the unchanged bit. If C(a2, b2) = 0 then we have a vertex

adjacency which only takes place at the origin.

 203

Definition 5.5: Let Adj3(a,b) be the function that computes the type of

adjacency between two 3D boxes referred through the binary digits that

correspond to their respective octants. Then we will have:

�

�
�

�

��

��

��

�

0),()(

1),()(

2),()(

),(

0

1

2

3

baCiffadjacenyvertex

baCiffadjacencyedge

baCiffadjacencyface

baAdj

In other words:

),(3
),(

baC
baAdj ��

 For example we will determine the adjacencies between the four boxes in the

example from Table 5.14 and Figure 5.5:

Adj3(011, 001) = �2 (Face adjacency)

Adj3(011, 110) = �1 (Edge adjacency)

Adj3(011, 111) = �2 (Face adjacency)

Adj3(001, 110) = �0 (Vertex adjacency)

Adj3(001, 111) = �1 (Edge adjacency)

Adj3(110, 111) = �2 (Face adjacency)

5.6.2 Representing n-dimensional Configurations

A nD-OPP's configuration can be represented through a binary string with 2n bits.

These bits will i ndicate the nD space's hyper-octants. If a bit has a value equal to one then

its referred hyper-octant is occupied by a hyper-box; otherwise, the hyper-octant is empty.

Since we will have 2n bits in the binary string, the position of each bit can be interpreted as

a binary number with n digits (
���

�

n

00 2 …
�

n

11� 2). These n digits will be associated with

each one of the nD space's main axes by considering the most signifi cant bit as a reference

to the X1 axis, the subsequent bit as a reference to the X2 axis, and so forth until we

consider the least signifi cant bit as a reference to the Xn axis. Moreover, if a bit is 0 then we

 204

will consider the positive part of the corresponding axis; otherwise, we will consider its

negative part. Then, through the binary representation of the position of a bit in the

configuration's string we can infer its corresponding octant. For example, if the 22-th bit in

a 5D configuration's binary string has a value equal to one, then we infer that there is a

hyper-box in the hyper-octant xxxxx 54321 because 2210 = 101102. As a specifi c case we

present in Table 5.15 the correspondences between the bits' positions in a 4D

configuration's binary string with their hyper-octants.

TABLE 5.15
Correspondences between bits' positions in a 4D configuration binary string

and their hyper-octants (own elaboration).

Bit' s
Positi on's Binary
Representation

Corresponding
Hyper-octant

Positi on Most
Signifi cant

Bit

 Least
Signifi cant

Bit

(Descriptive
Axes)

0 0 0 0 0 xxxx 4321

1 0 0 0 1 xxxx 4321

2 0 0 1 0 xxxx 4321

3 0 0 1 1 xxxx 4321

4 0 1 0 0 xxxx 4321

5 0 1 0 1 xxxx 4321

6 0 1 1 0 xxxx 4321

7 0 1 1 1 xxxx 4321

8 1 0 0 0 xxxx 4321

9 1 0 0 1 xxxx 4321

10 1 0 1 0 xxxx 4321

11 1 0 1 1 xxxx 4321

12 1 1 0 0 xxxx 4321

13 1 1 0 1 xxxx 4321

14 1 1 1 0 xxxx 4321

15 1 1 1 1 xxxx 4321

 205

For example, the string 0100011001110000 will define a 4D configuration with six

hyper-boxes. By associating the positions of those bits whose value is equal to one with its

corresponding hyper-octants (Table 5.16) it is determined that the six hyper-boxes are

distributed in the hyper-octants xxxx 4321 , xxxx 4321 , xxxx 4321 , xxxx 4321 , xxxx 4321

and xxxx 4321 .

TABLE 5.16
Hyper-octants occupied by the hyper-boxes indicated in a

4D configuration's binary string (own elaboration).
Configuration's
Binary String

Positions Positions' binary
representation

Corresponding
Hyper-octants

0 0 0000 xxxx 4321

1 1 0001 xxxx 4321

0 2 0010 xxxx 4321

0 3 0011 xxxx 4321

0 4 0100 xxxx 4321

1 5 0101 xxxx 4321

1 6 0110 xxxx 4321

0 7 0111 xxxx 4321

0 8 1000 xxxx 4321

1 9 1001 xxxx 4321

1 10 1010 xxxx 4321

1 11 1011 xxxx 4321

0 12 1100 xxxx 4321

0 13 1101 xxxx 4321

0 14 1110 xxxx 4321

0 15 1111 xxxx 4321

By comparing the binary representations of the positions of two hyper-boxes in a

n-dimensional configuration we can infer the type of adjacency between them. If C(a, b) is

equal to n-1 (see Definition 5.4), it implies that n-1 bits don't change and therefore these

unchanged bits will r efer to the positive or negative parts of n-1 main axes which define

 206

specifically a �n-1 shared cell. If C(a,b) = n-2 then we have an (n-2)-D adjacency (a �n-2

shared cell); and so forth until the cases when C(a,b) = 1 (an edge adjacency) and C(a,b)=0

(a vertex adjacency).

Definition 5.6: Let Adjn(a, b) be the function that computes the type of

adjacency between two n-dimensional hyper-boxes referred through the binary

digits that correspond to their respective hyper-octants. Then we will have:

�
�
�

��
�

�

�

��

��

����

����

�
�

�

0),()(

1),()(

2),())2((

1),())1((

),(

0

1

2

1

baCiffadjacencyvertex

baCiffadjacencyedge

nbaCiffadjacencyDn

nbaCiffadjacencyDn

baAdj
n

n

n
�����

In other words:

),(
),(

baCn
baAdj ��

 For example, Adj4(a,b) will be defined as:

�
�

�
�

�

�

��

��

��

��

�

0),()(

1),()(

2),()(

3),()(

),(

0

1

2

3

4

baCiffadjacencyvertex

baCiffadjacencyedge

baCiffadjacencyface

baCiffadjacencyvolume

baAdj

Then, the adjacencies between the six hyper-boxes from 4D configuration 67 (see

Appendix A and Table 5.16) are shown in Table 5.17.

 207

TABLE 5.17
The adjacencies between the six hyper-boxes of a 4D configuration

(own elaboration).
Shared (n-k)-dimensional cell Shared (n-k)-dimensional cell

Adj4(0001, 0101) = 3 �3 (Volume) Adj4(0101, 1011) = 1 �1 (Edge)
Adj4(0001, 0110) = 1 �1 (Edge) Adj4(0110, 1001) = 0 �0 (Vertex)
Adj4(0001, 1001) = 3 �3 (Volume) Adj4(0110, 1010) = 2 �2 (Face)
Adj4(0001, 1010) = 1 �1 (Edge) Adj4(0110, 1011) = 1 �1 (Edge)
Adj4(0001, 1011) = 2 �2 (Face) Adj4(1001, 1010) = 2 �2 (Face)
Adj4(0101, 0110) = 2 �2 (Face) Adj4(1001, 1011) = 3 �3 (Volume)
Adj4(0101, 1001) = 2 �2 (Face) Adj4(1010, 1011) = 3 �3 (Volume)
Adj4(0101, 1010) = 0 �0 (Vertex)

 The following is an implementation of the procedure to calculate the adjacencies

counting for a configuration represented through its binary string:

int [] analyzeAdjacencies(BinaryString hyperboxes, int dimensions)

{

int adjacencies[] = new int[dimensions];

for(i = 0; i < 2dimensions; i++)

if(hyperboxes[i] == 1)

{

BinaryString hyperOctantA = getBinaryRepresentation(i);

for(j = i + 1; j < 2dimensions; j++)

if(hyperboxes[j] == 1)

{

BinaryString hyperOctantB = getBinaryRepresentation(j);

int adjacency = Adj(hyperOctantA, hyperOctantB, dimensions);

adjacencies[adjacency]++;

}

}

return adjacencies;

}

 208

 Some considerations for the algorithm are:

�� The function getBinaryRepresentation has as input an integer and returns its respective

binary representation.

�� The function Adj implements the function from Definiti on 5.6. It has as inputs the

positions of two hyper-boxes (indicated by variables i and j respectively) using their

binary representation and the number of dimensions (in order to get the appropriate

adjacencies' evaluation according to the nD space).

�� The array adjacencies will store the counting of the adjacencies between all the hyper-

boxes in the configuration. Due to function Adj returns values in the interval [0, n-1],

such values will i ndicate the position in the array adjacencies whose value must be

increased. When the main cycle finishes, this array has the final adjacencies counting,

the first position will contain the number of vertex adjacencies, the second position will

contain the number of edge adjacencies and so forth; until the last position will contain

the number of (n-1)-dimensional adjacencies.

5.7 The Hill vs. Aguilera & Pérez's Configurations for the 4D-OPP's

In this section we will discuss some important aspects related to the determination

of the configurations for the 4D-OPP's. Specifi cally we will consider the diff erences

between the procedures for obtaining such configurations according to the methods

described by [Hill , 98] and Aguilera & Pérez in [Pérez, 01].

 209

5.7.1 Obtaining the Hill's Configurations for the 4D-OPP's

In the section 4.2.3 we specifi ed in a general way the procedure for obtaining the

configurations for the 4D-OPP's. We mentioned that the 65,536 possible combinations

from 0 to 16 hyper-boxes can be grouped by applying symmetries and rotations. In

[Hill ,98] it is considered this same procedure by specifying the application of some of the

following transformations:

�� Rotations:

o Around the X1X2, X1X3, X1X4, X2X3, X2X4 and X3X4 planes and with angles

90°, 180° and 270°.

�� Symmetries:

o Reflections respect to the X1, X2, X3 and X4 axes.

This way we can say that a hyper-boxes' combination Cn1 will be equivalent to

other combination Cn2 (i.e. they belong to the same equivalence class) if there exists a

composition Tn of the mentioned transformations such that:

)(21 CnTCn n
�

For example, in the Table 5.18 there are shown some examples of 4D combinations Cn1

and Cn2 and the transformations to apply in order to obtain their proper equivalencies.

 210

TABLE 5.18
Examples of 4D combinations Cn1 and Cn2 and the transformations to apply such that

)(21 CnTCn n
� (R1 stands for reflection respect X1; own elaboration).

Ex. Cn1 (Binary
Representation) Tn

Cn2 (Binary
Representation)

1 1001100000000000)(90R)(180R)(180R 2,31,21,4 ����� 0010001010000000

2 1110000000000000)(180R)(180R)(180R 1,22,41,4 ����� 0000000000000111

3 1001100000000000)90(R)(180R)(270R)(180R 3,21,22,41,4 ������� 0011000001000000

4 1001100010000000 12,41,4 R)(270R)(270R ���� 1011100000000000

5 0011010010000000 12,33,42,41,4 R)(90R)(90R)(180R)(270R �������� 0100100000001001

 By this way, we can develop an implementation to find the configurations for the

4D-OPP's. The algorithm will fi nd such configurations in the following way:

�� We will have a set configurations that contains all the hyper-boxes' sets that represent

each one of the identifi ed equivalence classes.

�� A combination of hyper-boxes which will be evaluated with each one of the hyper-

boxes' sets in configurations in order to determine if that combination can be a

representative of a new configuration. If there exists a composition of transformations

such that)(ncombinatioTionsconfigurationconfigurat n
�� then the evaluated

combination has a representative in configurations; otherwise, the combination of

hyper-boxes is the representative of a new configuration and it must be added to the set

configurations.

�� The implementation receives as input the number 160 �� N of hyper-boxes whose

configurations will be determined. The output will be the set configurations that

contains all the hyper-boxes' sets that are representative of all the configurations with N

hyper-boxes.

 211

Vector getConfigurations(int N)

{

Vector configurations = new Vector();

BinaryString combination = 0000000000000000; //Specifi c for 4D space.

for(int i = 0; i < 65536; i++)

{

if(getNumberOfHyperBoxes(combination) == N)

{

for(int j = 0; j < confs; j++)

{

BinaryString configuration = configurations.elementAt(j);

if(existsComposition(combination, configuration) == true)

break;

}

if(j == confs)

configurations.add(combination);

}

getNextCombination(combination);

}

return configurations;

}

The function existsComposition will have as input the two hyper-boxes' sets that

correspond to a combination and a configuration. Its objective is to search exhaustively a

composition of transformations (rotations and/or reflections) such that

)(ncombinatioTionconfigurat n
� . A composition of transformations is represented by an

array of seven digits whose values are in the interval [0, 4]. We have a total of

480,20546
�� combinations or compositions. Each position in the array will be related to

an specifi c transformation in the following way:

 212

�� Position 0: Rotation around X1X4 plane.

�� Position 1: Rotation around X2X4 plane.

�� Position 2: Rotation around X3X4 plane.

�� Position 3: Rotation around X1X2 plane.

�� Position 4: Rotation around X2X3 plane.

�� Position 5: Rotation around X1X3 plane.

�� Position 6: Reflection.

Moreover, the positions' values will i ndicate the parameters of the transformations:

�� From position 0 to 5, the values 1, 2 or 3 will i ndicate a rotation angle of 90°, 180° and

270° respectively. Value 0 will i ndicate that the referred rotation won't be applied.

�� In position 6, the values 1, 2, 3 and 4 will i ndicate a reflection respect to X1, X2, X3 and

X4 axes respectively. Value 0 will i ndicate that a reflection won't be applied.

See in the Table 5.19 the array representation for the composition of transformations of the

examples presented in Table 5.18.

TABLE 5.19
Examples of 4D combinations Cn1 and Cn2 and the transformations to apply, in their

respective array representation, such that)(21 CnTCn n
� (own elaboration).

Example Cn1 (Binary
Representation)

Tn
(Array

Representation)

Cn2 (Binary
Representation)

1 1001100000000000 {2, 0, 0, 2, 1, 0, 0} 0010001010000000
2 1110000000000000 {2, 2, 0, 2, 0, 0, 0} 0000000000000111
3 1001100000000000 {2, 3, 0, 2, 1, 0, 0} 0011000001000000
4 1001100010000000 {3, 3, 0, 0, 0, 0, 1} 1011100000000000
5 0011010010000000 {3, 2, 1, 0, 1, 0, 1} 0100100000001001

 213

If there exists a composition such that)(ncombinatioTionconfigurat n
� then the

function returns true; otherwise, all possible compositions were evaluated and none of them

indicate an equivalence between the combination and the configuration from the input.

boolean existsComposition(BinaryString combination, BinaryString configuration)

{

int composition[7] = {0,0,0,0,0,0,0};

for(i = 1; i < 20480; i++)

{

BinaryString cn = combination.clone();

applyComposition(composition, cn);

if(equals(cn, configuration) == true)

return true;

getNextComposition(composition);

}

return false;

}

 The function applyComposition applies a composition of geometric transformations

to a combination of hyper-boxes (cn in the code). The application of a set of geometric

transformations on a configuration which is represented through a binary string is a very

simple process. Each one of the hyper-boxes (i.e. occupied hyper-octants) in a

configuration is referred through their descriptive axes. Now, each one of the hyper-octant’s

axes will be associated with a coordinate, if we are considering an axis’ negative part then

the corresponding coordinate will have a value equal to –1; otherwise, the corresponding

coordinate is equal to one. By this way, a hyper-octant will be related with a point in the 4D

 214

space. For example, the corresponding point for the hyper-octant xxxx 4321 is (-1,1,-1,1).

Table 5.20 shows the hyper-octants and their corresponding points.

TABLE 5.20
The 4D space’s hyper-octants and their corresponding points

(own elaboration).
Hyper-octant Corresponding

(Descriptive Axes) Point
xxxx 4321

 (1, 1, 1, 1)

xxxx 4321
 (1, 1, 1,-1)

xxxx 4321
 (1, 1,-1, 1)

xxxx 4321
 (1, 1,-1,-1)

xxxx 4321
 (1,-1, 1, 1)

xxxx 4321
 (1,-1, 1,-1)

xxxx 4321
 (1,-1,-1, 1)

xxxx 4321
 (1,-1,-1,-1)

xxxx 4321
 (-1, 1, 1, 1)

xxxx 4321
 (-1, 1, 1,-1)

xxxx 4321
 (-1, 1,-1, 1)

xxxx 4321
 (-1, 1,-1,-1)

xxxx 4321
 (-1,-1, 1, 1)

xxxx 4321
 (-1,-1, 1,-1)

xxxx 4321
 (-1,-1,-1, 1)

xxxx 4321
 (-1,-1,-1,-1)

To apply the set of required transformations we must then obtain the corresponding

points of each occupied hyper-octant and transform them according to the needed rotations

and/or reflections. Since the possible rotation’s angles are 90°, 180° and 270° and the

reflections to apply will preserve the values of the coordinates in –1 or 1, is that the

transformed points’ coordinates will have a new hyper-octant associated and therefore a

hyper-box has been placed in a new position; finally a new string that represents the

transformed configuration is obtained.

 215

For example, consider the string 0100011001110000 whose hyper-boxes are

distributed in the 4D space as has been shown in the Table 5.16. In the Table 5.21 we

show the points associated to each one of its occupied hyper-octants.

TABLE 5.21
The points associated to the occupied hyper-octants of a 4D configuration

 (from Table 5.16; own elaboration).
Hyper-octants Corresponding Points

xxxx 4321
 (1, 1, 1,-1)

xxxx 4321
 (1,-1, 1,-1)

xxxx 4321
 (1,-1,-1, 1)

xxxx 4321
 (-1, 1, 1,-1)

xxxx 4321
 (-1, 1,-1, 1)

xxxx 4321
 (-1, 1,-1,-1)

Now, we will apply the compositions of transformations {1,1,0,1,0,0,0}, i.e.

)(90R)(90R)(90R
1,22,41,4

����� . The 90° rotations around X1X2, X1X3, X1X4, X2X3, X2X4

and X3X4 planes and the reflections respect X1, X2, X3 and X4 axes are easily defined in the

Table 5.22.

TABLE 5.22

Main rotations around 90° and reflections in the 4D space (own elaboration).
R1,2(90°) R1,3(90°) R1,4(90°)
X1’ = X1
X2’ = X2
X3’ = X4
X4’ = -X3

X1’ = X1
X2’ = X4
X3’ = X3
X4’ = -X2

X1’ = X1
X2’ = -X3
X3’ = X2
X4’ = X4

R2,3(90°) R2,4(90°) R3,4(90°)
X1’ = -X4
X2’ = X2
X3’ = X3
X4’ = X1

X1’ = X3
X2’ = X2
X3’ = -X1
X4’ = X4

X1’ = -X2
X2’ = X1
X3’ = X3
X4’ = X4

R1 R2 R3 R4

X1’ = -X1
X2’ = X2
X3’ = X3
X4’ = X4

X1’ = X1
X2’ = -X2
X3’ = X3
X4’ = X4

X1’ = X1
X2’ = X2
X3’ = -X3
X4’ = X4

X1’ = X1
X2’ = X2
X3’ = X3
X4’ = -X4

 216

 Then by applying the transformations)(90R)(90R)(90R
1,22,41,4

����� on the points of

the referred example, we have the new points and therefore the new occupied hyper-octants

presented in Table 5.23. The new string that represents to the transformed configuration is

then 0101001110000010 (the original string was 0100011001110000).

TABLE 5.23
Applying geometric transformations to the points associated to the occupied hyper-octants

in a 4D configuration (from Table 5.16; own elaboration).

Points Transformations Transformed
Points

Corresponding
Hyper-octants

(1, 1, 1,-1) (1,-1,-1, 1) xxxx 4321

(1,-1, 1,-1) (-1,-1,-1, 1) xxxx 4321

(1,-1,-1, 1))(90R)(90R)(90R
1,22,41,4

����� (-1, 1, 1, 1) xxxx 4321

(-1, 1, 1,-1) (1,-1,-1,-1) xxxx 4321

(-1, 1,-1, 1) (1, 1, 1,-1) xxxx 4321

(-1, 1,-1,-1) (1, 1,-1,-1) xxxx 4321

 Through this implementation we have found the 402 Hill's configurations for the

4D-OPP's. In the Table 5.24 is shown the configurations' distribution while in Appendix B

are shown the hyper-boxes' sets that are representatives of these 402 configurations.

TABLE 5.24
The distribution for the 402 Hill's Configurations in the 4D-OPP's

(own elaboration).
4D Hyper-boxes Configurations 4D Hyper-boxes Configurations

0 1 16 1
1 1 15 1
2 4 14 4
3 6 13 6
4 19 12 19
5 27 11 27
6 50 10 50
7 56 9 56
8 74

 217

5.7.2 Obtaining the Aguilera & Pérez's Configurations for the 4D-OPP's

The configurations for the 4D-OPP's determined by Aguilera & Pérez were obtained

by a very similar process to the used in the determination of the Hill 's configurations

(previous section). However, it was observed that the counting of each type of adjacencies

for all the combinations that belong to a same configuration is the same. For example, in

the Table 5.25 are shown six 4D configurations whose adjacencies counting (which can be

performed through the algorithm presented in section 5.6.2) is the same.

TABLE 5.25
Six 4D combinations with 6 hyper-boxes' whose adjacencies counting is the same

(own elaboration).

Hyper-boxes'
combinations

Number of
Volume

Adjacencies

Number of
Face

Adjacencies

Number of
Edge

Adjacencies

Number of
Vertex

Adjacencies
0011110110000000
1001011110000000
0110101011000000
1001101011000000
0101011011000000
1000000111101000

4 6 4 1

By this way we can say that a hyper-boxes' combination Cn1 will be equivalent to

other combination Cn2 (i.e. they belong to the same equivalence class) if their adjacencies

counting is equal, such that:

 218

�
�

�
�

�

�

�

�

�

�

�

)(_)(_

)(_)(_

)(_)(_

)(_)(_

21

21

21

21

21

CnsadjacencievertexCnsadjacencievertex

andCnsadjacencieedgeCnsadjacencieedge

andCnsadjacenciefaceCnsadjacencieface

andCnsadjacencievolumeCnsadjacencievolume

iffCnCn

The implementation to find the configurations for the 4D-OPP's by according this

evaluation is similar to the presented in previous section. The algorithm will fi nd the

4D-OPP's configurations in the following way:

�� We will have a set configurations that contains all the adjacencies counting of each one

of the identifi ed equivalence classes.

�� The adjacencies counting of a combination of hyper-boxes (obtained through the

algorithm presented in section 5.6.2) will be evaluated with each one of the adjacencies

counting in configurations in order to determine if that combination can be a

representative of a new configuration. If there exists an adjacencies counting in

configurations equal to the combination's counting then it has a representative in

configurations; otherwise, the combination of hyper-boxes is the representative of a

new configuration and its adjacencies counting must be added to the set configurations.

�� The implementation receives as input the number N of hyper-boxes whose

configurations will be determined. The output will be the set configurations that

contains all the adjacencies counting of all the configurations with N hyper-boxes.

 219

Vector getConfigurations(int N)

{

Vector configurations = new Vector();

BinaryString combination = 0000000000000000; //Specifi c for 4D space.

for(int i = 0; i < 65536; i++)

{

if(getNumberOfHyperBoxes(combination) == N)

{

int combinationAdjacencies[] = analyzeAdjacencies(combination, 4);

for(int j = 0; j < confs; j++)

{

int configurationAdjacencies[] = configurations.elementAt(j);

if(equals(combinationAdjacencies, configurationAdjacencies) == true)

break;

}

if(j == confs)

configurations.add(combinationAdjacencies);

}

getNextCombination(combination);

}

return configurations;

}

Through this implementation Aguilera & Pérez [Pérez, 01] found 253

configurations for the 4D-OPP's. In the section 4.2.3 is shown the configurations'

distribution while in Appendix A are shown the adjacencies counting for these 253

configurations. Moreover, the configurations for the 5D and 6D-OPP's found through the

'Test-Box' Heuristic (section 5.2) were determined according to their adjacencies counting.

 220

