Chapter 5
Determining the Configurations for thenD-OPP's (n > 4)

In this chapter is descaibed the “Ted-Box” Heuristic, presated in [Pérez 03, that
gives a elution to the problem of determining the configurations that can represent the
n-Dimensional Orthogoral Pseudo-Polytopes (the @nfigurations for the 2D, 3D and
4D-OPP s were preseaited in sedion 4.2. This heuristic preseits a @mplexity that is minor
compared to the exhaustive seaching method. The heuristic has asore of its fundaments
the etrusion d the (n-1)-dimensional configurations to oltain the n-dimensional
configurations. Among the obtained reaults there ae mentioned the anfigurations for the
5D and @-OPPs (sedion 5.3. Findly, in sedion 5.7,we will consider the diff erences
between the proceduresfor obtaining the aonfigurations for the 4D-OPPs acording to the

methods descibed by [Hill, 9§ and Aguilera & Pérezin [Pérez 01].

5.1 The Problem of Determining the Configurationsfor nD-OPP' s (n>4)

For the Euclidean n-Dimensional space we have 2" possble hyper-octants (4
quadrants for 2D space 8 octants for 3D space and 16 hypr-octants for 4D space. As
obsaved in sedions 4.2.1, 4.2.2and 4.2.3(configuration for 2D, 3D and 4D-OPPs
repedively), the number of hyper-octants has arepercusson ower the possble number of
combinations of verticesdescibed through the preseice or absence of hyper-boxes eath
onein every hyper-octant. In general, we have that the total number of combinationsin nD

spaceis [Hill ,98):
2(2”)

171



It was before discussel that in 4D space we have 2'° = 65,536 combinations.
[Pérez01] determined that there ae 253 configurations for 4D-OPP s through exhaustive
seaching. However, if we want to determine the wnfigurations for 5D-OPPs through
exhaustive seaching, we would have to consider that there ae 32 hyper-octants in 5D
space and for instanceto analyze 2*? = 4,294,967,29@ombinations [Hill ,98].

TABLE 5.1

Comparing the number of configurations with the number of combinations
for the nD-OPPs (Taken from [Pérez 03).

D Per centage
Combinations | Configurations | (ConfigurationsVs.
Space C o
ombinations)

1D 4 3 75%

2D 16 6 37.5%

3D 256 22 8 %

4D 65,536 253 0.3%

5D 4,294,967,296 ? <<0.3%

Moreover, if the number of configurations is assciated with the total number of
combinations, it is evident that the first one is much lesse than the seond ore. For
example, in 3D spacewe have 22 configurations for 256 pssble mmbinations, this can be
trandated asthat only the 8% of the combinations can perform the role of representatives
(equivalence dassep of the others. See Table 5.1 for the gplicaion d this comparison

over the awnfigurationsin 1D, 2D, 3D and 4D spaces

These guations lead us to conclude that the complexity imposed by the exhaustive
seaching makes diffi cult to determine the @nfigurations for OPPs in spacesof 5
dimensions and beyond [Hill ,98]. In the following sedion we will deseibe aheuristic for
obtaining the configurations in a more dired way. The heuristic's first step is to oltain a

subsd of the nD configurations’ fi nal se throughthe extrusion d (n-1)D configurations.

172



5.2 The* Test-Box” Heuristic for Obtaining Configurationsfor nD-OPP's

5.2.1Extruding Configur ations

The extrusion d a n-dimensional configuration impliesthat ead ore of its boxes
will be extruded in a diredion that is perpendicular to the gacein which it is embedded.
The extrusion d eat boxwill deseibe ahyper-box (this processis analogous to oltaining
the hypercube throughthe method popaosed by Bragdon[Rucker,77], sedion 2.2.1.). It is
important to consider that an (n+1)-dimensional configuration oliained through the
extrusion d a n-dimensiona configuration is not unique, becaise there ae two passble
trandation dredions for ead box.For example, in Table 5.2t is preseited the extrusion

of the 2D configuration e for obtaining 3D configurationsf, gand h.

TABLE 5.2
Extrusion d 2D configuration"e" and the obtained 3D configurations
(the arowsindicae the extrusion dredion d ead redange. Taken from [Pérez 03).

17¢



Throughextruding configurations it is passble to oltain some @nfigurations from
(n+1)-dimensional spaceby using the cnfigurations from n-dimensional spacewhich are
obtained through(n-1)-dimensional configurations and so on.By this way, we obtain then a

reaursive processwhosebasc case ee the wnfigurations for 1D-OPP s (Table5.3).

TABLE 5.3
The three onfigurations for 1D-OPP s (taken from [Pérez 03).
—e —e—
a b C

5.2.20btaining the Configurations Through a “Teg-Box”

The *Ted-Box’ heuristic garts with the following pinciple: to have accessto
(n-1)-dimensional configurations for obtaining the n-dimensional configurations. Each
(n-1)-dimensional configuration is extruded just one time and in just one diredion, this
means that, the boxes that compose it are ectruded towards the sane perpendicular
diredion from space in which they are ambedded. Once this processis gplied,
the (n-1)-dimensional configuration is nat required again. For example, five configurations
for 2D-OPPs ae extruded just one time and towards the sane diredion for obtaining five

configurations for 3D-OPP s (Table 5.4).

174



TABLE 54
Extruding 2D configurationsin the sane diredion and
Obtaining their 3D analogows (Taken from [Pérez 03).
Extrusion: 2D Configuration Extrusion:
3D Configuration 3D Configuration

L NN N

2D Configuration

Oncethe configurations from (n-1)-dimensional spacehave been extruded, we have
now the sane number of n-dimensional configurations. The next step is the useof eadh
n-dimensional configuration for obtaining the remaining configurations. We will use a
“Ted-Box’ (aredange, a aube, a hypercube, etc.). For ead configuration, we will addit a
“Ted-Box” in ore of its empty hyper-octants. This aldition will produce a new
combination which must be compared with the se of the configurations dready identifi ed,
for determining whether a new configuration has been oltained o not. This processis
repeded urtil al the configuration's empty hyper-octants have been evaluated with a
“Ted-Box’. In Table 5.5 are shown the 3D combinations obtained from the configuration

and byapplyinga “Ted-Box” in all its empty octants.

17¢



TABLE 5.5
Obtaining rew configurations through I configuration
anda “Ted-Box”’ (shown aswireframe model. Taken from [Pérez, 03).

We have now the dements to propose a algorithm applying extrusions and a

“Ted-Box’. The dgorithm isresumed in [Pérez 03 with the foll owing main procedures

1.

17¢

For a number n of dimensions we obtain the (n-1)-dimensional configurations. If n=1
then we have the badc casewhich returns the configurations from Table 5.3 (1D
configurations).

The (n-1)-dimensional configurations ae extruded in n-dimensional configurations.

To eadh ndimensional configuration it is added a “Ted-Box’ in their empty
hyper-octants, this operation will produce new combinations.

Eadh new produced combination will be evaluated with the sé of arealy identified
configurations. If it is anew configuration then it will be added to the sé of identifi ed
configurations and considered to be evaluated with a “Ted-Box’, becaise it could

produce new configurations.

We present now the proposed algorithm [Pérez 03:



Input: The number of dimensions > 0 for the configurations to obtain.
Output: The set of configurations for the specified space.
getConfigurationsForSpacelUsingTestBox(dimensions)

{
if(dimensions == 1)
// Basic Case: just return the three onfigurations for 1D space.
return getConfigurationsFor1DSpace( );
else
{

[* Reaursive @ll: the configurations from (n-1)D spaceare obtained and theyare added
to the set ‘ prevousConfigurations'. */

previousConfigurations = getConfigurationsFor SpaceUsingTestBox(dimensions - 1);

For each configuration c in the set previousConfigurations

{

/* Corfiguration‘c’ is(n-1)D. The wnfiguration‘newC' (n-dimensiond) isthe
result of extruding configuration‘c’. */

newC = extrudeConfiguration(c);

/* The mnfiguration ‘newC’ isadded to the set ‘ configurations' (the configurations
from current nD space). */

configurations.add(newC);

}

[* Startsthe cyde for generating rew combinations from the cnfigurations contained in the
set ‘configurations’ using a“T est-Box” (redande, cube, hypercube,etc.) whose
position (hyper-octant to occupy) isindicated by variable ‘ testBoxPosition'. */

hyperOctants = 24mensons.

For each configuration c in the set configurations

{

testBoxPosition = 0;
[* Starts the cyde for generating new combinations from configuration ‘c’ using a
“T est-Box” . */
while(testBoxPosition < hyperOctants)
{
/* The mmbination ‘newC' is obtained from configuration‘c’ andthe
“T est-Box” added in the hyper-octant spedfied by ‘testBoxPosition'. */
newC = getNewConfiguration(c, testBoxPosition);

/* 1t is verified if combination ‘newC' was before obtained. If nat, then it
is added to set ‘configurations' and for instance a new configuration
has been found */

if(configurations.isContained(newC) == false)

configurations.add(newC);
testBoxPosition++;
}
/* All the possble configurations have been found The set ‘configurations’ is returned as
output.
return configurations;
}
}

177



5.3 “Test-Box” Heuristic’'s Results and Complexity

For determining the number of combinations analyzed to oltain the n-dimensional
configurations throughthe “Ted-Box” heuristic it is necessgy to analyze the output’s sze,
i.e., the number of configurations. Since we will nat know the number of configurations

until the dgorithm finishes we have then an output-sensitive complexity analysis

[deBerg,97].

Definition 5.1 Let CTB (Configurations-by-Test-Box) be the number of
configurations obtained by the algorithm and 2" the number of hyper-octants for

the nD space. Then the number of combinations to analyze is at most:

CTB-2"

Thisis an upper bound lecaisewe ae considering that for ead configuration (with
1, 2, 3,etc. hyper-boxes) there ae 2" empty hyper-octants (this is possble only for
configurations with O hyper-boxes). We must consider, in fad, that configurations with 1
box have 2"-1 empty hyper-octants, corfigurations with 2 boxes have 2"-2 empty

hyper-octants and so on.

Definition 5.2 Let CTB; be the number of those configurations with i boxes,

then we have that the exact number of combinations to analyzein a nD spaceis:
ZI’I
D .CTB, - (2" -i)
i=0

The dgorithm in sedion 5.2.2 las onfirmed the expeded configurations for 2D,
3D [Aguilera98 and 4D [Pérez01] spaces Spedficdly, the greded number of

combinations to analyze for obtaining the onfigurationsin 4D spaceis 253 * 2 = 4,048.

17¢



Althoughthis is an upper bound,it is much better than the obtained through exhaustive

seaching by[Pérez01] (2'°= 65,538.

Through the “Ted-Box” heuristic we have found 20,983corfigurations for the

5D-OPP s [Pérez, 03 whosedistributionis srown in Table 5.6.

TABLE 5.6
Configurations' distribution for 5D-OPPs (Taken from [Pérez, 03).

Number of 5D Number of 5D

hyper -boxes (i) CTB hyper -boxes (i) CTB,
0 1 32 1
1 1 31 1
2 5 30 5
3 10 29 10
4 38 28 38
5 66 27 66
6 164 26 164
7 236 25 236
8 454 24 454
9 570 23 570
10 887 22 887
11 989 21 989
12 1,388 20 1,388
13 1,406 19 1,406
14 1,754 18 1,754
15 1,607 17 1,607
16 1,831

The predsenumber of analyzed 5D combinationsis:

icmi (2°-i) =

1-32+1-31+5-30+10-29+ 38- 28+ 66-27+164- 26+
236- 25+ 454-24+570-23+887-22+989- 21+
1,388-20+1,406-19+1,754-18+1,607-17+1,831.16+
1607-15+1,754-14+1,406-13+1,388:12+989-11+
887-10+570-9+454-8+ 236-7+164-6+66-5+
38-4+10-3+5-2+1-1+1-0

= 335728




This realt represeits a grea improvement compared with the number of

combinations to analyze throughexhaustive seaching:

2 .
> CTB - (2°-i) = ol2)
i=0
335728 << 4,294967,296

For obtaining the configurations for the 6D-OPPs we would have to anayze,
through exhaustive seaching, a total of 2°* = 18,446,744,073,709,551,6 Bmbinations.
Throughthe “Teg-Box” heuristic, we found 15,440,344onfigurations [Pérez, 03 whaose
distributionis shownin Table5.7.

TABLE 5.7

Configurations' distribution for 6D-OPP s (Own elaboration).
Boxes(i) | CTB; |Boxes(i))| CTB; |Boxes(i)| CTB; Boxes(i) | CTB;

0 1 17 148,714 34 702,460 51 41,230
1 1 18 198627 35 659,016 52 30,040
2 6 19 230,447 36 669,618 53 17,047
3 16 20 296,731 37 600,894 54 11,368
4 77 21 331,481 38 598,040 55 5,631
5 193 22 401,828 39 535,773 56 3,281
6 643 23 431,952 40 506,158 57 1,317
7 1,317 24 506,158 41 431,952 58 643
8 3,281 25 535,773 42 401,828 59 193
9 5,631 26 598040 43 331,481 60 77
10 11,368 27 600,894 44 296,731 61 16
11 17,047 28 669,618 45 230,447 62 6
12 30,040 29 659,016 46 198,627 63 1
13 41,230 30 702,460 47 148,714 64 1

14 64,892 31 674,771 48 120,156
15 83,257 32 709,012 49 83,257
16 120,156 33 674,771 50 64,892

In the following sedion (5.4) some formulations related to nD-OPP s wnfigurations
will be presented. Finally in sed¢ion 5.5some propertiesof the 'Teg-Box' heuristic will be

disaussel.

18C



5.4 Some Formulations for the Configurationsin the nD-OPP's

Theorem 5.1 The sum of adjacencies for any configuration with x hyper-boxes

independently of the Euclidean n-dimensional space, is (see section 4.2.4):

X(X2— 1 _ 1 (X2 B X)

Proof: A first hyper-box of the configuration will have x-1 adjacencies (one for ead x-1
hyper-boxes); a seond hyper-box will have x-2 adjacencies (not including the aljacecy
with the fir st hyper-box becauseit isin that first hyper-box courting); a third hyper-box will
have x-3 adjacencies (nat including the aljacencieswith the first and se@nd hyper-boxes
becaise they are in thesehyper-boxes regpedive wurting); in general, a k-th hyper-box
(k < x) will have x-k adjacencies The ajacencies total courting (i.e. the sum of all hyper-
boxes adjacencies is then defined by the well known expresson to compute the um of the
first x-1 positi ve integers:

X-1 2
K= x(x 1) X=X r
=} 2

Obseration 5.1 In a n-dimensional configuration consider a m-dimensional
subspace (0<m< n) that passes through the origin. The maximum number of

adjacencies embedded in that m-dimensional subspaceis 2™,

For example, let n = 3 and consider the configuration with 8 boxes("v", Table 4.2).
In eath ore of itsthreemain planesthere ae 2™* = 2*! = 4 face djacencies In eah ore of
its three main axis there ae 4 edge ajaceicies Finadly, in the origin there ae 4 vertex

adjacencies

181



Lemma 5.1. In the n-dimensional space, the maximum number of
m-dimensional adjacencies for the configuration with 2" boxes (the

configuration with a hyper-box in all its hyper-octants) is:

n n-1
C 2, 0<m<n
m

n

Proof: C[
m

j is the number of m-dimensional subspaces, which are composed by the m

axes from the n-dimensional space, and there are 2" m-dimensional adjacencies for each

one (by Observation 5.1). [«

3
For example, let n = 3 and m = 2, then, there will be C(zj:3 main planes, and

each one with 2°=4 face adjacencies, giving a total of 12 face adjacencies in the 3D

configuration with 8 boxes ("v", Table 4.2).

Corollary 5.1: The total number of adjacenciesin a configuration with 2" boxes

(the configuration with a hyper-box in all its hyper-octants) is:

n-1 n
C( ] . 2n—1
m=0 m
Proof: Each one of its terms will provide the number of m-dimensional adjacencies for the

configuration with 2" boxes. The upper limit for misn-1 since 0<m< n (see Observation

5.1). [

182



For example, let n = 4, then we will have:

ST A Y R e B e 2 R ) e
Yl [2tt=| |24 2%+ |-2°+] |- 2°=8+32+48+32
mo \UM 0 1 2 3

Which represents that, in the 4D configuration with 16 boxes, there are 8 vertex

adjacencies, 32 edge adjacencies, 48 face adjacencies and 32 volume adjacencies.

Corollary 5.2: The sum of adjacencies for the n-dimensional configuration with
2" hyper-boxes (i.e., with all its hyper-octants filled) is:

1

- 22n _ 2n

Lo -2)
Proof: Theorem 5.1 provides a formula for the sum of adjacencies in a configuration with
x boxes: (X% - X) / 2. By doing x = 2" it will be obtained the sum of adjacencies for the

configuration with all its hyper-octants filled:

] )5 -2)

Theorem 5.2: A closed form for evaluating the sumin Corollary 5.1 is given by

Corollary 5.2

n—.

4 n n- _1 n_on
c( ]-2 1_2(22 2")

m=0 m

n n n n-1 n
Proof: It iswell known that ZC(mj = 2" and since C(nj =1, then ZC(m) =2"-1.
m=0 m=0

183



Therefore

- n-1 n
2" mzzoc(mJ
2" (2" -1)
22n—l _ 2n—1
;(zZn _ zn)

fc n _2n—1
m=0 m

[

For example, consider the 10-dimensional configuration with 2'° = 1024 boxes.
Then we can expect that the number of adjacencies embedded in each subspace is as

presented in Table 5.8.

TABLE 5.8
The adjacencies in the 10D configuration with 1024 boxes (Own elaboration).
10
C 0 .2° =512 Vertex adjacencies
10\ : .
C 1 -2° =5120 Edge adjacencies
10\ . ,
C 5 .27 = 23,040 Face adjacencies
10\ : :
C 3 -2° =61,440 Volume adjacencies
10\ . :
C 4 -2° =107,520 4D hypervolume adjacencies
10\ _, . :
C 5 -2° =129,024 5D hypervolume adjacencies
10) . :
C 6 -2°=107520 6D hypervolume adjacencies
10\ . :
C ; -2° =61,440 7D hypervolume adjacencies
10\ . :
C 8 -2° =23,040 8D hypervolume adjacencies
10\ . :
C 9 -2 =5120 9D hypervolume adjacencies
> 10 9 1 2
>.Cl |2 =523776 5(1024 —~1024)= 523776
m=0

184



Corollary 5.3: The total number of adjacencies in a configuration with 2"-1

boxesis:

n—

lcn 2" 1
(m]-< )

Proof: We know by Observation 5.1 and Lemma 5.1 that there are a most 2"*

n
adjacencies in each one of the possible C[mj m-dimensional subspaces in the

configuration with 2" hyper-boxes. By removing a hyper-box from this configuration we

remove an adjacency in each one of these m-dimensional subspaces. Lo

For example, consider the 3D configuration with eight boxes ("v", Table 4.2).
Configuration "v" has four face, edge and vertex adjacencies embedded in each one of their
2D, 1D and OD-dimensional subspaces respectively (it has atotal of 12 face adjacencies, 12
edge adjacencies and 4 vertex adjacencies). By removing a box we obtain the configuration
"u" (see Table 4.2) with seven boxes. It has three face, edge and vertex adjacencies in each
one of their 2D, 1D and OD-dimensional subspaces respectively giving finally 9 face

adjacencies, 9 edge adjacencies and 3 vertex adjacencies.

185



Corollary 5.4: The sum of adjacencies for the n-dimensional configuration with
2"-1 hyper-boxesis:

;((2” ~1f (2" - 1)): 2 ™y

Proof: Theorem 5.1 provides a formula for the sum of adjacencies in a configuration with

x boxes (X - X) / 2. By doing x = 2"™1 it is obtained the sum of adjacencies for the

configuration with 2"-1 hyper-boxes. [d

Theorem 5.3: A closed form for evaluating the sumin Corollary 5.3 is given by

Corollary 5.4

n-1 n
> C( ] 2t -p=2"t 2" 2M
mo \M

) n n ) n n-1 n
Proof: It iswell known that ZC(mj =2" and since C(n} =1, then ZC(m] =2"1.

m=0 m=0

Therefore

n-1 n o1 B 1 . n-1 n
goc(mj-(z -) = (2"'-) ;}c(m]
(2™ 1) (2" -1)

— 22n—1 _ 2n _ 2n—1 +1 |]

For example, consider the 10-dimensional configuration with 2'° - 1= 1023 boxes.

Then we can expect that the number of adjacencies embedded in each subspace is as

presented in Table 5.9.

186



TABLE 5.9
The ajacenciesin the 10D configuration with 1023 bors(Own elaboration).

10
C 0 -(2°-1) =511 Vertex adjacencies
10\ . .
C 1 -(2°-1) =5110 Edge aljacecies
10\ . :
C 5 -(2° -1 =22995 Face djacencies
10\ . :
C 3 (27 -1 =61320 Volume aljacencies
10\ . :
C 4 -(2° -1 =107310 4D hypervolume adjacecies
10\ . :
C 5 (2°-1)=128772 5D hypervolume adjacencies
10\ . :
C 5 -(2° -1 =107310 6D hypervolume adjacencies
10) . :
C . -(2° -1 =61320 7D hypervolume adjacencies
10\ : :
C 8 -(2° -1 =22995 8D hypervolume adjacencies
10\ : :
C 9 -(2° -1 =5110 9D hypervolume adjacencies
o (10) , 1
ZC m -(2° -1 =522753 5(10239—1023)=522,753
m=0

5.5 Some Properties of the “ Test-Box” Heuristic

The dgorithm deseibed in sed¢ion 5.2.2will be mnsidered except for the deps 1
and 4,in ather words, the (n-1)D configurations wont be generated na extruded (step 1)
and a boxes combination wont be cmpared with ahers to determine if it is a
configuration (step 2). That impliesthat the dgorithm will start with the configuration with

zero boxes



Figure 5.1 presats the graph generated when the 2D configurations ae obtained.
In level O there is only the cnfiguration with zero boxes which contains four empty
quadrants and therefore there ae four possble positions for adding a “teg-box’ (level 1).
By adding a seond “teg-box’ at eah o the three remaining paitions, al possble
permutations with two boxeswill be obtained (level 2). By adding a box at ead o the
remaining two pasitions, al possble permutations with three boxes ae obtained (level 3)
andfinaly, by adding afourth boxin the lag empty pasition, all possble permutations with

four boxes ae obtained (level 4).

——1
-—2

-—3

~—1

FIGURE 5.1
The graph generated bythe “Ted-Box” algorithm for determining the 2D configurations
(Seethe text for detail s. Own elaboration).
Property 5.1: The graph gnerated by the “T e4-Box” algorithm has 2" + 1
levds. This property is obvious and aisesfrom the fact that n-dimensiond

space has 2" hyper-octants which can ke occupied by 1, 2, 3, ..., 2" boxes

Moreover, it must considered the casewhen al the hyper-octants are empty.

18¢



For example, the graph generated by the “Ted-Box” algorithm for determining the

7D Orthogoral Pseudo-Polytopes configurations will have 2’+1=1291evels.

Property 5.2. The graph generated by the “Ted-Box” algorithm is a
permutation tree. In leve 1 a boc will be positioned in each ore of the 2" empty
hyper-octants. In leve 2 orly 2" — 1 hyper-octants will be available to be
occupied by a seond bx according to dl the posshilities and so forth. By
assciating the available paositions for a box in each ore of the possble levds

we will have

(2")-2"-1-(2"-2)-... 1) =(2")
;/;I_l level 2 level 3 Ie\ZI_JZ”

Where (2")! providesthe murt of the permutations with 2" baxes(all the hyper-

octants occupied) in the 2"-th levd.

For example, in the level 512 (n = 9, i.e. 9D space the generated permutation tree
will have 512 possble permutations of the nfiguration with al its hyper-octants

occupied.

Property 5.3: Each levd i from the permutation treg 0<i<2", has

ZnP 2n|

P= 2 i permutations, because ech box is occupying each ore of the
—1)!

paossble avail able hyper-octants. Obviously the total number of permutationsin

the treewill be equd to:



For example, seeFigure 5.1 (n=2). The number of permutations in ead level is

preseated in the Table 5.10.

TABLE 5.10
Counts of the permutation tre€ s levels for generating the aconfigurations for the 2D-OPPs
(own elaboration).
_ o 2"

0 1

1 4

2 12

3 24

4 24
o

Total: > % P=65

i=0

Property 5.4: It is known that thereis one configuration with 0 boxesand ore
configurationwith 1 boces Then by considering the apgication d step 4,in the
algorithm presented in sedion 5.2.2 from all the generated permutations with a

box in trees levd 1 orly one of them will be wnsidered, which auomatically

discardsto % P -1 sub-treeswhaose oot is an element fromlevé 1.

For example, in Figure 5.2 is presaited the possble sib-tree tiosen by the “Tegd-
Box” algorithm for determining the 2D-OPP s cnfigurations. The three remaining sub-

trees ae naot considered again.

19C



FIGURE 5.2
Thefirst sub-tree thosen bythe “Ted-Box” algorithm
(Seethe text for detail s, own elaboration).

Starting from this set@ion, when referring to the term “permutation tree” we will

consider to the sub-treementioned in Property 5.4.

Property 5.5: The number of elementsin each level i from the permutation tree

is given by the function E'(i,n):

E'(i,n) =

1 i=0

1 i=1
P %P " .
== 2n -~ 1<i<2”
P2 2" (2" -i)

When the level i is greater than 1, the number of the possible permutations in

each level must be divided by the number of permutations with one box.

For example, the number of permutations in ead level from the generated treefor

determining the 3D configurationsis presented in Table 5.11.

191



TABLE5.11
Counts of the permutation tre€ s levels for generating the aconfigurations for the 3D-OPPs

(own elaboration).
Level () | E(i,3)
0 1
1 1
2 7
3 42
4 210
5 840
6 2,520
7 5,040
8 5,040

Property 5.6: We know that there are only n configurations with two baxes
Therefore by considering step 4, from the algorithm presented in sedion 5.2.2,
only n permutations will be séeded from the possble E'(2,n). Which
automatically discards to the E'(2,n) — n sub-treeswhose oot is one of the

permutations fromlevd 2.

For example, in Figure 5.3 are indicated the two sdeded sub-trees(one for eat
configuration with 2 boxesin level 2) by the “Teg-Box” algorithm. The remaining sub-tree

Isnot considered again.

FIGURE 5.3
Thetwo sub-trees skeded in level 2 bythe “Ted-Box” algorithm
(Seethe text for detail s, own elaboration).

192



Starting from this setion, when referring to the term “permutation tree” we will

consider thetreewhoselevels0, 1and 2 fasl, 1and nconfigurations repedively.

Property 5.7: The number of elementsin each level i from the permutation tree

is given by the function E(i,n):

E%(i,n) = N i =

n

The factor n-n arisesfrom — which indicates the relation between the

7 p E'(2,n)

n configurations with 2 boxes and the E’(2,n) possible permutations.

For example, the number of permutationsin ead level from the treefor determining

the 3D configurationsis preseited in Table 5.12.

TABLE 5.12
Using the function E¥(i,n) for determining the murts of the permutation tre€ s levels for
generating the configurations for the 3D-OPPs (own elaboration).
Level (i) | E%i,3)
1
1
3
18
90
360
1,080
2,160
2,160

O INOOIBAWIN|IFL|O

19¢



Property 5.8: We know that there are n configurations with 2' — 2 boes
(because they are the complementary configurations with 2 boeg. Therefore
the “T ed-Box” algorithm will sded only n permutations from the possble
E?(2,n). Moreover, we know that there are one mrfiguration with 2 — 1 boces
and ore configuration with 2' boxes (because they are the complementary
configurations with 1 and Oboxes repedivdy) which will be séeded by the
algorithm from the posshle E*(2™-1,n) and E*(2",n) respedivdy. Finaly, the
leve 2" from the permutation treewill havejust one dement, leve 2"-1 aso will

haveone dement andlevd 2"-2 will haven elements.

Figure 5.4 presents the permutation tree generated by the algorithm for obtaining

the 2D configurations (n = 2). In this case level 2 and level 2"-2 are the same.

FIGURE 54
The permutation tree for obtaining the 2D configurations
(own elaboration).
Definition 5.3: The number of elements in each leve i from the permutation

tree generated by the “T ed-Box” algorithm is determined by the function

E(i,n):

194



1 i=0

1 i=1

n =2

o

E(i, n) = n;P 2<i<2" -2

,P

n i=2"-2
i=2"-1

1 ji=2"

Then, for example, if Nn=7 we can exped that its permutation treein level 49 will

7P 128 (4.31x10%)

== =3.394x10 elements.
5p 16256

have E(49,7) =

The descibed properties until this moment creae alink between the “Ted-Box”
Heuristic and a permutation tree However, determining the nfigurations for the
nD-OPPs through exhaustive seaching links that procedure with the generation o
combinations of boxes (see setton 4.2. It is obvious that an anaysis baseal in
combinations will have aminor complexity compared with ather whosebaseis an analysis
baseal in permutations. However, it must be mnsidered that for ead level of the treerelated
with the “Ted-Box” heuristic Some permutations ae discaded, which rebounds in the sub-
treeswhoseroots ae predsdy the discaded noces becausethey are not considered again

by the dgorithm. With the following property we will j ustify this asseeration.

19¢



Property 5.9: A noce with x boxesin the permutation tree @an generate eactly
2" - x permutations, orefor each of the empty hyper-octants. Each ore of the
2" — x generated permutations will produce 2" —x — 1 boxesand so forth. Then

the number of generated noces sarting froma node with x boxeswill be:
2"—x j-1
1+(2" =X+ > 2"-9[ ] @ —x-i)
j=2 i=1

o<x<g2"

The first term (1, level 0) counts to the node with x boxes itself, the second term
(2"-x, level 1) counts the number of permutations generated from the given node. Each one
of the 2"-x nodes generated through the root can generate up to 2"-x-1 nodes (level 2) each
one, until thislevel we would have counted to 1+ (2" — x) + (2" — x) - (2" — x—1) nodes. In
general, the number of nodesin alevel j will be equal to the product of the generated nodes
through just one node in level j-1 by the number of nodesin that level (j-1). At itstime, the
number of nodes in the level j-1 will be equal to the product of the generated nodes through
just one node in level j-2 by the number of nodesin that level (j-2) and so forth until level 1

whose number of nodes s 2"-x. Then, such count will be given by the product:
j-1
2" -9[]@"-x-i)
i=1

Due to starting from a node with x boxes it is necessary to analyze 2"-x levels for which
their number of nodes will be counted, then finally we obtain the third term in the given

formula:

Zx(zn - x)]_t[(zn —x—i)

196



If anode x isignared bythe “Ted-Box” algorithm, then also the nodesthat could be
generated starting from it will beignared (i.e. the sub-treewhaoseroat is x). Then, the dbove

formula dlows usto determine the ignared sub-treé s number of elements.

The following example will show how by na considering a node the number of

permutations to analyzeis reduced dradicaly:

Let n=4, 2'=16, and suppcse aignaed 4D configuration with x=4 boes then we will

have:

16-4 j-1 12 j-1
1+(16-4)+ > (16-4)] [16-4-i)=1+12+> 12] [(12-i)
j=2 i=1 j=2 =l

In the level 0 we have the permutation itsdf with 4 boxes (1 node). Such permutation

generates in total 12 permutations with 5 boxes (level 1). For ead term in the m

(12ﬁ az2- i)j we have:

i=1

Level j=2 - :
(permutations 121:! d2=1)
with 6 boxeg, - 12(12-1) = 132
Level j=3 2 ,
(permutations 121;! (12-1)
with 7 bokes, = 1212-1)(12-2) = 1,320
Level j=4 : -
(permutations 12H 12=1
with 8 bodes, = 12(12-1)(12-2)(12-3) = 11,880
Level j=5 4 ,
(permutations 12[! (A2-1)

with 9 boXes, = 12(12-1)(12-2)(12-3)(12-4) = 95,040



Level j=6
(permutations
with 10 boxy,
Level j=7
(permutations
with 11 boxs,
Level =8
(permutations
with 12 boxs,
Level j=9
(permutations
with 13 boxy,
Level j=10
(permutations
with 14 boxy,
Level j=11
(permutations
with 15 boxy,

Level j=12
(permutations
with 16 boxs,

12f[ (12-1i)
= 1i2?112-1)(12-2)(12-3)(12-4)(12-5) = 665280
12ﬁ (12— 1)
= 1i2?112-1)(12—2)(12—3)(12—4)(12—5)(12—6) = 3,991,680
1211[ (12-1i)
= 1i2?112-1)(12-2)(12—3)(12—4)(12—5)(12-6)(12—7) = 19,958400
12f[ (12-1)
= 1i2?112-1)(12—2)(12—3)(12—4)(12—5)(12—6)(12—7)(12—8) = 79,833600
12f[ 12-1)
= 1i2?112-1)(12-2)(12-3)(12-4)(12-5)(12-6)(12-7)(12—8)(12—9) = 239500800
12ﬁ 12-i)
= 1i2?112-1)(12—2)(12—3)(12—4)(12—5)(12—6)(12—7)(12—8)(12—9)(12—10) = 479,001,600
12]1‘11 12-i)
i1

= 12(12-1)(12-2)(12-3)(12-4)(12-5)(12-6)(12-7)(12-8)(12-9)(12-10)(12-11)
= 479,001,600

And byadding all thetermsfinally it isfoundthat there ae:

12 j-1

1+12+ ) 12] [ (12-i)=1,302061345 ignared permutations.

j=2 =l

Let n =6 (the 6D space), 2" = 64 (hyper-octants), and the ignared permutation with

x = 23 boyes then we will fi nd that the number of permutations in the sub-treeignared by

the “Ted-Box” algorithm (whoseroat isthe given permutation) is:

90,933,395,208,605,785,401,971,970,164,779,391,644,753,259,799,242

19¢



This computation waspaossble due to an implementation d the formula in the high

level language Jara and by wsing the dassBiglnteger which providesthe posshility of the

handing d “Immutable abitrary-predsion integers”. The referred implementation is the

following:

Biglinteger getSubTreeSize(int X, int n)

{

I/ X: number of boxesin theignared permutation.

/[ n: number of dimensionsin the space

/l Formula' sfirst term.

BiglInteger firstTerm = new Biglnteger("1");

// Formula's mndterm.

Biglnteger secondTerm = new Biglnteger(Integer.toString((int) Math.pow(2,n) - X));

intj=2;

int k = (int) Math.pow(2,n) - X;

Biglinteger finalCourt = firstTerm.add(secondlerm);

/[l Theformula s aim will be exeauted.

while(j <=K)

{
Biglnteger firstProduct = new Biglnteger(Integer.toString((int) Math.pow(2,n) - X));
Biglnteger sesoondProduct = new Biglnteger("1");

inti=1;
/l The formula's product will be exeauted.
while(i <=j - 1)
{
// The formula's product i-esimal term.
secondProduct=
secondProduct. multi ply(new Biglnteger(Integer.toString((int) Math.pow(2,n)-X- i)));
i++;

/I Theformula's aim j-esimal term.

Biglnteger finalProduct = firstProduct.multi ply(secondProduct);
final Count = final Court.add(final ProdLrct);

i+

/I Thefina court.
return final Court;



5.6 Binary Representation for the Configurationsin the nD-OPP's

In this setion we will consider a us€ful representation for the configurations in the
nD-OPPs. We will define such representation spedficdly for the 3D case(sedion 5.6.)

and then to the nD case(sedion 5.6.2.

5.6.1 Binary Representation for the Configurationsin the 3D-OPP's

A 3D-OPPs mnfiguration can be represanted througha binary string o eight bits.
Thesebits will i ndicae the 3D spacés octants. If a bit has avalue equal to ore then its
referred octant is occupied by a box; otherwise the octant is enpty. Since we will have
eight bitsin the binary string, the position d ead hit can be interpreted as abinary number
with threedigits (00G; ... 111L). Thesethreedigits will be assciated with eat ore of the
3D spaces main axesby considering the most signifi cant bit as areference to the X; axis,
the subseguent bit as areferenceto the X, axis and the leas signifi cant bit as areferenceto
the X3 axis. Moreover, if a bit is O then we will consider the pasitive part of the
correpondng axis; otherwise we will consider its negative part. Then, throughthe binary
representation d the position d a bit in the configuration's d4ring we can infer its

correpondng actant. For example, if the 6-th bit has avalue equal to ore, then we know
that there is abox in the octant X X. X becaise 610 = 110, (a wiperposead bar on X,

indicates that we ae onsidering the negative part of the referred axis). The
correponcences between the bits' pasitions in the configuration's binary string with their

octants ae preseited in Table 5.13.

20C



TABLE 5.13
Corregpondencesbetween hits pasitionsin a 3D configuration's binary string
and their octants (own elaboration).

Position's Binary Corresponding
Bit's Representation Octant
Positi on . M.QSt . L_eg$ (Desciptive
S|gn|f.| cant S|gn|f_| cant Axes
Bit Bit
0 0 0 0 X Xz Xs
1 0 1 X Xz Xs
2 0 1 0 X Xz Xs
3 0 1 1 X X Xa
4 1 0 0 X Xe Xa
5 1 0 1 X X Xs
6 1 1 0 X Xz X
7 1 1 1 X Xo Xs

For example, the combination with four boxes in Figure 5.5 correponds to the
string 01010011By as®ciating the positions of thosebits whosevalue is equal to ore with

its crrepondng cctants (Table 5.14) it is determined that the four boxes ae distributed in

the octants X Xe Xs, X Xe Xs, X X Xs and X X Xo.

X2

* lol1]ol1[]o]Jof[1]1]

X3
a) b)

FIGURE 5.5

a) A boxes combination for 3D configuration”j"* and b) its binary representation

(own elaboration).

TABLE 5.14
Octants occupied bythe boxesindicaed in a3D combination's binary string (own elaboration).
anfl guration’s 0 1 0 1 0 0 1 1
Binary String
Positi ons 0 1 2 3 4 5 6 7

Positions Binary

. 000 001 010 011 100 101 110 111
Representations

Corresponding

Octants X XeXs | KXo Xs | X XoXs | KXo Xs | KXo Xs | KXo Xs | X Xo Xs | Xa Xo Xs

201




Definition 5.4: Let C(a, b) be the number of bits that don't change from binary

string 'a’ respect to binary string 'b'.

For example:

C(110,00)=0 (no [t remains unchanged)
C(110,011) =1 (bit 1 deesnat change)

C(110,111)=2 (bits0 and 1 do nbchange)

By comparing the binary representations of the paositions of two boxeswe can infer
the type of adjacency between them. If C(a, b)) is equal to two, it impliesthat two hits
dont change and therefore theseunchanged hits will refer to the paositive or negative parts
of two main axeswhich define gedficdly a sared face For example, by considering two
boxeswhose binary pasitions ae a =101 and b= 100, we have that C(101, 100) = 2, i.e.

there is a dared face(face ajaceicy) which is defined by the first and semnd urchanged
bitsin bah hinary strings and whose ©rregpondng axes ae X X . If C(ag, bp) = 1 then we

have an edge aljacency between two boxeswhich is defined by the positive or negative
part of the ais defined by the unchanged hit. If C(a, by) = 0 then we have a vertex

adjacency which orly takesplace athe origin.

20z



Definition 5.5: Let Adjs(a,b) be the function that computes the type of
adjacency between two 3D boxes referred through the binary digits that
correspond to thelr respective octants. Then we will have:

I1, (face adjacency) iff C(ab)=2
Adj,(a,b) =411, (edge adjacency) iff C(a,b)=1
IT, (vertex adjaceny) iff C(a,b)=0

0

In other words:
Adj,(a,b)=1T,,,

For example we will determine the aljaceicies between the four boxes in the
example from Table 5.14 and Figure 5.5:

Adj3(011, 001) = TI1, (Face djacancy)
Adj3(011, 110) = TI; (Edge ajacency)
Adj3(011, 111) = I, (Face @jacency)
Adj3(001, 110 = TI, (Vertex adjacecy)
Adj3(001, 111) = TI; (Edge ajacency)
Adj3(110,111) = I1, (Face djacacy)

5.6.2 Representing n-dimensional Configurations

A nD-OPPs wnfiguration can be represented througha binary string with 2" hits.
Thesebits will i ndicate the nD spaceés hyper-octants. If a bit has avalue equal to ore then
its referred hyper-octant is occupied by a hyper-box; otherwise the hyper-octant is empty.
Sincewe will have 2" bitsin the binary string, the position d ead hit can be interpreted as

a binary number with n dgits (0---0 ... 1:--1). Thesen dgits will be assciated with

eadt ore of the nD spacés main axesby considering the most signifi cant bit as areference
to the X; axis, the subseguent bit as areference to the X, axis, and so forth urtil we

consider the leas signifi cant bit as areferenceto the X,, axis. Moreover, if abit is 0 then we

20<



will consider the positive part of the arregpondng axis; otherwisg we will consider its
negative part. Then, through the binary represeitation d the position d a bit in the
configuration's gring we can infer its arregpondng octant. For example, if the 22-th bit in

a 5D configuration's binary string has avalue equal to ore, then we infer that there is a
hyper-box in the hyper-octant X X2 Xs Xa Xs because 2210 = 1011Q. As a pedfic casewe

preseit in Table 5.15 the rrepondcences between the bits positions in a 4D

configuration's binary string with their hyper-octants.

TABLE 5.15
Corregpondencesbetween hits pasitionsin a4D configuration knary string
and their hyper-octants (own elaboration).

Position's Binary Corresponding
Bit's Representation Hyper-octant
Positi on . M.QSt . L?‘jﬂ (Desciptive
S|gn|f.| cant S|gn|f_| cant Axes
Bit Bit
0 0 0 0 0 X Xo Xs Xa
1 0 0 0 1 Xa Xe Xa X
2 0 0 1 0 Xu Xa Xs Xa
3 0 0 1 1 Xu Xa Xs X
4 0 1 0 0 X Xo X5 X
5 0 1 0 1 Xa Xo Xs X
6 0 1 1 0 Xu Xz Xs Xa
7 0 1 1 1 X Xo X Xa
8 1 0 0 0 X Xo Xs X
9 1 0 0 1 X Xo Xs X
10 1 0 1 0 X Xo Xo X
11 1 0 1 1 X Xo X Xa
12 1 1 0 0 X Xo Xs X
13 1 1 0 1 X Xo Xs X
14 1 1 1 0 X Xo X Xa
15 1 1 1 1 X Xo X Xa

204



For example, the gring 010001100111000Rill define a4D configuration with six

hyper-boxes. By as®ciating the pasitions of thasebits whaosevalue is equal to ore with its

correpondng hyper-octants (Table 5.16) it is determined that the $x hyper-boxes are

distributed in the hyper-octants XoXeXaXa, XoXoXaXe, XoXoXoXe, XeXoXaXe, XeXoXoXa

and )?1)(2?(3)?4.

TABLE 5.16
Hyper-octants occupied bythe hyper-boxesindicaed in a
4D configuration's binary string (own elaboration).

Configuration's - Positions binary | Corresponding
Binary String Positions representation | Hyper-octants

0 0 0000 X Xo Xa Xa

1 1 0001 X Xo X X

0 2 0010 X Xo X5 Xa

0 3 0011 Xu Xo Xs X

0 4 0100 X Xo X Xa

1 5 0101 X Xo X X

1 6 0110 X Xo Xz X

0 7 0111 X Xo X5 X

0 8 1000 Xi Xo Xa Xa

1 9 1001 X Xo Xs Xa

1 10 1010 Xu Xo X Xa

1 11 1011 Xo Xo Xs Xa

0 12 1100 X Xo X Xe

0 13 1101 X Xo X Xa

0 14 1110 X Xo X Xe

0 15 1111 X Xo Xs Xa

By comparing the binary representations of the pasitions of two hyper-boxes in a

n-dimensional configuration we can infer the type of adjaceicy between them. If C(a, b) is

equal to n-1 (seeDefinition 5.4), it impliesthat n-1 hits dont change and therefore these

unchanged hits will refer to the positive or negative parts of n-1 main axeswhich define

20<



specifically a Il,.; shared cell. If C(a,b) = n-2 then we have an (n-2)-D adjacency (a Iln.2
shared cell); and so forth until the cases when C(a,b) = 1 (an edge adjacency) and C(a,b)=0

(avertex adjacency).

Definition 5.6 Let Adjn(a, b) be the function that computes the type of
adjacency between two n-dimensional hyper-boxes referred through the binary

digits that correspond to their respective hyper-octants. Then we will have:

I1 ((n—1)D adjacency) iff C(a,b)= n-1

n-1

IT ((n—2)D adjacency) iff C(a,b)= n-2

Adj (a,b) =1 : : : : :
I1 (edgeadjacency) iff C(a,b)= 1

1

I1 (vertexadjacency) iff C(a,b)= O

0

In other words:

Adj (a,b) =T

C(a,b)

For example, Adj4(a,b) will be defined as:

I1, (volumeadjacency) iff C(a,b)=3
(faceadjacency) iff C(a,b)=2
(edge adjacency) iff C(a,b)=1

(vertex adjacency) iff C(a,b)=0

3

| I,
Adj,(@b)=1

IT

1

0

Then, the adjacencies between the six hyper-boxes from 4D configuration 67 (see

Appendix A and Table 5.16) are shown in Table 5.17.

206



TABLE 5.17
The adjacencies between the six hyper-boxes of a4D configuration
(own elaboration).

Shar ed (n-k)-dimensional cell Shar ed (n-k)-dimensional cell
Adj4(0001, 0101) =3 T3 (Volume) | Adj4(0101, 1011) =1 T11, (Edge)
Adj4(0001, 0110) =1 11, (Edge) Adj4(0110, 1001) =0 T, (Vertex)
Adj4(0001, 1001) =3 TI3(Volume) | Adj4(0110, 1010) = 2 TI, (Face)
Adj4(0001, 1010) =1 TI1; (Edge) Adj,(0110, 1011) =1 T11; (Edge)
Adj4(0001, 1011) =2 1, (Face) Adj4(1001, 1010) =2 T1, (Face)
Adj4(0101, 0110) = 2 1, (Face) Adj,4(1001, 1011) =3 TII3 (Volume)
Adj4(0101, 1001) =2 TI, (Face) Adj4(1010, 1011) = 3 T13 (Volume)
Adj4(0101, 1010) =0 T, (Vertex)

The following is an implementation of the procedure to calculate the adjacencies

counting for a configuration represented through its binary string:

int [ ] analyzeAdjacencies(BinaryString hyperboxes, int dimensions)
{
int adjacencieq] ] = new int[dimensions|;
for(i = 0; i < 29mensions: jy 4y
if(hyperboxeg[i] == 1)
{
BinaryString hyperOctantA = getBinaryRepresentation(i);
for(j =i+ 1;j < 29memSonS: ji4)
if(hyperboxeg[j] == 1)
{
BinaryString hyperOctantB = getBinaryRepresentation(j);
int adjacency = Adj(hyperOctantA, hyperOctantB, dimensions);
adjacencieg adjacency]++;

}

return adjacencies;

207



Some @nsiderations for the dgorithm are:

e The function getBinaryRepresentation has asnpu an integer and returns its regedive
binary representation.

e The function Adj implements the function from Definition 5.6. It has asinpus the
pasitions of two hyper-boxes (indicaed by variablesi and j repedively) using their
binary representation and the number of dimensions (in order to get the gpropriate
adjacencies evaluation acording to the nD space.

e The aray adjacencies will store the counting d the aljacenciesbetween all the hyper-
boxesin the anfiguration. Due to function Adj returns valuesin the interval [0, n1],
such values will i ndicate the position in the aray adjacencies whose value must be
increase. When the main cycle finishes this aray hasthe final adjacencies ourting,
the fir st position will contain the number of vertex adjacencies the seond paition will
contain the number of edge aljacencies and so forth; until the lag position will contain

the number of (n-1)-dimensional adjacencies

5.7 TheHill vs. Aguilera & PeérezZs Configurationsfor the 4D-OPP's

In this setion we will disauss ®me important agpeds related to the determination
of the cnfigurations for the 4D-OPPs. Spedficdly we will consider the diff erences
between the procedures for obtaining such configurations acording to the methods

descibed by[Hill, 98 and Aguilera& Pérezin [Pérez 01].

20¢



5.7.1 Obtaining the Hill's Configurations for the 4D-OPP's

In the setion 4.2.3we Pedfied in a general way the procedure for obtaining the
configurations for the 4D-OPPs. We mentioned that the 65,536 pssble combinations
from O to 16 hyper-boxes ca be grouped by applying symmetries and rotations. In
[Hill ,98 it is considered this same procedure by spedfying the gplicaion d some of the

foll owing transformations:

e Rotations:
0 Aroundthe X1Xj, X1X3, X1X4, X2X3, X2X4 and X3X4 planes ad with angles
90°, 180°and 270°.
e Symmetries

0 Refledionsreged to the X3, X, X3 and X4 axes

This way we can say that a hyper-boxes combination Cn; will be equivalent to
other combination Cn; (i.e. they belong to the sane eguivalence dasg if there ists a
composition T" of the mentioned transformations such that:
Cn,=T"(Cn,)
For example, in the Table 5.18 there ae shown some examples of 4D combinations Cny

and Cn;, and the transformations to apply in order to oltain their proper equivalencies



TABLE 5.18
Examplesof 4D combinations Cn; and Cn, and the transformations to apply such that

Cn, =T"(Cn,) (R: stands for refledionreped X1; own elaboration).

Ex. Cny (Binar'y ™ Cn, (Binar.y
Representation) Representation)
1 | 100110000000000 R,4(180°)-R,,(180°)-R,,(90°) 001000101000000
2 | 111000000000000 R,,(180°)-R,,(180C) R, ,(180C) 000000000000011
3 |100110000000000] R, ,(18%°)-R,,(27¢)-R,,(18C¢°)-R,,(90°) | 001100000100000
4 |100110001000000 R,,(270)-R,,(270)-R, 101110000000000
5 | 001101001000000| R,;,(270°)-R,,(180°)-R;,(90°)-R,;(90°)-R; | 010010000000100

By this way, we can develop an implementation to find the configurations for the

4D-OPPs. The dgorithm will fi nd such configurationsin the foll owing way:

We will have a séconfigurations that contains dl the hyper-boxes sds that represent
ead ore of the identifi ed equivalence dasses

A combination of hyper-boxes which will be esaluated with ead ore of the hyper-
boxes sds in configurations in order to determine if that combination can be a
representative of a new configuration. If there exists a @mpasition d transformations

such that configuration e configurations=T"(combination) then the evaluated

combination has arepresentative in configurations, otherwise the combination of
hyper-boxesis the representative of a new configuration and it must be alded to the se
configurations.

The implementation recaves asinpu the number 0< N <16 of hyper-boxes whaose
configurations will be determined. The output will be the sé& configurations that
contains dl the hyper-boxes ses that are representative of al the configurations with N

hyper-boxes

21C



Vedor getConfigurations(int N)

{
Vedor configurations =new Vedor( );
BinaryString combination = 00000000000000Q@/Spedfi c for 4D space
for(inti=0;i <6553 i++)
{
if(getNumberOfHyperBoxeq combination) == N)
{
for(intj = 0; j < confs; j++)
{
BinaryString configuration = confi gurations.elementAt(j);
if(existsCompasiti on(combination, confi guration) == true)
bre&;
}
if(j == confs)
confi gurations.add(combination);
}
getNextCombination(combination);
}
return configurations;
}

The function existsComposition will have asinpu the two hyper-boxes sds that
corregpondto a combination and a cnfiguration. Its objedive is to seach exhaustively a

composition d  transformations  (rotations ad/or refledions) such  that
configuration=T"(combination) . A composition d transformations is represented by an

array of seven dgits whose values ae in the interval [0, 4. We have a total of

4°.5= 20,480 combinations or compositions. Each pasition in the aray will be related to

an spedfi ¢ transformation in the following way:

211



e Position O RotationaroundX X, plane.

e Position 1 Rotation aroundX,X4 plane.

e Position 2 Rotation aroundX3X, plane.

e Position 3 Rotation around X1 X, plane.

e Postion 4 Rotation aroundX,X3 plane.

e Position 5 Rotation aroundX1X3 plane.

e Position G Refledion.

Moreover, the positions valueswill i ndicate the parameters of the transformations:

e From pasition 0to 5,the valuesl, 2 o 3 will i ndicate arotation angle of 90°, 180°and
270°regedively. Value O will i ndicate that the referred rotation wont be gplied.

e In pasition 6,the valuesl, 2, 3and 4will i ndicae arefledionreged to X1, X2, X3 and
X4 axesregedively. Vaue O will i ndicae that arefledionwont be gplied.

Seein the Table 5.19 the aray representation for the cmpasition d transformations of the

examplespreseited in Table 5.18.

TABLE 5.19
Examplesof 4D combinations Cn; and Cn, and the transformations to apply, in their

regpedive aray representation, such that Cn, =T"(Cn,) (own elaboration).

. T" .
Cni (Binary Cn; (Binary
Example . Arra :
b Representation) Repr(esentgtion) Representation)
1 100110000000000G0 {2,0,0,2,1,0,0}| 0010001010000000
2 111000000000000 | {2,2,0,2,0,0,0}| 0000000000000111
3 1001100000000000 {2,3,0,2,1,0,0}| 0011000001000000
4 1001100010000000 {3,3,0,0,0,0,1}| 1011100000000000
5 0011010010000000 {3,2,1,0,1,0,1}| 0100100000001001

212



If there exists a @mpasition such that configuration=T"(combination) then the

function returns true; otherwise al possble mmpasitions were evaluated and nore of them

indicate an equivalence between the combination and the cnfiguration from the inpu.

bodean existsCompositi on(BinaryString combination, BinaryString configuration)

{
int compaosition 7] ={0,0,0,0,0,0,0}
for(i=1;i<2048Q i++)
{
BinaryString cn = combinationclone( );
applyCompaosition(compaosition, cn);
if(equal s(cn, configuration) == true)
return true;
getNextCompasition(composition);
}
return false
}

The function applyComposition applies a ompasition o geometric transformations
to a ommbination d hyper-boxes (cn in the mde). The gplicaion d a s& of geometric
transformations on a configuration which is represented througha binary string is avery
simple process Each ore of the hyper-boxes (i.e. occupied hyper-octants) in a
configurationis referred throughtheir desciptive akes Now, ead ore of the hyper-octant’s
axeswill be assciated with a mordinate, if we ae considering an axis negative part then
the corregpondng coordinate will have avalue equal to —1; otherwise the crregpondng

coordinate is equal to ore. By thisway, a hyper-octant will be related with apaint in the 4D

21¢



space For example, the arregpondng pant for the hyper-octant X X Xs Xa iS (-1,1:/1,0).

Table 5.20 shows the hyper-octants and their correpondng pants.

TABLE 5.20
The 4D spaces hyper-octants and their correpondng pants
(own elaboration).
Hyper-octant Corresponding
(Desgiptive Axes Point
Xa Xe X X 1,1,1,1
X Xo Xa Xa 1,1, 157
X Xo Xs Xa (1,1:1, 1)
X Xz X Xa (1,1:1,1)
X Xo Xa Xa (1-1,1,9
X Xo Xs X (1-1,151)
X Xo Xs Xa (1-1-1, 1)
X X Xa X (1-1-1-1)
X X Xa X (1,111
X Xo Xo X (-1, 1, 151)
X Xo X5 X (-1,1;1, 1)
X X Xs X (-1,1;1,-1)
Xo Xo Xa X (11,19
X Xe Xa X4 (-1-1,1;1)
X X Xs X (-1-1-1, 1)
X Xo Xa X4 (-1-1-1-1)

To apply the sé of required transformations we must then oltain the crregpondng
points of eat occupied hyper-octant and transform them according to the nealed rotations
andor refledions. Since the possble rotation's angles ae 90°, 180°and 270°and the
refledions to apply will preseve the values of the wmordinatesin —1 o 1, is that the
transformed points coordinates will have anew hyper-octant as®ciated and therefore a
hyper-box has been pacel in a new pasition; finally a new string that represeits the

transformed configurationis obtained.

214



For example, consider the dgring 010001100111000@vhose hyper-boxes are
distributed in the 4D space ashas been shown in the Table 5.16 In the Table 5.21 we
show the points assciated to ead ore of its occupied hyper-octants.

TABLE 5.21

The points assciated to the occupied hyper-octants of a4D configuration
(from Table 5.16 own elaboration).

Hyper-octants| Corresponding Points
Xa X Xo X (1,1, 151)
Xa Xo Xo X (1-1, 1;71)
Xu Xz Xs X (1-1-1, 9
;(1X2 )(3;(4 ('11 1, 1?1)
Xo Xz Xs X (-1,1:1, 9
X Xo Xs X (-1, 1;1-1)

Now, we will apply the compositions of transformations {1,1,0,1,0,0,0}, i.e.

R,.(90°)-R,,(90°)-R_,(9C°) . The 90° rotations aound X1X», X1Xaz, X1Xa, X2X3z, Xo2X4

and X3X4 planes and the refledions reped Xi, X,, X3 and X4 axes ae easdy defined in the

Tableb5.22
TABLE 5.22
Main rotations aound 90°and refledions in the 4D space(own elaboration).

R12(90° R13(90°) R1.4(90°
Xl’ = X1 Xl’ = X1 Xl’ = X1
XZ1 = Xz XZ1 = X4 Xz’ = -X3
X3 = X4 X3 = X3 X3'= X2
X4’ = -X3 X4’ = -Xz X4’ = X4
R,3(909) R,.4(909 R3.4(90°)
Xl’ = -X4 Xl’ = X3 Xl’ = -Xz
Xz’ = Xz Xz’ = Xz Xz’ = X1
X3’ = X3 Xg’ = -X1 X3’ = X3
X41 = Xl X41 = X4 X4’ = X4
R R2 Rs R4

X1 =-X1 X1'= X1 X1'= X1 X1'= X1

Xo'= Xo X' =-Xz X=Xz Xo'= Xo

X3 = X3 X3 = X3 X3 =-X3 X3 = X3

X4’ = X4 X4’ = X4 X4’ = X4 X4’ = -X4




Then by applying the transformations R,.(90°)-R,,(90°)-R_,(90°) ON the points of

the referred example, we have the new points and therefore the new occupied hyper-octants
presented in Table 5.23. The new string that represents to the transformed configuration is

then 0101001110000010 (the original string was 0100011001110000).

TABLE 5.23
Applying geometric transformations to the points associated to the occupied hyper-octants
in a4D configuration (from Table 5.16; own elaboration).

Points Transformations Transformed Corresponding

Points Hyper -octants
(1,1, 1-1) (1-1-1, 1) Xu Xz Xs Xa
(1-1, 1,-1) (-1-1,-1, 1) X Xz Xa Xa
(1-1-1,1) | R, (90°)-R,,(90°)-R,(90°) | (-1,1,1,1) Xo Xz Xa Xa
-1,1,1,-1) (1,-1,-1,-1) Xa Xo Xs Xs
(-1,1-1, 1) (1,1, 1,-1) Xa Xo Xs X
(-1,1,-1,-1) (1,1,-1,-1) Xu Xz Xs X

Through this implementation we have found the 402 Hill's configurations for the
4D-OPP's. In the Table 5.24 is shown the configurations' distribution while in Appendix B

are shown the hyper-boxes sets that are representatives of these 402 configurations.

TABLE 5.24
The distribution for the 402 Hill's Configurationsin the 4D-OPP's
(own elaboration).

4D Hyper-boxes Configurations| 4D Hyper-boxes Configurations

0 1 16 1
1 1 15 1
2 4 14 4
3 6 13 6
4 19 12 19
5 27 11 27
6 50 10 50
7 56 9 56
8 74

216



5.7.20btaining the Aguilera & Pérezs Configurationsfor the 4D-OPP's

The oonfigurations for the 4D-OPPs determined by Aguilera & Pérezwere obtained
by a very similar processto the used in the determination d the Hill's configurations
(previous setion). However, it wasobseved that the counting d ead type of adjacencies
for all the combinations that belongto a sane cnfiguration is the sane. For example, in
the Table 5.25are shown six 4D configurations whose a@jacencies ourting (which can be

performed throughthe dgorithm presented in sedion 5.6.2 isthe same.

TABLE 5.25
Six 4D combinations with 6 hyper-boxes whose a@ljacencies ountingisthe sane
(own elaboration).

Hyper-boxes Number of | Number of | Number of | Number of
combinations \(olumg _Face _ _Edge _ \./ertex.
Adjacencies| Adjacencies| Adjacencies| Adjacencies
0011110110000000
1001011110000000
0110101011000000 4 6 4 1
1001101011000000
0101011011000000
1000000111101000

By this way we can sa that a hyper-boxes combination Cn; will be eguivalent to
other combination Cn;, (i.e. they belongto the sane ejuivalence dasg if their adjacencies

courtingis equal, such that:



volume _ adjacencies(Cn,)

volume__adjacencies(Cn,) and
face_adjacencies(Cn,) and
edge_ adjacencies(Cn,) and

vertex _adjacencies(Cn,)

face_adjacencies(Cn,)
edge _ adjacencies(Cn,)
vertex _adjacencies(Cn,)

Cn, =Cn, Iiff

The implementation to find the configurations for the 4D-OPPs by acording this
evauation is dmilar to the presented in previous setion. The dgorithm will fi nd the

4D-OPPs mnfigurations in the foll owing way:

e Wewill have a seconfigurations that contains dl the aljacencies ourning d eat ore

of the identifi ed equivalence dasses

e The ajacencies ourting of a combination of hyper-boxes (obtained through the
algorithm presented in sedion 5.6.2 will be evaluated with eat ore of the aljacencies
courting in configurations in order to determine if that combination can be a
representative of a new configuration. If there eists an adjacencies ourting in
configurations equal to the cmbination's ourting then it has arepresentative in
configurations; otherwise the combination of hyper-boxesis the represeantative of a

new configuration andits aljacencies ounting must be alded to the sé configurations.

e The implementation recaves asinpu the number N of hyper-boxes whose

configurations will be determined. The output will be the se& configurations that

contains dl the ajacecies ourting d all the cnfigurations with N hyper-boxes

21¢



Vedor getConfigurations(int N)

{
Vedor configurations =new Vedor( );
BinaryString combination = 00000000000000Q@/Spedfi ¢ for 4D space
for(inti=0;i<65534 i++)
{
if(getNumberOfHyperBoxeqcombination) == N)
{
int combinationAdjacencieq | = anayzeAdjacenciegcombination, 4);
for(intj = 0; j < confs; j++)
{
int configurationAdjacecieq | = confi gurations.elementAt(j);
if(equal s(combinationAdjacencies configurationAdjacencie9 == true)
brek;
}
if(j == confs)
configurations.add(combinationAdjacecies);
}
getNextCombination(combination);
}
return configurations;
}

Through this implementation Aguilera & Pérez [Pérez, 01] found 253
configurations for the 4D-OPPs. In the setion 4.2.3is down the onfigurations
distribution while in Appendix A are fhown the ajacencies ounting for these 253
configurations. Moreover, the configurations for the 5D and @D-OPPs found throughthe

"Ted-Box Heuristic (sedion 5.2 were determined acarding to their adjacencies ourting.



220



