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Chapter 4 
Four-Dimensional Orthogonal Polytopes 

 

In section 1.6.1, it was presented one of the premises of this work: that it is 

essential, as a first step, to analyze the polytopes and the boundaries that compose them, to 

guarantee the validity of the visualization and analysis of the phenomena or data that they 

will r epresent (as we will see in the next chapters). Therefore, this chapter presents in first 

place (section 4.1) some   definitions  related   with  the  4D  Orthogonal  Pseudo-Polytopes  

(4D-OPP’s), which are the polytopes that we will use subsequently for representing some 

multidimensional data and phenomena (as stated in section 1.6.4). Then, (in section 4.2) we 

will cover the analysis related to the configurations that can represent the 4D-OPP’s. 

Moreover, the procedures for classifying edges and faces as manifold or non-manifold ele-

ments in 4D-OPP’s will be described. For faces in 4D-OPP's the [Aguilera & Pérez, 02b]’s 

condition to classify them as manifold or non-manifold will be described (section 4.3). For 

the edges' analysis in 4D-OPP's (section 4.4) the two [Aguilera & Pérez, 03]’ s approaches 

will be described: 1) The analogy between incident (manifold and non-manifold) edges to a 

vertex in 3D Orthogonal Pseudo-Polyhedra (3D-OPP's) with incident (manifold and non-

manifold) faces to a edge in 4D-OPP's; and 2) The extension of the concept of "cones of 

faces" (which is applied for classifying a vertex in 3D-OPP's as manifold or non-manifold; 

and introduced in section 2.1.2) to "hypercones of volumes" for classifying an edge as 

manifold or non-manifold in 4D-OPP's (and introduced in section 2.1.4). The 

generalizations  for classifying  the n-3  and the  n-2 dimensional boundary  elements for  

n-dimensional Orthogonal Pseudo-Polytopes as manifold or non-manifold elements are also 

presented. Finally, (section 4.5) it will be considered the characterization of the 4D-OPP’s 
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edges as Extreme or Non-Extreme. It will be described how this classifi cation is the result 

of a 3D analysis over the possible configurations for the 4D-OPP’s and, moreover, it is not 

only restricted to the (n-3)-dimensional elements, because it is present  in  the  (n-1)  and 

(n-2)-dimensional elements. 

 

4.1 Definition 

 

[Juan-Arinyo, 88] & [ Preparata 85] define Orthogonal Polyhedra (3D-OP) as 

polyhedra with all their edges and faces oriented in three orthogonal directions. Orthogonal 

Pseudo-Polyhedra  (3D-OPP)   will  refer  to  regular  and  orthogonal  polyhedra  with  

non-manifold boundary [Aguilera, 98].   

 

Similarly, 4D Orthogonal Polytopes (4D-OP) are defined as 4D polytopes with all 

their edges, faces and volumes oriented in four orthogonal directions and 4D Orthogonal 

Pseudo-Polytopes  (4D-OPP)  will  refer  to  4D  regular and orthogonal polytopes with 

non-manifold boundary [Aguilera & Pérez, 02b]. 

 

Because the 4D-OPP's definition is an extension from the 3D-OPP's, it is easy to 

generalize  the  concept  to  define  n-dimensional  Orthogonal  Polytopes  (nD-OP)  as 

n-dimensional polytopes with all their �n-1, �n-2,..., �1 oriented in n orthogonal directions. 

Finally,  n-dimensional  Orthogonal   Pseudo-Polytopes   (nD-OPP)   are   defined   as  

n-dimensional regular and orthogonal polytopes with non-manifold boundary [Aguilera & 

Pérez, 02b]. 
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4.2 Adjacency Analysis For 2D, 3D And 4D-OPP's 

 

4.2.1 Adjacency Analysis For 2D-OPP's 

 

A set of quasi-disjoint rectangles determines a 2D-OPP whose vertices must 

coincide with some of the rectangles' vertices [Aguilera, 98]. Each of these rectangles' 

vertices can be considered as the origin of a 2D local coordinate system, and they may 

belong to up to four rectangles, one for each local quadrant. The two possible adjacency 

relations between the four possible rectangles can be of edge or vertex. There are 24 = 16 

possible combinations which, by applying symmetries and rotations, may be grouped into 

six equivalence classes, also called configurations [Srihari, 81]. Moreover, [Aguilera, 98] 

has identifi ed that each possible combination has its complementary combination, and each 

configuration has its complementary configuration which is the class that contains the 

complementary combinations of all the combinations in the given class. 

 

[Aguilera, 98] describes that these 16 possible combinations are distributed in the 

following way: 

2
4

1 4 6 4 1 164

0

4

�
�

�
�

�

�
� � 	 	 	 	 �

�

C

kk

 

And using combinatorial analysis, there are: 

�� C
4

0
1

�

�
�

�

�
� �  combination with zero surrounding rectangles (configuration a, Table 4.1). 

�� C
4

1
4

�

�
�

�

�
� �  combinations with one surrounding rectangle (configuration b). 
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�� C
4

2
6

�

�
�

�

�
� �  combinations with two surrounding rectangles (configurations c and d). 

�� C
4

3
4

�

�
�

�

�
� �  combinations with three surrounding rectangles (configuration e). 

�� C
4

4
1

�

�
�

�

�
� �  combination with four surrounding rectangles (configuration f). 

 

 [Aguilera, 98] identifi es that configurations a and f, as well as configurations b and 

e, are complementary to each other. Configurations c and d are self -complementary. 

 

TABLE 4.1 
Possible configurations (a to f) for 2D-OPP's (own elaboration). 

 

 
 

a 

 

 
b 

 

 
 

c 

 

 
 

d 

 

 
 

e 

 

 
 

f 
 

4.2.2 Adjacency Analysis For 3D-OPP's 

 

[Aguilera, 98] describes that a set of quasi-disjoint boxes determines a 3D-OPP 

whose vertices must coincide with some of the boxes' vertices. Similarly to the 2D case, 

each of these boxes' vertices can be considered as the origin of a 3D local coordinate 

system, and they may belong to up to eight boxes, one for each local octant. The three 

possible adjacency relations between the eight possible boxes can be of face, edge or 

vertex. There are 28 = 256 possible combinations which, by applying symmetries and 

rotations, may be grouped into 22 equivalence classes [Lorensen, 87], also called 
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configurations [Srihari, 81]. As in the 2D case, each possible combination has its 

complementary combination, and each configuration has its complementary configuration 

which is the class that contains the complementary combinations of all the combinations in 

the given class [Aguilera, 98]. Grouping complementary configurations leads to the 14 

major cases [Van Gelder, 94].  

 

Similarly to the 2D case, [Aguilera, 98] describes that these 256 possible 

combinations are distributed in the following way: 
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And using combinatorial analysis, there are: 

�� C
8

0
1

�

�
�

�

�
� �  combination with zero surrounding boxes (configuration a, Table 4.2). 

�� C
8

1
8

�

�
�

�

�
� �  combinations with one surrounding box (configuration b). 

�� C
8

2
28

�

�
�

�

�
� �  combinations with two surrounding boxes (configurations c, d and e). 

�� C
8

3
56

�

�
�

�

�
� �  combinations with three surrounding boxes (configurations f, g and h). 

�� 70
4

8
���

�

�
��
�

�
C  combinations with 4 surrounding boxes (configurations i, j, k, l, m and n). 
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TABLE 4.2 
Possible configurations (a to v) for 3D-OPP's. 
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The remaining combinations with 5, 6, 7 and 8 surrounding boxes are 

complementary, and thus analogous, to combinations with 3, 2, 1 and 0 surrounding boxes, 

respectively [Aguilera, 98]. Finally, each configuration, with four surrounding boxes is 

self -complementary. 
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4.2.3 Adjacency Analysis For 4D-OPP's 

 

By analogy, we can assume that a set of quasi-disjoint hyper-boxes (hypercubes, for 

example) determines a 4D-OPP whose vertices must coincide with some of the hyper-

boxes’ vertices. We will consider the hyper-boxes’ vertices as the origin of a 4D local 

coordinate  system,  and they may belong to up to 16 hyper-boxes’, one for each local 

hyper-octant. The 4D-OPP’s vertices are determined according to the presence or absence 

of each of this 16 surrounding hyper-boxes. The four possible adjacency relations, extended 

by analogy, between the 16 possible hyper-boxes can be of volume, face, edge or vertex. 

There are 216 = 65,536 possible combinations of vertices in 4D-OPP’s. Through a computer 

program, we exhaustively analyzed those 65,536 combinations and found that all of them 

can be grouped, applying symmetries and rotations, into 253 equivalence classes, which we 

shall call configurations, as in 2D and 3D cases. Similarly, we found that each possible 

combination has its complementary combination, and each configuration (i.e., each class) 

has its complementary configuration which is the class that contains the complementary 

combinations of all the combinations in the given class. Grouping complementary 

configurations leads us to the 145 major cases. 

 

 The 65,536 possible combinations are distributed in the following way: 
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And using combinatorial analysis, there are: 

 

�� C
16

0
1

�

�
�

�

�
� �  combination with zero surrounding hyper-boxes (configuration 1). 

�� C
16

1
16

�

�
�

�

�
� �  combinations with one surrounding hyper-box (configuration 2). 

�� C
16

2
120

�

�
�

�

�
� �  combinations with two surrounding hyper-boxes (configurations 3, 4, 5 

and 6, shown in Table 4.3). 

�� C
16

3
560

�

�
�

�

�
� �  combinations with three surrounding hyper-boxes (configurations 7 to 12. 

Configuration 7 and 8 are shown in Table 4.3). 

�� C
16

4
1820

�

�
�

�

�
� � ,  combinations with 4 surrounding hyper-boxes (configurations 13 to 28). 

�� C
16

5
4 368

�

�
�

�

�
� � ,  combination with 5 surrounding hyper-boxes (configurations 29 to 48). 

�� C
16

6
8 008

�

�
�

�

�
� � ,  combinations with 6 surrounding hyper-boxes (configurations 49 to 78). 

�� C
16

7
11 440

�

�
�

�

�
� � ,  combinations with 7 surrounding hyper-boxes (configurations 79 to 108). 

�� C
16

8
12 870

�

�
�

�

�
� � ,  combinations with 8 surrounding hyper-boxes (configurations 109 to 145). 
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TABLE 4.3 
Configurations 3 to 8 for 4D-OPP's 

(see Appendix A for a description of the remaining configurations). 
Adjacencies between 

hyper-boxes Configuration Adjacencies between 
hyper-boxes Configuration 
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If  has been found, through exhaustive analysis by a computer system, that the 

remaining combinations with 9, 10, 11, 12, 13, 14, 15 and 16 surrounding hyper-boxes are 

complementary, and thus analogous, to combinations with 7, 6, 5, 4, 3, 2, 1 and 0 

surrounding hyper-boxes, respectively. Finally, each configuration, with eight surrounding 

hyper-boxes is self -complementary. In Appendix A are presented all the 253 4D 

configurations. 
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4.2.4 Determining the Sum of Adjacencies for Configurations in nD-OPP's 

 

 In the Table 4.4 is presented a summary of the adjacency analysis for 2D-OPP's. In 

the table are presented the number of vertex adjacencies and the number of edge 

adjacencies that are possible between the rectangles of each configuration. 

 

TABLE 4.4 
Counting the edge and vertex adjacencies in 2D-OPP's configurations 

(own elaboration). 
Number of 
Rectangles Configuration Number of edge 

adjacencies 
Number of vertex 

adjacencies 
Sum of 

adjacencies 
0 a 0 0 0 
1 b 0 0 0 

2 
c 
d 

1 
0 

0 
1 

1 
1 

3 e 2 1 3 
4 f 4 2 6 

 

 In the Table 4.5 is presented a summary of the adjacency analysis for 3D-OPP's. In 

the table are presented the number of vertex adjacencies, edges adjacencies and face 

adjacencies that are possible between the boxes of each configuration. 
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TABLE 4.5 
Counting the face, edge and vertex adjacencies in 3D-OPP's configurations (own elaboration). 

Number 
of boxes Configuration 

Number of 
face 

adjacencies 

Number of 
edge 

adjacencies 

Number of 
vertex 

adjacencies 

Sum of 
adjacencies 

0 a 0 0 0 0 
1 b 0 0 0 0 

2 
c 
d 
e 

1 
0 
0 

0 
1 
0 

0 
0 
1 

1 
1 
1 

3 
f 
g 
h 

2 
1 
0 

1 
1 
3 

0 
1 
0 

3 
3 
3 

4 

i 
j 
k 
l 
m 
n 

4 
3 
2 
3 
2 
0 

2 
2 
3 
3 
2 
6 

0 
1 
1 
0 
2 
0 

6 
6 
6 
6 
6 
6 

5 
o 
p 
q 

5 
4 
3 

4 
4 
6 

1 
2 
1 

10 
10 
10 

6 
r 
s 
t 

7 
6 
6 

6 
7 
6 

2 
2 
3 

15 
15 
15 

7 u 9 9 3 21 
8 v 12 12 4 28 

 

 From Tables 4.4 and 4.5 it can be observed that the sums of adjacencies from 0 to 4 

rectangles/boxes are the same. If the sums presented in Table 4.5 are compared with the 

4D-OPP's configurations presented in Appendix A, the same property is present: the sums 

of adjacencies from 0 to 8 boxes/hyper-boxes are the same. Moreover, the sums of 

adjacencies for configurations with the same number of boxes are equal for all those 

configurations, regardless they correspond to 2D-OPP’s, 3D-OPP’s or 4D-OPP’s (see the 

configurations’ case, for example, with 4 “boxes” in Tables 4.4, 4.5 and Appendix A). 

Based in these properties, we can assume that the sum of adjacencies for any configuration 
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with x “boxes” (rectangles, boxes, hyper-boxes, etc.) independently of the number of 

dimensions (in an Euclidean Space), is: 

2

)1( �xx
 

See in Chapter 5 its corresponding Theorem and proof. 

 

4.3 The �n-2 Analysis for  2D, 3D and 4D-OPP's 

 

 In the following sections (4.3.1, 4.3.2 and 4.3.3) we will classify, as manifold or 

non-manifold, to vertices (�0’s)  in the 2D-OPP’s, edges (�1’s) in the 3D-OPP’s and faces  

(�2’s) in the 4D-OPP’s in terms of the number of their incident edges, faces and volumes 

respectively. Finally, in section 4.3.4, we consider the general condition, presented 

originally in [Aguilera & Pérez, 02b], to classify the �n-2’s in the nD Orthogonal Pseudo-

Polytopes. 

 

4.3.1 The �0 (Vertex) Analysis for 2D-OPP's 

 

Because we are interested in the vertex analysis, we will consider only those confi -

gurations where all their rectangles are incident to a vertex. According to the 

configurations' nomenclature presented in [Aguilera, 98], the studied configurations are b, 

c, d, e and f (Table 4.6). 
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TABLE 4.6 
2D configurations where all the rectangles are incident to a vertex 

(taken from [Aguilera & Pérez, 02b]). 
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1

2
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1
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d 

 

1

23
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1

24
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f 

 

 

We will classify a vertex in terms of the incident edges to it. Those edges that are 

shared by two rectangles (edge adjacency) will not be considered because they are not valid 

edges since they do not belong to the final OPP. From this analysis it results that there are 

only two types of vertices in a 2D-OPP: the manifold vertex with two incident edges 

(configurations b and e), and the non-manifold vertex with four incident edges 

(configuration d) [Aguilera, 98]. The remaining configurations represent no vertex because 

in configuration c there are only two incident and colli near edges, and in configuration d 

there are no incident edges. 

 

 

From the adjacency analysis we can observe that in the configurations all possible 

types of adjacency for rectangles are present: vertex and edge adjacency. Table 4.7 

summarizes the rectangles' adjacency analysis and the vertex classifi cation. 
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TABLE 4.7 
Resume of adjacency analysis for each configuration and vertex classifi cation 

(refer to Table 4.6 to rectangles’ numbering). 

Configuration 
Number of 
involved 

rectangles 

Adjacencies 
between 

rectangles 

Number of 
valid incident 
edges to vertex 

Vertex 
classifi cation 

b 1 - 2 Manifold 
c 2 1-2: Edge - No vertex 
d 2 1-2: Vertex 4 Non manifold 

e 3 
1-2: Edge 
1-3: Vertex 
2-3: Edge 

2 Manifold 

f 4 

1-2: Edge 
1-3: Edge 
1-4: Vertex 
2-3: Vertex 
2-4: Edge 
3-4: Edge 

- No vertex 

 

4.3.2 The �1 (Edge) Analysis for 3D-OPP's 

Because we are interested in the edge analysis, we will consider only those 

configurations where all their boxes are incident to just one edge. According to the con-

figurations' associated nomenclature, presented in [Aguilera, 98], the studied configurations 

are b, c, d, f and i (Table 4.8). 

TABLE 4.8 
3D configurations where all the boxes are incident to an edge 

(the arrows show the analyzed edge. Taken from [Aguilera & Pérez, 02b]). 
b. 

 

 

c. 

1

2

 

d.
1

2

 

f.

2

1

3

 

i.

2

13

4

 
 

We will classify an edge in terms of the incident faces to it. Those faces that are 

shared by two boxes (face adjacency) will not be considered because they are not valid 

faces since they do not belong to the final OPP. From this analysis it results that there are 

only two types of edges in a 3D-OPP [Aguilera, 98]:  
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�� The manifold edge with two incident faces. This type of edges is found in 

configurations b and f. The edge’s two incident faces in configuration b belong to one 

cube’s boundary and they are perpendicular to each other. The edge’s two incident faces 

in configuration f belong to two diff erent cubes with edge adjacency and they result 

perpendicular to each other. 

�� The non-manifold edge with four incident faces. This type of edge is found in 

configuration d, where two of its faces belongs to a cube and the remaining two belong 

to a second cube with edge adjacency.  

 

The remaining configurations represent no edge because in configuration c there are 

only two incident and coplanar faces, and in configuration i there are no incident faces. 

Table 4.9 resumes the boxes’ adjacency analysis and the edge classifi cation. 

 

TABLE 4.9 
Resume of adjacency analysis for each configuration and edge classifi cation 

(refer to Table 4.8 to boxes’ numbering). 

Configuration 
Number of 

involved 
boxes 

Adjacencies 
between 

boxes 

Number of 
incident valid 
faces to edge 

Edge 
classification 

b 1 - 2 Manifold 
c 2 1-2: Face - No edge 
d 2 1-2: Edge 4 Non manifold 

f 3 
1-2: Face 
1-3: Edge 
2-3: Face 

2 Manifold 

i 4 

1-2: Face 
1-3: Face 
1-4: Edge 
2-3: Edge 
2-4: Face 
3-4: Face 

- No edge 
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4.3.3 The �2 (Face) Analysis for 4D-OPP's 

Because we are interested only in the face analysis, we will consider only those 

configurations where all their hyper-boxes are incident to just one face. It has been found 

that there are only 5 of such configurations. These configurations are 2, 3, 4, 7 and 13. See 

Table 4.10. 

TABLE 4.10 
4D configurations where all the hyper-boxes are incident to a face 

(the analyzed face is indicated in the 2nd column. Taken from [Pérez & Aguilera, 03]). 
Adjacencies between 

hyper-boxes Configuration Adjacencies between 
hyper-boxes Configuration 

  
 

2.  

1

2  

 

3.  

1

2  

 

4.  
3 2

1

 

 

7.  

1

2

3

4  

 

13.  

  

 

We will classify a face in terms of the incident volumes to it. Those volumes that 

are shared by two hyper-boxes (volume adjacency) will not be considered because they are 

not valid volumes since they do not belong to the final OPP. From this analysis, and 

analogous to the 3D case (see section 4.3.2), it results that there are only two types of faces 

in a 4D-OPP [Aguilera & Pérez, 02b]: 
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�� Faces with two incident volumes. This type of faces is found in configurations 2 and 7. 

The face’s two incident volumes in configuration 2 belong to the boundary of only one 

hypercube and they are perpendicular to each other. While in configuration 7, the face’s 

two incident volumes belong to two diff erent hypercubes with face adjacency and they 

result perpendicular to each other. 

 

�� Faces with four incident volumes. This type of faces is found in configuration 4, where 

two of its incident volumes belong to a hypercube and the remaining two belong to a 

second hypercube with face adjacency. 

 

 The remaining configurations represent no face because in configuration 3 there are 

only two incident and co-hyperplanar volumes, and in configuration 13 there are no 

incident volumes (analogous to 3D configurations c and i in Table 4.8).  

 

From the adjacency analysis we can observe that in the studied configurations the 

possible types of adjacency for hyper-boxes are face and volume adjacency. The vertex and 

edge adjacencies are not present. Also, we can observe that the adjacency analysis and the 

number of incident volumes are analogous with the vertex analysis for 2D-OPP's and the 

edge analysis for 3D-OPP's. 

 

[Coxeter, 63]  defines  that  a  �n-2  belongs  to  just  two  of   the   �n-1's   in   any  

n-dimensional polytope. In section 2.1.5 were described the properties, described by 

[Hansen,93],  for  the  representation  of  a  nD  Polytope’s  boundary  as  a  closed  set of 

n-manifolds: 
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1. A 0-manifold is a point, and it has no boundary. 

2. All boundary elements of an n-manifold are (n-1)-manifold elements. 

3. All (n-1)-dimensional elements belong to exactly two n-manifold elements (or twice to 

the same element). 

4. Manifold elements may not intersect each other except at common boundary elements. 

 

For example, [Hansen, 93] shows the use of their rules in the cube (a 3-dimensional 

solid, bounded by a closed set of 2-manifolds, the faces). For this case, n = 2, property 2 

says, that every boundary element of each 2-manifold (face) is a 1-manifold (edge), and 

property 3 says, that every 1-manifold (edge) belongs to two 2-manifold (faces). If we 

apply the same rules to the 4D hypercube (a 4-dimensional polytope, bounded by a closed 

set of 3-manifolds, the volumes), then for n = 3, property 2 says that every boundary 

element of each 3-manifold (volume) is a 2-manifold (face), and property 3 says, that every 

2-manifold (face) belongs to two 3-manifolds (volumes).  

 

According to [Coxeter, 63] and [Hansen, 93], if the 4D Orthogonal Pseudo-

Polytope’s two perpendicular volumes (�3) are incident to a face (�2), then it is a manifold 

face. Otherwise, if the 4D Orthogonal Pseudo-Polytope’s four volumes are incident to a 

face, [Aguilera & Pérez, 02b] suggest, by analogy, that it is a non-manifold face. These 

properties are present in the face analysis (see Table 4.11). 
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TABLE 4.11 
Resume of adjacency analysis for each configuration 

(refer to Table 4.10 to hyper-boxes’ numbering). 

Configuration 
Number of 
involved 

hyper-boxes 

Adjacencies 
between 

hyper-boxes 

Number of 
incident valid 

volumes to face 

Face 
classifi cation 

1 1 - 2 Manifold 
2 2 1-2: Volume - No face 
3 2 1-2: Face 4 Non manifold 

4 3 
1-2: Volume 
1-3: Face 
2-3: Volume 

2 Manifold 

5 4 

1-2: Volume 
1-3: Volume 
1-4: Face 
2-3: Face 
2-4: Volume 
3-4: Volume 

- No face 

 

4.3.4 Classifying the �n-2’ s in nD-OPP’s 

 

Finally, the generalized conditions to classify a �n-2 as manifold or non-manifold in 

a nD-OPP are [Aguilera & Pérez, 02b]: 

�� If two perpendicular �n-1‘ s are incident to a �n-2 then it must be classifi ed as manifold. 

�� If f our �n-1‘ s are incident to a �n-2 then it must be classifi ed as non-manifold. 

 

4.4 The �n-3 Analysis for 3D and 4D-OPP's 

 

 In the following sections we will analyze and classify, as manifold or non-manifold 

the diff erent types of vertices (�0’s) in the 3D-OPP’s and edges (�1’s) in the 4D-OPP’s. We 

will consider two approaches:  
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a) Classifi cation of these elements by means of their incident manifold or non-manifold 

edges (3D-OPP’s) and faces (4D-OPP’s, sections 4.4.1 and 4.4.2 respectively). 

 

b) Application of the concepts of “cones of faces” (section 4.4.3) and “hypercones of 

volumes” (4.4.4) to classify vertices in the 3D-OPP’s and edges in the 4D-OPP’s 

respectively. 

 

In sections 4.4.5 and 4.4.6 are presented the generalizations of the two approaches 

for classifying the �n-3’s in the nD Orthogonal Pseudo-Polytopes. 

 

4.4.1 The �0 (Vertex) Analysis for 3D-OPP's 

 

 [Aguilera, 98] identifi es eight types of vertices (also two non valid vertices are 

identifi ed) for 3D-OPP's. These vertices can be classifi ed depending on the  number  of 

two-manifold and non-manifold edges incident to them and they are referred as V3, V4, 

V4N1, V4N2, V5N, V6, V6N1 and V6N2 [Aguilera,98] (Table 4.12). In this nomenclature 

"V" means vertex, the first digit shows the number of incident edges, the "N" is present if at 

least one non-manifold edge is incident to the vertex and the second digit is included to 

distinguish between two diff erent types that otherwise could receive the same name.  
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TABLE 4.12 
Vertices present in 3D-OPP's (dotted lines indicate non-manifold edges 

and continuos lines indicate manifold edges. Taken from [Pérez & Aguilera, 03b]). 
V3 

 

V4 

 

V4N1 

 

V4N2 

 

V5N 

 

V6 

 

V6N1 

 

V6N2 

 
Non valid vertex 1 

 
 

Non valid vertex 2 
 

 

  

 

 Each vertex has the following properties [Aguilera, 98]: 

�� V3: all three incident edges are two-manifold and perpendicular. It is present in 

configurations b, f, o and u. 

�� V4: all f our incident edges are two-manifold, they lie on a plane, and can be grouped in 

two couples of colli near edges. It is present in configuration j. 

�� V4N1: three of its four incident edges are perpendicular and also two-manifold ones, 

while the fourth is non-manifold and colli near to one of the other three. It is present in 

configurations g and p. 

�� V4N2: two of its four incident edges are two-manifold and colli near, while each of its 

other two is non-manifold and perpendicular to the other three. It is present in 

configuration k. 
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�� V5N: four of its five incident edges are two-manifold and lie in a plane, while the fifth is 

non-manifold and perpendicular to the rest of them. It is present in configurations d and s. 

�� V6: all six incident edges are two-manifold. It is present in configurations e, l and t. 

�� V6N1: three of its six incident edges are perpendicular and also two-manifold ones, 

while each of its remaining three edges is non-manifold and colli near to one of the first 

three. It is present in configurations h and q. 

�� V6N2: all of its six incident edges are non-manifold. It is present in configuration n. 

�� Non valid vertex 1: its two manifold edges are colli near . It is present in configurations c 

and r. 

�� Non valid vertex 2: its two non-manifold edges are colli near. It is present in 

configuration m. 

 

4.4.2 The �1 (Edge) Analysis For 4D-OPP's 

 

[Aguilera, 98] defines vertex types in terms of the manifold or non-manifold edges 

that are incident to these vertices in 3D-OPP's. [Pérez & Aguilera, 03c] extend the same 

process to describe edge types in terms of the manifold or non-manifold faces that are 

incident to those edges in 4D-OPP's. In this way, we have identifi ed eight types of edges 

and two non valid edges. We will also extend the nomenclature used by [Aguilera, 98] to 

describe them. Such edges will be referred as E3, E4, E4N1, E4N2, E5N, E6, E6N1 and 

E6N2 (Table 4.13). The only diff erence with the nomenclature used by [Aguilera, 98] is 

that "E" means edge instead of "V" that means vertex. 
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TABLE 4.13 
Edges present in 4D-OPP's (dotted lines indicate non-manifold faces 

and continuos lines indicate manifold faces. Taken from [Pérez & Aguilera, 03b]). 
E3 

 
 

E4 

 
 

E4N1 

 

E4N2 

 

E5N 

 

E6 

 

E6N1 

 

E6N2 

 
 

Non valid edge 1 

 
 

Non valid edge 2 

 
 

  

 

 Each edge, identifi ed by [Pérez & Aguilera, 03], has the following properties: 

�� E3: all three incident faces are manifold and perpendicular.  

�� E4: all f our incident faces are manifold, they lie on a hyperplane, and can be grouped in 

two couples of coplanar faces. 

�� E4N1: three of its four incident faces are perpendicular and also manifold ones, while 

the fourth is non-manifold and coplanar to one of the other three. 

�� E4N2: two of its four incident faces are manifold and coplanar, while each of its other 

two is non-manifold and perpendicular to the other three. 

�� E5N: four of its five incident faces are manifold and lie in a hyperplane, while the fift h 

is non-manifold and perpendicular to the rest of them.  
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�� E6: all six incident faces are manifold.  

�� E6N1: three of its six incident faces are perpendicular and also manifold ones, while 

each of its remaining three faces is non-manifold and coplanar to one of the first three.  

�� E6N2: all of its six incident faces are non-manifold. 

�� Non valid edge 1: its two manifold faces are coplanar.  

�� Non valid edge 2: its two non-manifold faces are coplanar. 

 

It results interesting that the number, classifi cations and positions of the incident 

faces to an edge in 4D-OPP's are analogous to the way that a set of edges are incident to a 

vertex in 3D-OPP's. 

 

4.4.3 Classifying the �0 in Polyhedra Through its Cones of Faces 

 

 As commented in section 2.1, edges and vertices, as boundary elements for 

polyhedra, may be either two-manifold (or just manifold) or non-manifold elements. In the 

case of edges, they are (non) manifold elements when every points of it is also a (non) 

manifold point, except that either or both of its ending vertices might be a point of the 

opposite type [Aguilera, 98]. A manifold edge is adjacent to exactly two faces, and a 

manifold vertex is the apex (i.e., the common vertex) of only one cone of faces. 

Conversely, a non-manifold edge is adjacent to more than two faces, and a non-manifold 

vertex is the apex (i.e., the common vertex) of more than one cone of faces [Rossignac,91]. 
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 Using the concept of cones of faces, it is easy to construct an algorithm to determine 

the classifi cation of a vertex as manifold or non-manifold in any polyhedron or pseudo-

polyhedron. The algorithm will be defined with the following steps (1 to 6): 

1 Get the set of the polyhedron's 2D faces that are incident to 0D vertex A. 

2 From the set of faces select one of them. 

3 The selected face has two 1D edges that are incident to A, get one of them and label it  

as START and ANOTHER 

4 Repeat 

4.1 If the number of incident faces to ANOTHER is more than one, then A is a non-

manifold vertex. 

4.2 The ANOTHER edge is common to another face, find it. 

4.3 The face has another edge that is common to A, find it and label it as 

ANOTHER. 

4.4 Until START = ANOTHER (it has been found a cone of faces). 

5 If there are more faces to analyze then A is a non-manifold vertex (there are more 

cones of faces). 

6 Otherwise, A is a manifold vertex (A is the apex of only one cone of faces). 

 

The following is an implementation of the algorithm in the high level language Java 

(see in [Gosling, 00] the language’s specifi cations). For this code, a vertex "v" is evaluated 

to classify it as manifold or non-manifold. If the vertex is manifold (and for instance, the 

apex of  only one  cone of  faces), then  the  method  returns  true,  otherwise,  the  vertex  

is  non-manifold (it is the apex of more than one cone of faces) and it returns false. 
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1 
2 
3 
 
 
4 
 
4.1 
 
 
 
4.2 
4.3 
 
 
4.4 
5 
 
 
 
6 
 

boolean isManifoldVertex(Polygon p, Vertex v) 
{  

Face faces[ ] = getFacesIncidentToVertex(p, v);  
Face firstFace = selectAndRemoveFace(faces); 

 Edge e1 = getIncidentEdgeToVertex(firstFace, v);  
Edge start = e1; 

 Edge another = e1; 
do  

 {  
  if(getNumberOfIncidentFacesToEdge(faces, another) > 1)  

 {  
   return false; 
  }  

 Face f = removeFaceIncidentToEdge(faces, another);  
  Edge e2 = getIncidentEdgeToVertex(f, another, v);  
  another = e2;  
 }  

while(another != start); 
 if(f aces.length > 0) 

{  
  return false; 

}  
 return true; 
}  

  

 Using this algorithm over the possible vertices in 3D-OPP's (section 4.4.1) we have 

the results presented in Table 4.14 which coincide with those presented in [Aguilera, 98]. 

 

TABLE 4.14 
3D-OPP's vertices classifi cation. 

3D vertex Configuration(s) Classification 
V3 b, f, o, u Manifold 
V4 j Manifold 
V4N1 g, p Non-manifold 
V4N2 k Non-manifold 
V5N d, s Non-manifold 
V6 e, l, t Non-manifold for configurations e and t. 

Manifold for configuration l. 
V6N1 h, q Non-manifold 
V6N2 n Non-manifold 
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4.4.4 Classifying the �1 in 4D Polytopes Through its Hyper-Cones of Volumes 

 

 Due to the analogy between 3D-OPP's vertices described in terms of their incident 

manifold or non-manifold edges, and 4D-OPP's edges described in terms of their incident 

manifold or non-manifold faces, [Pérez & Aguilera, 03] consider that the next logical step 

is to extend the concept of cones of faces presented in section 4.4.3 to classify 4D 

polytopes' edges as manifold or non-manifold.  

  

As introduced in section 2.1.4, the faces, edges and vertices, as boundary elements 

for 4D polytopes and pseudo-polytopes, may be either manifold or non-manifold elements. 

We have stated that a manifold face is adjacent to exactly two volumes [Hansen, 93] while 

[Pérez & Aguilera, 03] suggest that a manifold edge is the common edge of only one 

hyper-cone of volumes. Conversely, we have suggested that a non-manifold face is 

adjacent to more than two volumes, and now we suggest that a non-manifold edge is the 

common edge of more than one hyper-cone of volumes. 

 

 Using the concept of hyper-cones of volumes, it is easy to extend the algorithm 

presented in section 4.4.3 to allow us classifying an edge, as manifold or non-manifold, in 

any 4D polytope or 4D pseudo-polytope [Pérez & Aguilera, 03]. The algorithm defined by 

[Pérez & Aguilera, 03] with the following steps (1 to 6) that are an extension of those 

presented in section 4.4.3: 
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1 Get the set of 3D �3’ s that are incident to edge A (a �1). 

2 From the set of �3’ s select one of them. 

3 The selected �3 has two �2’ s that are incident to A, get one of them and label it as 

START and ANOTHER. 

4 Repeat 

4.1 If the number of incident �3’ s to ANOTHER is more than one, then A is a 

non-manifold �1. 

4.2 The ANOTHER �2 is common to another �3, find it. 

4.3 The �3 has another �2 that is common to A, find it and label it as 

ANOTHER. 

4.4 Until START = ANOTHER (a hyper-cone of volumes has been found). 

5 If there are more �3’ s to analyze then A is non-manifold (there are more hyper-cones 

of volumes). 

6 Otherwise, A is manifold (A is the common edge of only one hyper-cone of volumes). 

 

The following is an implementation of the algorithm in the high level language Java 

(see in [Gosling, 00] the language’s specifi cations). For this code, an edge "e" is evaluated 

to classify it as manifold or non-manifold. If the edge is manifold (and for instance, the 

common edge of only one hyper-cone of volumes), then the method returns true, otherwise, 

the edge is non-manifold (it is the common edge of more than one hyper-cone of volumes) 

and it returns false. 
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1 
2 
3 
 
 
4 
 
4.1 
 
4.2 
4.3 
 
 
4.4 
5 
 
 
 
6 

boolean isManifoldEdge(Polytope p, Edge e) 
{  
 Volume volumes[ ] = getVolumesIncidentToEdge(p, e);  

Volume firstVolume = selectAndRemoveVolume(volumes); 
 Face f1 = getIncidentFaceToEdge(firstVolume, e);  

Face start = f1; 
 Face another = f1; 

do  
 {  
  if(getNumberOfIncidentVolumesToFace(volumes, another) > 1)  
   return false; 

 Volume v = removeVolumeIncidentToFace(volumes, another);  
  Face f2 = getIncidentFaceToEdge(v, another, e);  

 another = f2;  
}  

 while(another != start); 
if(volumes.length > 0) 

 {  
 return false; 

 }  
return true; 

}  
 

 Using this algorithm over the possible edges in 4D-OPP's (section 4.4.2) we have 

that the edges' classifi cations are analogous to the 3D-OPP's vertices' classifi cations. Table 

4.15 shows the edges' classifi cations given by the extended algorithm and their analogous 

3D results.  

TABLE 4.15 
4D-OPP's edges classifications and their analogy with 3D-OPP's vertices 

(taken from [Pérez & Aguilera, 03c]). 
4D  

edge 
Classification through 

hyper-cones of volumes 
3D 

vertex 
Classification through 

cones of faces 
E3 Manifold V3 Manifold 
E4 Manifold V4 Manifold 
E4N1 Non-manifold V4N1 Non-manifold 
E4N2 Non-manifold V4N2 Non-manifold 
E5N Non-manifold V5N Non-manifold 
E6 Non-manifold when 2 or 6 

hypervolumes are incident to it. 
Manifold when 4 hypervolumes 
are incident to it. 

V6 Non-manifold for 
configurations e and t. 
Manifold for configuration l. 

E6N1 Non-manifold V6N1 Non-manifold 
E6N2 Non-manifold V6N2 Non-manifold 
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4.4.5 Classifying the �n-3 in nD Polytopes Through its nD Hyper-Cones of �n-1’s 

 

 Due to the analogy found between 3D vertices and 4D edges with the extension of 

the concept of cones of faces, it is feasible to generalize the algorithms presented in 

sections 4.4.3 and 4.4.4 to classify the �n-3 as manifold or non-manifold in nD polytopes 

through their nD hyper-cones of �n-1’ s. The general algorithm proposed by [Pérez & 

Aguilera, 03] is the following: 

 

1 Get the set of �n-1‘ s that are incident to �n-3 A. 

2 From the set of �n-1‘ s select one of them. 

3 The selected �n-1 has two �n-2‘ s that are incident to �n-3 A, get one of them and label 

it as START and ANOTHER. 

4 Repeat 

4.1 If the number of incident �n-1‘ s to ANOTHER is more than one, then A is 

a non-manifold �n-3. 

4.2 The ANOTHER �n-2 is common to another �n-1, find it. 

4.3 The �n-1 has another �n-2 that is common to A, find it and label it as 

ANOTHER. 

4.4 Until START = ANOTHER (it has been found a nD hyper-cone of �n-1‘ s). 

5 If there are more �n-1‘ s to analyze then �n-3 A is non-manifold (there are more nD 

hyper-cones of �n-1‘ s). 

6 Otherwise, �n-3 A is manifold (A is the apex of only one nD hyper-cone of �n-1‘ s). 
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4.4.6 The Eight Types of �n-3’s in n-Dimensional Orthogonal Pseudo-Polytopes 

 

Due to the analogy between vertices in 3D-OPP’s and edges in 4D-OPP’s (see 

Table 4.15), [Pérez & Aguilera, 03] extend their properties to propose the eight types of 

�n-3’ s in nD Orthogonal Pseudo-Polytopes. Such �n-3’ s will be  referred as �n-33, �n-34, 

�n-34N1, �n-34N2, �n-35N, �n-36, �n-36N1 and �n-36N2. In this nomenclature (just as the 

used in sections 4.4.1 and 4.4.2) "�n-3" indicates the (n-3)-dimensional element (i.e. 

vertices in 3D-OPP’s and edges in 4D-OPP’s), the first  digit  shows  the  number  of 

incident �n-2 (i.e. edges  in  3D-OPP’s  and  faces  in 4D-OPP’s), the "N" is present if at 

least one non-manifold �n-2 is incident to the �n-3 and the second digit is included to 

distinguish between two diff erent types of �n-3’ s that otherwise could receive the same 

name. 

[Pérez & Aguilera, 03c] describe the following properties for each �n-3: 

�� �n-33: all three incident �n-2's are manifold and perpendicular to each other.  

�� �n-34: all f our incident �n-2's are manifold, they lie on a hyperplane, and can be grouped 

in two couples of co-hyperplanar �n-2's. 

�� �n-34N1: three of its four incident �n-2's are perpendicular to each other and also 

manifold ones, while the fourth is non-manifold and co-hyperplanar to one of the other 

three. 

�� �n-34N2: two of its four incident �n-2's are manifold and co-hyperplanar, while each of 

its other two is non-manifold and perpendicular to the other three. 

�� �n-35N: four of its five incident �n-2's are manifold and lie in a hyperplane, while the 

fift h is non-manifold and perpendicular to the rest of them.  
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�� �n-36: all six incident �n-2's are manifold.  

�� �n-36N1: three of its six incident �n-2's are perpendicular to each other and also 

manifold  ones,  while  each  of  its  remaining  three  �n-2's   is   non-manifold   and  

co-hyperplanar to one of the first three.  

�� �n-36N2: all of its six incident �n-2's are non-manifold. 

 

4.5 Extreme Edges in the 4D-OPP’s 

 

 In this section we will introduce the Aguilera & Ayala’s concept of Extreme Vertex 

and how it is possible to proceed, as we have seen in the previous analogies between 

vertices in the 3D-OPP’s and edges in the 4D-OPP’s, to define its four-dimensional space’s 

analogue: the Extreme Edges. In the last section, we will show that the (n-1)-dimensional 

elements can be classified as extreme while the (n-2)-dimensional elements can be 

classified as extreme or non-extreme. 

 

4.5.1 Extreme Vertices in the 3D-OPP’s 

 

[Aguilera, 98] defines a brink or extended-edge as the maximal uninterrupted 

segment,  built out  of a  sequence of  collinear and contiguous two-manifold edges of a 

3D-OPP with the following properties: 

 

�� Non-manifold edges do not belong to brinks. 

�� Every two-manifold edge belongs to a brink, whereas every brink consists of m  edges 

(m � 1), and contains m 	 1 vertices. 
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�� Two of the vertices of type V3, V4N1 or V6N1 (section 4.4.1) are at either extreme of 

the brink (Extreme Vertices). These vertices have in common that they are the only ones 

that have exactly three incident two-manifold and perpendicular edges, regardless of the 

number of incident non-manifold edges, therefore those vertices mark the end of brinks 

in all three orthogonal directions. 

�� The m � 1 vertices of type V4, V4N2, V5N or V6 are the only common point of two 

coll inear edges of a same brink (interior vertices). 

�� Due to all six incident edges of a V6N2 vertex are non-manifold edges, none of them 

belongs to a brink, thus this vertex does not belong to any brink. 

 

See Figure 4.1.a for an example of a 3D-OPP’s wireframe model. Also in Figure 

4.1.b are shown the OPP’s brinks parallel to X1 axis. The continuous lines indicate 

manifold edges and the dotted one a non-manifold edge (it does not belong to a brink). The 

points at both extremes of the brinks are Extreme Vertices. 

 

X 1 X 1

 

a)    b) 
FIGURE 4.1 

Example of a 3D-OPP. a) Wireframe model. b) Their brinks parallel to X1 axis 
(see text for details. Taken from [Pérez & Aguilera, 03b]). 

 

 Based in the previous analysis for brinks, [Aguilera, 98] presents the following 

properties for the Extreme Vertices in the 3D-OPP’s: 
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�� Every Extreme Vertex of a 3D-OPP has exactly 3 incident manifold edges perpendicular 

to each other. This number is even for every non-extreme vertex. 

�� Every Extreme Vertex has an odd number of incident faces, and every non-extreme 

vertex has an even number of incident faces. 

�� Any Extreme Vertex of a 3D-OPP, when is locally described by a set of surrounding 

boxes, is surrounded by an odd number of such boxes. An even number of surrounding 

boxes either defines a non-extreme vertex, or does not define any vertex at all (i .e., a 

non-valid vertex). 

 

4.5.2 The 2D Analysis for Vertices in 3D-OPP's 

 

 In section 4.2.2 were presented the 22 configurations, identifi ed by [Aguilera, 98], 

which determine a 3D-OPP through a set of quasi-disjoint boxes (cubes). Each of these 

boxes’ vertices can be considered as the origin of a 3D local coordinate system. In such 3D 

local coordinate system can be identifi ed three main planes: X1X2, X1X3 and X2X3. If the 

faces that are coplanar to such main planes are grouped, ignoring those faces that are shared 

by two cubes (face adjacency), they compose three 2D configurations (one for each main 

plane). For these 2D configurations the vertex can be classifi ed as manifold or non-

manifold (section 4.3.1). See Table 4.16 for examples for 3D configurations b to k. 

 

 By applying this analysis over the 22 configurations for the 3D-OPP’s, it results that 

for those configurations whose vertex is extreme (V3, V4N1 or V6N1) and their number of 

boxes is odd, the three vertex analysis for their 2D configurations classify the 2D vertex as 

manifold (in Table 4.16, configurations b and f, for example). From this pattern, we can 

infer if a vertex is extreme or non-extreme. 
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TABLE 4.16 
Vertex analysis for 2D configurations on the main planes in 3D configurations b to k 

(taken from [Pérez & Aguilera, 03b]). 

3D 
configuration 

2D 
configuration 
on X1X2 Plane 

2D 
configuration 
on X1X3 Plane 

2D 
configuration 
on X2X3 Plane 

Analysis for 
2D vertex 

b 

X 1

X 2

X 3  

b 

X 1

X 2

-X 2

-X 1

 

b 
 

X 1

-X 1

-X3

X 3  
 

b 

X 3

-X 3

X 2

-X 2  

X1X2: Manifold 
 
X1X3: Manifold 
 
X2X3: Manifold 

c 
X 2

X 1

X 3  

c 
X 2

-X 2

X 1

-X 1

 

c 
 

X 1

-X1
X 3

-X 3

 
 

a 
X 2

-X2

X 3

-X3

 

X1X2: Non vertex 
 
X1X3: Non vertex 
 
X2X3: Non vertex 

f 
X 2

X 1

X 3  

e 
X 2

-X2

X 1

-X1

 

b 
 

X 1

-X1
X 3

-X3

 
 

b 
X 2

-X2

X 3

-X3

 

X1X2: Manifold 
 
X1X3: Manifold 
 
X2X3: Manifold 

j 
X 2

X 1

X 3

 

c 
X 2

-X2

X 1

-X1

 

c 
 

-X3

X 3

X 1

-X 1

 
 

d 
X 2

-X 2

X 3

-X 3

 

X1X2: Non vertex 
 
X1X3: Non vertex 
 
X2X3: Non manifold 

k 
X 2

X 1

X 3

 

f 
X 2

-X2

X 1

-X1

 

c 
 

-X3

X 3

X 1

-X1

 
 

c 
X 2

-X2

-X3

X 3

 

X1X2: Non vertex 
 
X1X3: Non vertex 
 
X2X3: Non vertex 
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4.5.3 The 3D Analysis for Edges in 4D-OPP's 

 

 The vertex analysis for 2D configurations embedded in the main planes of a 3D 

configuration (previous section) classify the 2D vertex as manifold or non-manifold, and 

through these three 2D analysis we can infer if the 3D vertex is extreme or non-extreme. 

For consequence, in analogous way, [Pérez & Aguilera, 03b] propose that we can assume 

that the edges analysis for 3D configurations embedded in the main hyperplanes of a 4D 

configuration will classify to 3D edges as manifold or non-manifold, and through these 3D 

analysis we can infer, due to the analogy with 3D vertex, if the 4D edges are “Extreme” or 

“Non-Extreme” . 

 

In section 4.2.3 and Appendix A are presented the 253 configurations which 

determine a 4D-OPP through a set of quasi-disjoint hyper-boxes (hypercubes). Each of 

these hyper-boxes’ vertices can be considered as the origin of a 4D local coordinate system. 

In such 4D local coordinate system can be identifi ed four main hyperplanes: X1X2X3, 

X1X2X4, X1X3X4 and X2X3X4. If the volumes that are co-hyperplanar to such main 

hyperplanes are grouped, ignoring those volumes that are shared by two hypercubes 

(volume adjacency), they will compose four 3D configurations (one for each main 

hyperplane). Table 4.17 presents the four 3D configurations that are present in 4D 

configurations 3 to 6. 
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TABLE 4.17 
Determining the 3D configurations on the main hyperplanes in 4D configurations 3 to 6 

(taken from [Pérez & Aguilera, 03b]). 

4D 
configuration 

3D 
configuration 

on X1X2X3 
hyperplane 

3D 
configuration 

on X1X2X4 
hyperplane 

3D 
configuration 

on X1X3X4 
hyperplane 

3D 
configuration 

on X2X3X4 
hyperplane 

3 

X 1

X 2

X 3
X 4

 

b 

X 1

X 2

X 3

 
 

b 

X 1

X 2

X 4

 
 

a 

X 1

X 3
X 4

 

b 

X 3

X 2

X 4

 
4 

X 1

X 2

X 3
X 4

 

d 

X 1

X 2

X 3

 

d 

X 1

X 2
X 4

 
 

b 

X 1

X 3
X 4

 

b 

X 3

X 2

X 4

 

5 

X 1

X 2 X 3

X 4

 

e 

X 1

X 3X 2

 

d 

X 1

X 2
X 4

 

d 
X 3

X 4

X 1

 

d 
X 2

X 4

X 3

 
6 

X 1

X 2 X 3

X 4

 

e 

X 1

X 3X 2

 
 

e 

X 1

X 2

X 4

 

e 

X 1

X 3

X 4

 

e 
X 3

X 2

X 4

 

 

For the 3D configurations that are embedded in the main hyperplanes it is possible 

to analyze their edges and classify them as manifold or non-manifold (section 4.3.2). Table 

4.18 shows the edges analysis for the 3D configurations that are present in 4D 

configurations 3 to 6. 
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TABLE 4.18 
Edges analysis for 3D configurations on the main hyperplanes in 4D configurations 3 to 6 

(taken from [Pérez & Aguilera, 03b]). 
 3D Edges Analysis 

4D 
Configuration 

Configuration 
on X1X2X3 
hyperplane 

Configuration 
on X1X2X4 
hyperplane 

Configuration 
on X1X3X4 
hyperplane 

Configuration 
on X2X3X4 
hyperplane 

3 X1: Non edge 
-X1: Non edge 
X2: Manifold 
-X2: Manifold 
X3: Non edge 
-X3: Non edge 

X1: Non edge 
-X1: Non edge 
X2: Manifold 
-X2: Manifold 
X4: Non edge 
-X4: Non edge 

X1: Non edge 
-X1: Non edge 
X3: Non edge 
-X3: Non edge 
X4: Non edge 
-X4: Non edge 

X2: Manifold 
-X2: Manifold 
X3: Non edge 
-X3: Non edge 
X4: Non edge 
-X4: Non edge 

4 X1: Manifold 
-X1: Manifold 
X2: Manifold 
-X2: Manifold 
X3: Non edge 
-X3: Manifold 

X1: Manifold 
-X1: Manifold 
X2: Manifold 
-X2: Manifold 
X4: Non manifold 
-X4: Non edge 

X1: Manifold 
-X1: Manifold 
X3: Non edge 
-X3: Non edge 
X4: Non edge 
-X4: Non edge 

X2: Manifold 
-X2: Manifold 
X3: Non edge 
-X3: Non edge 
X4: Non edge 
-X4: Non edge 

5 X1: Manifold 
-X1: Manifold 
X2: Manifold 
-X2: Manifold 
X3: Manifold 
-X3: Manifold 

X1: Manifold 
-X1: Manifold 
X2: Manifold 
-X2: Manifold 
X4: Non edge 
-X4: Non manifold 

X1: Manifold 
-X1: Manifold 
X3: Manifold 
-X3: Manifold 
X4: Non edge 
-X4: Non manifold 

X2: Manifold 
-X2: Manifold 
X3: Manifold 
-X3: Manifold 
X4: Non edge 
-X4: Non manifold 

6 X1: Manifold 
-X1: Manifold 
X2: Manifold 
-X2: Manifold 
X3: Manifold 
-X3: Manifold 

X1: Manifold 
-X1: Manifold 
X2: Manifold 
-X2: Manifold 
X4: Manifold 
-X4: Manifold 

X1: Manifold 
-X1: Manifold 
X3: Manifold 
-X3: Manifold 
X4: Manifold 
-X4: Manifold 

X2: Manifold 
-X2: Manifold 
X3: Manifold 
-X3: Manifold 
X4: Manifold 
-X4: Manifold 

 

 Through a computer program, the edges analysis for the 3D configurations 

embedded in the main hyperplanes of a 4D configuration, was applied over the 253 

configurations for the 4D-OPP’s and the obtained results are [Pérez & Aguilera, 03b]: 

�� An edge in a 4D-OPP can be classifi ed by three 3D analysis (a 4D edge can only be 

present in three of the four main hyperplanes) as: 

�� 3 times as manifold and 0 times as non-manifold, or 

�� 0 times as manifold and once as non-manifold, or 

�� 0 times as manifold and 3 times as non-manifold, or 

�� 0 times as manifold and 0 times as non-manifold. 
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�� The above patterns can be found in any 4D configuration because it can have from 0 to 8 

incident edges to the origin. 

�� Following the analogy with the vertex analysis for 2D configurations embedded in the 

main planes of a 3D configuration (previous section), it can be proposed that if a edge in 

a 4D-OPP has been classifi ed in the 3D analysis three times as manifold, then it can be 

considered as an Extreme Edge, and any other result will classify it as a Non-Extreme 

Edge. 

�� The manifold or non-manifold classifi cation for a edge in a 4D-OPP is independent of 

its  classifi cation  as  extreme  or  non-extreme. Is the same situation for a vertex in a 

3D-OPP, where its classifi cation as extreme or non-extreme is independent of its 

classifi cation as manifold or non-manifold. 

�� If we analyze the incident manifold or non-manifold faces that are incident to an 

extreme or non-extreme edge in 4D-OPP's, we can observe that the analogy with the 

description of extreme or non-extreme vertices in terms of the incident manifold or non-

manifold edges that are incident to those vertices is preserved, as shown in Table 4.19. 

 
TABLE 4.19 

The 4D-OPP's edges classifi cations and their analogy with 3D-OPP's vertices 
(taken from [Pérez & Aguilera, 03b]). 

4D 
edge 

Classification 
(manifold or 

non-manifold) 

Classification 
(extreme or 

non-extreme) 

3D 
vertex 

Classification 
(manifold or 

non-manifold) 

Classification 
(extreme or 

non-extreme) 
E3 Manifold Extreme V3 Manifold Extreme 
E4 Manifold Non extreme V4 Manifold Non extreme 
E4N1 Non-manifold Extreme V4N1 Non-manifold Extreme 
E4N2 Non-manifold Non extreme V4N2 Non-manifold Non extreme 
E5N Non-manifold Non extreme V5N Non-manifold Non extreme 
E6 Non-manifold  

Manifold  
Non extreme 
Non extreme 

V6 Non-manifold  
Manifold  

Non extreme 
Non extreme 

E6N1 Non-manifold Extreme V6N1 Non-manifold Extreme 
E6N2 Non-manifold Non extreme V6N2 Non-manifold Non extreme 
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4.5.4 The Vertices in 4D-OPP's Described in Terms of Extreme and Non-Extreme 

Edges 

 

 We will describe and classify vertices in 4D-OPP's depending on the number of 

extreme and non-extreme edges incident to them. In the nomenclature to use “V” means 

vertex, the "X" indicates that the vertex is described in terms of extreme and non-extreme 

edges, the first digit shows the number of incident extreme edges, the “N” followed by a 

digit is present if there are incident non-extreme edges to the vertex and the digit indicates 

the number of such edges, and a third digit is included to distinguish between two diff erent 

types that otherwise could receive the same name. In Table 4.20 are shown the 26 

identifi ed 4D vertices. 
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TABLE 4.20 
Vertices present in 4D-OPP’s described in terms of their incident extreme and non-extreme 

edges (dotted lines indicate non-extreme edges and continuous lines indicate extreme 
edges; own elaboration). 

VX0 
 
 
 

 

VX0N2 
 
 

 

VX0N6 

 

VX0N6-2 

 

VX0N7 

 

VX0N8 

 

VX2 
 
 

 

VX2N2 

 

VX2N3 

 

VX2N3-2 

 

VX2N4 

 

VX2N5 

 
VX2N6 

 

VX4 
 

 

VX4-2 
 

 

VX4N1 

 

VX4N1-2 

 

VX4N2 

 

VX4N2-2 

 

VX4N3 

 
VX4N3-2 

 

VX4N4 

 

VX4N4-2 

 

VX6N1 

 
VX6N2 

 

 VX8 
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 Each vertex has the following properties [Pérez, 01]: 

�� VX0: Non valid vertex. It doesn’t have incident extreme or non-extreme edges. 

�� VX0N2: Non valid vertex. Its two non-extreme edges are colli near. 

�� VX0N6: All six incident edges are non-extreme grouped in three pairs of colli near 

edges. 

�� VX0N6-2: All six incident edges are non-extreme, four of them lie on a plane, and can 

be grouped in two couples of colli near edges, while the remaining two are lineally 

independent. 

�� VX0N7: All seven incident edges are non-extreme, six of them lie in a hyperplane, 

while the seventh is perpendicular to the rest of them. 

�� VX0N8: All of its eight incident edges are non-extreme. 

�� VX2: Non valid vertex. Its two extreme edges are colli near. 

�� VX2N2: Two of its four incident edges are extreme and colli near, while each of its other 

two is non-extreme and perpendicular to the other three.  

�� VX2N3: Two of its five incident edges are extreme and colli near, while each of its other 

three is non-extreme and perpendicular to the other four. 

�� VX2N3-2:  Two  of  its  five incident edges are extreme and colli near, other two are 

non-extreme and colli near, both pairs lie in a plane, while the fift h is non-extreme and 

perpendicular to the other four. 

�� VX2N4: Two  of its  six incident  edges are  extreme  and  colli near,  other  two are  

non-extreme and colli near, both  pairs  lie  in  a  plane, while each of its other two is 

non-extreme and perpendicular to the other five. 
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�� VX2N5: Four of its seven incident edges are non-extreme and lie in a plane, while other 

two are extreme and collinear and the remaining is non-extreme and perpendicular to the 

other six. 

�� VX2N6: Six of its eight incident edges are non-extreme and lie in a hyperplane, while 

other two are extreme and collinear. 

�� VX4: All four incident edges are extreme and perpendicular. 

�� VX4-2: All four incident edges are extreme and lie in a plane. 

�� VX4N1: Four of its five incident edges are perpendicular and also extreme ones, while 

the fifth is non-extreme and collinear to one of the other four. 

�� VX4N1-2: Four of its five incident edges are extreme and lie in a plane, while the fifth is 

non-extreme and perpendicular to the rest of them. 

�� VX4N2: Four of its six incident edges are extreme and lie in a plane, while each of its 

other two is non-extreme and perpendicular to the other five. 

�� VX4N2-2: Four of its six incident edges are perpendicular and also extreme ones, while 

each of its remaining two edges is non-extreme and collinear to one of the first four. 

�� VX4N3: Four of its seven incident edges are perpendicular and also extreme ones, while 

each of its remaining three edges is non-extreme and collinear to one of the first four. 

�� VX4N3-2: Four of its seven incident edges are extreme and lie in a plane, while other 

two are non-extreme and collinear and the remaining edge is non-extreme and 

perpendicular to the other six. 

�� VX4N4: Four of its eight incident edges are perpendicular and also extreme ones, while 

each of its remaining four edges is non-extreme and collinear to one of the first four. 
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�� VX4N4-2: Four of its eight incident edges are extreme and lie in a plane, while the 

remaining four are non-extreme and lie in a plane. 

�� VX6N1: Six of its seven incident edges are extreme and lie in a hyperplane, while the 

seventh is non-extreme and perpendicular to the rest of them. 

�� VX6N2: Six of its eight incident edges are extreme and lie in a hyperplane, while the 

remaining two are colli near and non-extreme ones. 

�� VX8: All eight incident edges are extreme. 

 

4.5.5 The Extreme and Non-Extreme (n-1), (n-2) and (n-3)-Dimensional Elements 

 

Although the previous properties, presented in the section 4.5.1, define brinks in the 

3D-OPP’s,  [Aguilera, 98]  also  defines  the  properties  for brinks in the 1D-OPP’s and 

2D-OPP’s as follows: 

�� In the 1D-OPP’s the only elements which exist are vertices and edges. If a vertex has 

only one incident edge, then it is an Extreme Vertex. Then, edges and brinks are in this 

case equivalent. 

�� In the 2D-OPP’s there are only two types of vertices (section 4.3.1): the vertex with two 

incident Manifold edges (V2) and the vertex with four incident Manifold edges (V4N). 

In a 2D-OPP’s brink, vertices of type V2 are Extreme Vertices because each one of 

these vertices has two incident Manifold and perpendicular edges, while vertices of type 

V4N are interior vertices because each one is the common point of two edges in a brink, 

therefore they cannot be the brink’s ending vertices. 
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Based in the previous analysis, [Aguilera, 98] presents the following properties for 

Extreme Vertices in the 2D-OPP’s and 1D-OPP’s: 

�� An Extreme Vertex in the 1D space has only one incident manifold edge. Any non 

extreme vertex will be the common point of two edges. 

�� Each Extreme Vertex in the 2D space has exactly two incident manifold and 

perpendicular edges. 

�� Any 2D-OPP’s Extreme Vertex when is locally described by a set of surrounding 

rectangles (see section 4.2.1), it is surrounded by a odd number of those rectangles. An 

even number of surrounding rectangles defines either a non extreme vertex or a non 

valid vertex. 

 

From these properties it is found that vertices, the (n-1)-dimensional elements of a 

segment (1D-OPP), are either extreme and 0-manifold (or just manifold, see the 

[Hansen,93]’ s rules in section 2.1.5) or non extreme and non-manifold (because they are 

the common point of two segments with vertex adjacency). 

 

In section 4.3.1 it was presented that vertices, the (n-2)-dimensional elements in a 

2D-OPP’s, can have two possible characterizations: manifold or non-manifold. Due to the 

previous properties, it is known that a vertex is extreme when it has two incident manifold 

and perpendicular edges, otherwise it will be a non extreme vertex. By associating the 

manifold vertex’s definition (section 4.3.1) with the extreme vertex’s definition, we have 

that a vertex in a 2D-OPP is: 

�� Manifold and Extreme: when it has two incident and perpendicular edges. 

�� Non-Manifold and Non-Extreme: when it has four incident edges. 
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The extreme vertex and manifold vertex’s concepts are equivalent in the 1D-OPP’s, 

therefore, and due to its analogy with the (n-1)-dimensional elements (in other words, the 

cells �n-1 described in section 2.1.5), it is possible to generalize such equivalence to 

propose: 

A cell �n-1 in a nD-OPP is Manifold and Extreme when it has just one incident cell �n. 

 

 For example, we can expect the following characterizations: 

�� 1D-OPP’s: Manifold/Extreme Vertices. 

�� 2D-OPP’s: Manifold/Extreme Edges. 

�� 3D-OPP’s: Manifold/Extreme Faces. 

�� 4D-OPP’s: Manifold/Extreme Volumes. 

�� 5D-OPP’s: Manifold/Extreme Hypervolumes. 

 

In the 2D-OPP’s, the extreme vertex and manifold vertex’s concepts are equivalent. 

In the same way the non-extreme vertex and non-manifold vertex’s concepts are equivalent. 

Due to their analogy with the (n-2)-dimensional elements, it is possible to generalize such 

equivalences to propose: 

A cell �n-2 in a nD-OPP can be: 

1. Manifold/Extreme when it has two incident and perpendicular cells �n-1. 

2. Non-Manifold/Non-Extreme when it has four incident cells �n-1. 
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Therefore, we can expect the following characterizations: 

�� 2D-OPP’s: Manifold/Extreme Vertices and Non-Manifold/Non-Extreme Vertices. 

�� 3D-OPP’s: Manifold/Extreme Edges and Non-Manifold/Non-Extreme Edges. 

�� 4D-OPP’s: Manifold/Extreme Faces and Non-Manifold/Non-Extreme Faces. 

�� 5D-OPP’s: Manifold/Extreme Volumes and Non-Manifold/Non-Extreme Volumes. 

 

In  the  Table 4.15  was  presented  the  analogy between 3D-OPP’s vertices and 

4D-OPP’s edges, the (n-3)-dimensional elements. Their characterizations are product of the 

methodologies described in sections 4.4.2 and 4.4.4 (Manifold or Non-Manifold vertex-

edge). As observed in the mentioned sections, their classifi cations are the same, which led 

to [Pérez & Aguilera, 03] to generalize the eight possible �n-3’ s in the nD-OPP’s (section 

4.4.6). As appreciated in section 4.5.3 (Table 4.19), the vertices and edges’ classifi cations 

as extreme or non-extreme are consistent with the previously identifi ed analogies between 

those elements, leading us to four possible characterizations: 

�� Manifold and Extreme Vertex (V3) in the 3D-OPP’s or Edge (E3) in the 4D-OPP’s. 

�� Manifold and Non-Extreme Vertex (V4, V6) in the 3D-OPP’s or Edge (E4, E6) in the 

4D-OPP’s. 

�� Non-Manifold and Extreme Vertex (V4N1, V6N1) in the 3D-OPP’s or Edge (E4N1, 

E6N1) in the 4D-OPP’s. 

�� Non-Manifold and Non-Extreme Vertex (V4N2, V5N, V6, V6N2) in the 3D-OPP’s or 

Edge (E4N2, E5N, E6, E6N2) in the 4D-OPP’s. 
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Finally, for the eight �n-3’ s in the nD-OPP’s, described by [Pérez & Aguilera, 03c], 

it is possible to annex their corresponding characterization as Extreme or Non-Extreme (see 

their characteristics in section 4.4.6): 

�� Manifold/Extreme element �n-33.  

�� Manifold/Non-Extreme element �n-34. 

�� Non-Manifold/Extreme element �n-34N1. 

�� Non-Manifold/Non-Extreme element �n-34N2. 

�� Non-Manifold/Non-Extreme element �n-35N.  

�� Manifold/Non-Extreme or Non-Manifold/Non-Extreme element �n-36.  

�� Non-Manifold/Extreme element �n-36N1. 

�� Non-Manifold/Non-Extreme element �n-36N2. 

 

 

 

 

 

 

 


