Chapter 4
Four-Dimensional Orthogonal Polytopes

In sedion 1.6.1,it was presented ore of the premisesof this work: that it is
esseatial, as afirst step, to analyze the paytopes and the boundriesthat composethem, to
guaranteethe validity of the visualizaion and analysis of the phenomena or data that they
will represant (aswe will seein the next chapters). Therefore, this dapter presents in first
place(sedion 4.1 some definitions related with the 4D Orthogoral Pseudo-Polytopes
(4D-OPFP's), which are the paytopesthat we will use sibseguently for represeating some
multidimensional data and prenomena (as $ated in sedion 1.6.4. Then, (in sedion 4.2 we
will cover the analysis related to the configurations that can represent the 4D-OPP's.
Moreover, the proceduresfor classfying edges and faces asnanifold ar non-manifold ele-
ments in 4D-OPP s will be descibed. For facesin 4D-OPPs the [Aguilera & Pérez, 028’s
condtion to classfy them asmanifold or nonrmanifold will be descaibed (sedion 4.3. For
the alges analysisin 4D-OPPs (sedion 4.9 the two [Aguilera & Pérez, 03’ s gpproaches
will be descibed: 1) The analogy ketween incident (manifold and norrmanifold) edgesto a
vertex in 3D Orthogoral Psaudo-Polyhedra (3D-OPPs) with incident (manifold and non
manifold) facesto a edge in 4D-OPPs; and 2 The extension d the concept of "cones of
face$ (which is gplied for classfying a vertex in 3D-OPPs asmanifold or nornrmanifold;
and introduwced in sedion 2.1.2 to "hypercones of volumes' for classfying an edge as
manifold o nonmanifold in 4D-OPPs (and introduwced in sedion 2.1.4. The
generdizaions for classfying the n-3 and the n-2 dmensional boundry elements for
n-dimensional Orthogoral Psaudo-Polytopes asnanifold ar non-manifold elements ae dso

presented. Finally, (sedion 4.9 it will be mnsidered the daraderization o the 4D-OPPs
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edges asExtreme or Non-Extreme. It will be descibed how this dasgfi caion is the reault
of a 3D analysis over the passble configurations for the 4D-OPP s and, moreover, it is not
only redricted to the (n-3)-dimensional elements, becaiseit is preseat in the (n-1) and

(n-2)-dimensional elements.

4.1 Definition

[Juan-Arinyo, 88 & [Preparata 85 define Orthogoral Polyhedra (3D-OP) as
poyhedrawith al their edges and facesoriented in threeorthogoral diredions. Orthogoral
Psaudo-Polyhedra (3D-OPP will refer to reguar and athogoral poyhedra with

nonrmanifold boundry [Aguilera, 9§.

Similarly, 4D Orthogonal Polytopes (4D-OP) are defined as4D poalytopeswith all
their edges faces ad vdumesoriented in four orthogoral diredions and 4D Orthogoral
Psaudo-Polytopes (4D-OPP will refer to 4D reguar and athogoral polytopeswith

non-manifold bourdary [Aguilera & Pérez 021.

Because the 4D-OPPs definition is an extension from the 3D-OPPs, it is eag to
generdize the oncept to define n-dimensional Orthogonal Polytopes (nD-OP) as
n-dimensional palytopeswith all their 1,4, [1n2,..., [11 oriented in n athogoral diredions.
Finaly, n-dimensional Orthogonal Pseudo-Polytopes (nD-OPP) are defined as
n-dimensional regular and athogoral paytopeswith normanifold bourdary [Aguilera &

Pérez, 024.
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4.2 Adjacency Analysis For 2D, 3D And 4D-OPP's

4.2.1Adjacency Analysis For 2D-OPP's

A sd of quas-digoint redanges determines a 2D-OPP whose vertices must
coincide with some of the redangles vertices[Aguilera, 9§. Each o theseredangles
vertices ca be onsidered asthe origin o a 2D locd coordinate s/stem, and they may
belong to upto four redangles ore for eat locd quadrant. The two pcsshble ajaceicy
relations between the four possble redangles ca be of edge or vertex. There ae 2* = 16
possble cmbinations which, by applying symmetries and rotations, may be grouped into
six equivalence dasses also cdled configurations [Srihari, 81]. Moreover, [Aguilera, 98
hasidentifi ed that ead pasgble cmmbination hasits cmplementary combination, and ead
configuration has its cmplementary configuration which is the dassthat contains the

complementary combinations of all the cmbinationsin the given class

[Aguilera, 98 descibesthat thesel6 pesble combinations ae distributed in the

following way:
4 (4
2% = Zc(k] =1+4+6+4+1=16
k=0
And wsing combinatorial analysis, there ae:

4
o C(OJ =1 combination with zero surroundng redangles(configuration a, Table 4.1).

4
o C(J =4 combinations with ore surroundng redangle (configuration b).
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4
e C 2J =6 combinations with two surroundng redangles(configurations ¢ and d).

4
e C 3} =4 combinations with three sirroundng redangles(configuration €).

4
e C 4] =1 combination with four surroundng redangles(configurationf).

[Aguilera, 9§ identifi esthat configurations a ad f, aswell as onfigurations b and

e, are ommplementary to ead ather. Configurations ¢ and dare sdf -complementary.

TABLE 4.1
Possble configurations (ato f) for 2D-OPPs (own elaboration).

4.2.2Adjacency Analysis For 3D-OPP's

[Aguilera, 98 descibesthat a s& of quas-digoint boxes determines a3D-OPP
whose verticesmust coincide with some of the boxes vertices Similarly to the 2D case
eah o theseboxes vertices ca be considered asthe origin of a 3D locd coordinate
system, and they may belong to upto eight boxes ore for eat locd octant. The three
posshle ajacency relations between the aght possble boxes ca be of face edge or
vertex. There ae 2 = 256 pmsble mmbinations which, by applying symmetries ad

rotations, may be grouped into 22 equivalence dasses[Lorensen, 87, also cdled
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configurations [Srihari, 81]. As in the 2D case, each possible combination has its
complementary combination, and each configuration has its complementary configuration
which is the class that contains the complementary combinations of all the combinationsin
the given class [Aguilera, 98]. Grouping complementary configurations leads to the 14

major cases [Van Gelder, 94].

Similarly to the 2D case, [Aguilera, 98] describes that these 256 possible

combinations are distributed in the following way:

8

8
2° = ZC(kj =1+8+28+56+70+56+28+8+1=256

k=0

And using combinatorial analysis, there are:

8
j =1 combination with zero surrounding boxes (configuration a, Table 4.2).

° CO

8
e C J = 8 combinations with one surrounding box (configuration b).

N

[ ]
O
w

j =56 combinations with three surrounding boxes (configurations f, g and h).

(o¢]

8
o C( j = 28 combinations with two surrounding boxes (configurations c, d and e).

e C 4) = 70 combinations with 4 surrounding boxes (configurationsi, j, k, I, m and n).
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TABLE 4.2
Possble configurations (ato v) for 3D-OPPs.

0 1 7

v

e R

rEREPE

LA AR XL

The remaining combinations with 5, 6, 7 and 8 surroundng boxes ae
complementary, and thus analogous, to combinations with 3, 2, 1land Osurroundng boxes
regedively [Aguilera, 9§. Finaly, ead configuration, with four surroundng boes is

sdf-complementary.
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4.2.3Adjacency Analysis For 4D-OPP's

By anaogy, we can assume that a set of quasi-digoint hyper-boxes (hypercubes, for
example) determines a 4D-OPP whose vertices must coincide with some of the hyper-
boxes vertices. We will consider the hyper-boxes vertices as the origin of a 4D local
coordinate system, and they may belong to up to 16 hyper-boxes, one for each local
hyper-octant. The 4D-OPP's vertices are determined according to the presence or absence
of each of this 16 surrounding hyper-boxes. The four possible adjacency relations, extended
by analogy, between the 16 possible hyper-boxes can be of volume, face, edge or vertex.
There are 2'° = 65,536 possible combinations of vertices in 4D-OPP’s. Through a computer
program, we exhaustively analyzed those 65,536 combinations and found that all of them
can be grouped, applying symmetries and rotations, into 253 equivalence classes, which we
shall call configurations, as in 2D and 3D cases. Similarly, we found that each possible
combination has its complementary combination, and each configuration (i.e., each class)
has its complementary configuration which is the class that contains the complementary
combinations of all the combinations in the given class. Grouping complementary

configurations leads us to the 145 major cases.

The 65,536 possible combinations are distributed in the following way:

6 _ _
2°=2 11,440 + 8,008 + 4,368 + 1,820 + 560+ 120+ 16 + 1 65536

k=0

16 (lGJ {1+ 16+ 120+ 560+ 1,820 + 4,368 + 8,008 + 11,440 + 12,870}
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And using combinatorial analysis, there are:

16
e C 0)= 1 combination with zero surrounding hyper-boxes (configuration 1).
16 . . : S
e C 1)~ 16 combinations with one surrounding hyper-box (configuration 2).
16 - : : —_
e C 5)= 120 combinations with two surrounding hyper-boxes (configurations 3, 4, 5

and 6, shown in Table 4.3).
16 . : . _
o C( 3) =560 combinations with three surrounding hyper-boxes (configurations 7 to 12.

Configuration 7 and 8 are shown in Table 4.3).

16
o C( 4) =1,820 combinations with 4 surrounding hyper-boxes (configurations 13 to 28).

16
o C( 5) = 4,368 combination with 5 surrounding hyper-boxes (configurations 29 to 48).

16

e C 6= 8,008 combinations with 6 surrounding hyper-boxes (configurations 49 to 78).
16

e C 7= 11,440 combinations with 7 surrounding hyper-boxes (configurations 79 to 108).
16

e C 5= 12,870 combinations with 8 surrounding hyper-boxes (configurations 109 to 145).
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TABLE 4.3
Configurations 3 to 8for 4D-OPPs
(seeAppendix A for adesciption d the remaining configurations).

Adjacenciesbetween o quration Adjacencies between Configuration
hyper -boxes hyper -boxes
3 4
s
5 6
7 8

If has been found, through exhaustive analysis by a cmputer system, that the
remaining combinations with 9, 10, 11, 12, 13, 14, HEhd 16surroundng hyper-boxes ae
complementary, and thus analogows, to combinations with 7, 6, 5,4, 3, 2, 1and O
surroundng hyper-boxes regedively. Finally, ead configuration, with eight surroundng
hyper-boxes is sdf-complementary. In Appendix A are preseited al the 253 D

configurations.
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4.2.4Determining the Sum of Adjacenciesfor Configurationsin nD-OPP's

Inthe Table 4.4is presated a Immary of the aljacency analysis for 2D-OPPs. In
the table ae preseited the number of vertex adjacencies ad the number of edge

adjacenciesthat are possble between the redangesof eadt configuration.

TABLE 4.4
Courting the edge and vertex adjacenciesin 2D-OPPs anfigurations
(own elaboration).

Number of Confi . Number of edge| Number of vertex Sum of
onfiguration . . . . . :
Redangles adjacencies adjacencies adjacencies
0 a 0 0 0
b 0 0 0
5 c 1 0 1
d 0 1 1
3 e 2 1 3
4 f 4 2 6

Inthe Table 4.5is presated a Immary of the aljacency analysis for 3D-OPPs. In
the table ae preseited the number of vertex adjacencies edges ajacecies and face

adjacenciesthat are possble between the boxesof eat configuration.
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TABLE 45
Courting the face edge and vertex adjacenciesin 3D-OPPs configurations (own elaboration).

Number of | Number of | Number of
Number , . Sum of
of boxes Configuration . face . _edge . vertex adjacencies
adjacencies | adjacencies | adjacencies
0 a 0 0 0 0
1 b 0 0 0 0
c 1 0 0 1
2 d 0 1 0 1
e 0 0 1 1
f 2 1 0 3
3 g 1 1 1 3
h 0 3 0 3
i 4 2 0 6
] 3 2 1 6
4 k 2 3 1 6
I 3 3 0 6
m 2 2 2 6
n 0 6 0 6
o 5 4 1 10
5 p 4 4 2 10
q 3 6 1 10
r 7 6 2 15
6 s 6 7 2 15
t 6 6 3 15
7 u 9 9 3 21
8 v 12 12 4 28

From Tables 4.4 and 4.5 it can be obseaved that the ims of adjacenciesfrom O to 4
redanglegboxes ae the sane. If the uims presented in Table 4.5 are compared with the
4D-OPPs oonfigurations presented in Appendix A, the sane property is preseait: the sims
of adjacencies from 0 to 8 boxeghyper-boxes are the same. Moreover, the sums of
adjacencies for configurations with the sane number of boxes ae ejual for al those
configurations, regardlessthey corregpondto 2D-OPPs, 3D-OPPs or 4D-OPP s (seethe
configurations' case for example, with 4 “boxes” in Tables 4.4, 4.5 and Appendix A).

Baseal in theseproperties we can assime that the am of adjacenciesfor any configuration

13z



with x “boxes’ (redangles boxes hyper-boxes, etc.) independently of the number of
dimensions (in an Euclidean Spacs, is:

X(x-1)
2

Seein Chapter 5 its amrrepondng Theorem and proaf.

4.3 ThelIl,,Analysisfor 2D, 3D and 4D-OPP's

In the following sedions (4.3.1, 4.3.2and 4.3.3 we will classfy, as manifold or
nornrmanifold, to vertices(Iy's) in the 2D-OPPs, edges (I1;’s) in the 3D-OPPs and faces
(ITy's) in the 4D-OPPs in terms of the number of their incident edges faces ad vdumes
repedively. Finaly, in sedion 4.3.4,we nsider the general condtion, peseited
originaly in [Aguilera & Pérez, 024, to classfy the IT,,’'s in the nD Orthogora Pseudo

Polytopes

4.3.1TheTIlp (Vertex) Analysisfor 2D-OPP's

Becaisewe ae intereded in the vertex analysis, we will consider only those onfi-
gurations where dl their redangles ae incident to a vertex. According to the
configurations' namenclature presented in [Aguilera, 98, the gudied configurations ae b,

c, d,e andf (Table4.6).
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TABLE 4.6
2D configurations where dl the redangles ae incident to a vertex
(taken from [Aguilera & Pérez 020).

© © @ ® ©
@ ) e © @ @
b [ d e f

We will classfy a vertex in terms of the incident edgesto it. Those @lgesthat are
shared bytwo redangles(edge adjacency) will not be considered becausethey are not valid
edges sncethey do nd belongto the final OPP. From this analysisit reaults that there ae
only two types of verticesin a 2D-OPP. the manifold vertex with two incident edges
(configurations b and €), and the nonmanifold vertex with four incident edges
(configuration d) [Aguilera, 98. The remaining configurations represent no vertex becaise
in configuration ¢ there ae only two incident and collinea edges and in configuration d

there ae noincident edges

From the aljaceicy analysis we can olsave that in the cnfigurations dl possble
types of adjacency for redangles ae present: vertex and edge ajacency. Table 4.7

summarizesthe redangles adjacency analysis and the vertex classfi caion.
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TABLE 4.7
Resume of adjacency analysis for ead configuration and vertex classfi cetion
(refer to Table 4.6to redangles numbering).

Number of Adjacencies Number of Vertex
Configuration | involved between valid incident classifi cation
rectangles rectangles edgesto vertex
b 1 - 2 Manifold
C 2 1-2: Edge - No vertex
d 2 1-2: Vertex 4 Non manifold
1-2: Edge
e 3 1-3: Vertex 2 Manifold
2-3: Edge
1-2: Edge
1-3: Edge
1-4: Vertex
f 4 5.3 Vertex - No vertex
2-4: Edge
3-4: Edge

4.3.2TheTl; (Edge) Analysisfor 3D-OPFP's
Becaise we ae intereded in the alge analysis, we will consider only those
configurations where dl their boxes ae incident to just one elge. According to the con-
figurations as®ciated nanenclature, preseted in [Aguilera, 9§, the gudied configurations
areb,c, d,fandi (Table4.8).
TABLE 4.8

3D configurations where dl the boxes ae incident to an edge
(the arows how the analyzed edge. Taken from [Aguilera & Pérez, 021).

b. C. d. f. i.
ﬁ

We will classfy an edge in terms of the incident facesto it. Those facesthat are
shared by two boxes (face ajaceicy) will not be considered because they are nat valid
faces scethey do nd belongto the final OPP. From this analysis it reaults that there ae

only two typesof edgesin a 3D-OPP[Aguilera, 98:
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e The manifold edge with two incident faces. This type of edges is found in
configurations b and f. The alge’'s two incident facesin configuration b belongto ore
cube’ s boundry and they are perpendicular to ead ather. The edge’ s two incident faces
in configuration f belong to two dff erent cubes with edge ajaceicy and they reault
perpendicular to ead ather.

e The non-manifold edge with four incident faces. This type of edge is found in
configuration d,where two o its facesbelongs to a aibe and the remaining two belong

to a seond cube with edge adjacency.

The remaining configurations represent no edge becausein configuration c there ae
only two incident and coplanar faces and in configuration i there ae no incident faces

Table 4.9 reaumesthe boxes adjacency analysis and the edge dassfi cation.

TABLE 4.9
Reaume of adjacency analysis for eat configuration and edge dassfi caion
(refer to Table 4.8 to boxes numbering).

Number of | Adjacencies Number of Edge
Configuration involved between incident valid classification
boxes boxes facesto edge
b 1 - 2 Manifold
C 2 1-2: Face - No edge
d 2 1-2: Edge 4 Non manifold
1-2: Face
f 3 1-3: Edge 2 Manifold
2-3: Face
1-2: Face
1-3: Face
. 1-4: Edge
| 4 2-3: Edge - No edge
2-4: Face
3-4: Face




4.3.3TheTl, (Face) Analysisfor 4D-OPP's
Becaise we ae intereded ony in the face aalysis, we will consider only those
configurations where dl their hyper-boxes are incident to just one face It hasbeen found
that there ae only 5 of such configurations. These onfigurations ae 2, 3, 4, 7and 13.See
Table4.10
TABLE 4.10

4D configurations where dl the hyper-boxes are incident to aface
(the analyzed faceisindicated in the 2" column. Taken from [Pérez& Aguil era, 03).

Adjacenciesbetween , . Adjacenciesbetween , .
Configuration Configuration
hyper-boxes hyper-boxes
®
2- 3'
@
® ®
% 4. 7
® ®
® ©
13.
® ®

We will classfy afacein terms of the incident volumesto it. Thase volumesthat
are ared by two hyper-boxes (volume aljacency) will nat be considered becaisethey are
nat valid vdumes s$nce they do nd belong to the final OPP. From this anaysis, and
analogots to the 3D case(see setton 4.3.3, it reallts that there ae only two typesof faces

ina4D-OPP[Aguilera & Pérez, 024:
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e Faceswith two incident volumes. This type of facesis foundin configurations 2 and 7.
The facés two incident volumesin configuration 2 lelongto the boundry of only one
hypercube and they are perpendicular to ead ather. While in configuration 7,the facés
two incident volumesbelongto two dff erent hypercubeswith face ajacency and they

reault perpendicular to ead ather.

e Faceswith four incident volumes. This type of facess foundin configuration 4,where
two o its incident volumes belong to a hypercube and the remaining two belong to a

seond hypercube with face ajacency.

The remaining configurations represent no facebecaisein corfiguration 3there ae
only two incident and co-hyperplanar volumes and in configuration 13 there ae no

incident volumes(analogows to 3D configurations ¢ andi in Table 4.8).

From the aljacency analysis we can olseave that in the dudied configurations the
possble typesof adjacency for hyper-boxes are face ad vdume aljacency. The vertex and
edge ajaceicies ae not present. Also, we can olsave that the aljacency analysis and the
number of incident volumes ae analogows with the vertex analysis for 2D-OPPs and the

edge analysisfor 3D-OPPs.

[Coxeter, 63 defines that a Il,., belongs to just two o the Il,i's in any
n-dimensional paytope. In sedion 2.1.5were descibed the properties descibed by
[Hansen,93, for the representation d a nD Polytope’'s boundry as a toseal sd of

n-manif olds;
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1. A O-manifoldis apaint, andit hasno boundry.

2. All boundry elements of an n-manifold are (n-1)-manifold elements.

3. All (n-1)-dimensional elements belongto exadly two n-manifold elements (or twice to
the sane dement).

4. Manifold elements may nat interse¢ ead ather except at common boundry elements.

For example, [Hansen, 93 shows the useof their rulesin the aube (a 3-dimensional
solid, bouned by a dosed sd of 2-manifolds, the face$. For this casen = 2, property 2
says, that every boundry element of ead 2-manifold (face is al-manifold (edge), and
property 3 says, that every 1-manifold (edge) belongs to two 2-manifold (face$. If we
apply the same rulesto the 4D hypercube (a 4-dimensional palytope, bounaed by a doseal
sd of 3-manifolds, the volumesg, then for n = 3, property 2 says that every boundry
element of ead 3-manifold (volume) is a2-manifold (face), and property 3 says, that every

2-manifold (face belongsto two 3-manifolds (volumes.

According to [Coxeter, 63 and [Hansen, 93, if the 4D Orthogoral Pseaudo
Polytope’ s two perpendicular volumes(I1s) are incident to aface(I1y), then it is amanifold
face Otherwise if the 4D Orthogoral Pseudo-Polytope's four volumes ae incident to a
face [Aguilera & Pérez, 021 sugged, by analogy, that it is anonmanifold face These

properties ae preseat in the face aalysis (seeTable 4.11).
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TABLE 4.11

Reaume of adjacency analysis for ead configuration
(refer to Table 4.10to hyper-boxes' numbering).

Number of | Adjacencies Number of Face
Configuration | involved between incident valid classifi cation
hyper-boxes| hyper-boxes | volumesto face
1 1 - 2 Manifold
2 2 1-2: Volume - No face
3 2 1-2: Face 4 Non manifold
1-2: Volume
4 3 1-3: Face 2 Manifold
2-3: Volume
1-2: Volume
1-3: Volume
1-4: Face
5 4 5.3 Face - No face
2-4: Volume
3-4: Volume

4.3.4Classfying theIl,.2’sin nD-OPP's

Finally, the generalized condtions to classfy aIl,., asmanifold o non-manifold in
anD-OPPare [Aguilera & Pérez 024:
e If two perpendicular I.1's aeincident to all,, then it must be dassfi ed asmanifold.

e |[f fourIT1's aeincident to all,.» then it must be dassfi ed asnon-manifold.

4.4 Thell,zAnalysisfor 3D and 4D-OPP's

In the following sedions we will analyze and classfy, asmanifold or nonrmanifold
the diff erent typesof vertices(I1p's) in the 3D-OPPs and edges(I1;'s) in the 4D-OPPs. We

will consider two approaches

141



a) Classficaion d these éements by means of their incident manifold or non-manifold

edges(3D-OPPs) and faceg4D-OPPs, setions 4.4.1and 4.4.2repedively).

b) Applicaion d the concepts of “cones of faces” (sedion 4.4.3 and “hypercones of
volumes” (4.4.4 to classfy verticesin the 3D-OPPs and edges in the 4D-OPPs

regedively.

In sedions 4.4.5and 4.4.6are preseted the generalizaions of the two approaches

for classfying the I'l,.3'sin the nD Orthogoral Pseudo-Polytopes

4.4.1TheTlp (Vertex) Analysisfor 3D-OPP's

[Aguilera, 98 identifies eght typesof vertices(also two non \aid vertices ae
identifi ed) for 3D-OPPs. Thesevertices ca be dassfied depending onthe number of
two-manifold and nonmanifold edgesincident to them and they are referred asV3, V4,
V4N1,V4AN2, V5N, V6, V6N1 and VN2 [Aguilera, 98 (Table 4.12. In this nomenclature
"V" means vertex, the fir st digit shows the number of incident edges the "N" is present if at
lea$ one nonrmanifold edge is incident to the vertex and the seond dgit is included to

distingush between two dff erent typesthat otherwise @uld recave the sane name.
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TABLE 4.12

Verticespresent in 3D-OPPs (daotted linesindicate nonmanifold edges
and continucs linesindicae manifold edges Taken from [Pérez& Aguilera, 03H).

V3 V4 V4N1 VAN2
V5N V6

Non valid vertex 1

®
A 4

Non valid vertex 2

Ead vertex hasthe foll owing properties[Aguilera, 98:

e V3 al three incident edges ae two-manifold and perpendicular. It is preseit in

configurations b, f, oand u.

e V4: dl four incident edges ae two-manifold, they lie on a plane, and can be grouped in

two coudesof collinea edges It ispresent in configurationj.

e VANI1: threeof its four incident edges ae perpendicular and aso two-manifold ores

while the fourth is nonmanifold and colli nea to ore of the other three It is present in

configurations g and p.

e VAN2: two of its four incident edges ae two-manifold and colli nea, while eat o its

other two is nonmanifold and perpendicular to the other three It is preseit in

configuration k.
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e V5N: four of its five incident edges are two-manifold and lie in a plane, while the fifth is
non-manifold and perpendicular to the rest of them. It is present in configurationsd and s.

e VG6: all six incident edges ae two-manifold. It is present in configurations g | andt.

e VO6N1: three of its Sx incident edges ae perpendicular and aso two-manifold ores
while eat o its remaining three @lgesis nonmanifold and colli nea to ore of the first
three It ispresent in configurations h and q.

e V6N2: al of its gx incident edges &e nonrmanifold. It is present in configuration n.

e Non valid vertex 1: its two manifold edges ae wllinea . It is preset in configurations ¢
andr.

e Non wvaid vertex 2. its two nonmanifold edges ae llinea. It is preseit in

configuration m.

4.4.2TheTl; (Edge) Analysis For 4D-OPP's

[Aguilera, 9§ definesvertex typesin terms of the manifold or non-manifold edges
that are incident to theseverticesin 3D-OPPs. [Pérez & Aguilera, 03] extend the sane
processto descibe alge typesin terms of the manifold o nonrmanifold facesthat are
incident to those elgesin 4D-OPPs. In this way, we have identifi ed eight typesof edges
and two non valid edges We will also extend the nomenclature used by [Aguilera, 98 to
descibe them. Such edgeswill be referred asE3, E4, EAN1, EAN2, E5N, E6, E6N1 and
E6N2 (Table 4.13. The only diff erence with the nomenclature used by [Aguilera, 99 is

that "E" means algeinsteal of "V" that means vertex.
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TABLE 4.13
Edgespresent in 4D-OPPs (datted linesindicae nonmanifold faces
and continucs linesindicae manifold faces Taken from [Pérez& Aguilera, 034).

E3 E4 E4N1 E4AN2

AN

~ X

ES5N E6 E6N1 E6N2
\< N AR

XN | KN : ,><|\.

X O [k
N <N/

N

X

N

Non valid edge 1 Non valid edge 2

ANEANI N NN

Each edge, identified by[Pérez& Aguilera, 03, hasthe following properties
E3: al threeincident faces se manifold and perpendicular.
E4: al four incident faces e manifold, they lie on a hyperplane, and can be grouped in
two coupesof coplanar faces
E4AN1: three of its four incident faces ee perpendicular and also manifold ores while
the fourth is nonrmanifold and coplanar to ore of the other three
E4N2: two o its four incident faces ee manifold and coplanar, while eat o its other
two isnon-manifold and perpendicular to the other three
E5SN: four of its five incident faces ee manifold and lie in a hyperplane, while the fifth

isnonmanifold and perpendicular to the reg of them.
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e EG: dl six incident faces ge manifold.

e EG6NL1: three of its $x incident faces ee perpendicular and also manifold ores while
eat o itsremaining threefacesis non-manifold and coplanar to ore of thefirst three

e EG6N2: all of its gx incident faces & non-manifold.

e Non valid edge 1: itstwo manifold faces ee coplanar.

e Non valid edge 2: itstwo nonmanifold faces g cplanar.

It reailts intereding that the number, classfications and paitions of the incident
facesto an edge in 4D-OPPs ae analogots to the way that a se of edges a&e incident to a

vertex in 3D-OPPs.

4.4.3 Classifying the ITpin Polyhedra Through its Cones of Faces

As ommented in sedion 2.1, edges ad wertices as boundry elements for
polyhedra, may be ather two-manifold (or just manifold) or nonmanifold elements. In the
caseof edges they are (non) manifold elements when every pants of it is dso a (hon)
manifold pant, except that either or both of its ending verticesmight be apaint of the
oppaite type [Aguilera, 9§. A manifold edge is aljacent to exadly two faces and a
manifold vertex is the gex (i.e.,, the common wertex) of only one cone of faces.
Conwersdy, a nornrmanifold edge is ajacent to more than two faces and a non-manifold

vertex isthe goex (i.e., the ammmon vertex) of more than ore cone of faces [Rossgnac9]].
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Using the concept of conesof facesit is eay to construct an algorithm to determine
the dassficaion d a vertex as manifold or nonmanifold in any pdyhedron a pseudo
poyhedron. The dgorithm will be defined with the following steps (1 to 6):

1  Get the se of the payhedron's 2D facesthat are incident to 0D vertex A.

2  From the sé of faces sked one of them.

3 The séeded facehastwo 1D edgesthat are incident to A, get one of them and label it
asSTART and ANOTHER

4  Repeda

4.1 If the number of incident facesto ANOTHER is more than ore, then Ais anon

manifold vertex.

4.2 The ANOTHER edge is ammmon to ancther face findit.
4.3 The face has aother edge that is common to A, find it and label it as
ANOTHER.

4.4 Until START = ANOTHER (it hasbeen founda wne of faces.
5 If there ae more facesto analyze then A is anonmanifold vertex (there ae more
conesof faces.

6 Otherwise Ais amanifold vertex (Aisthe gex of only one cone of faces.

Thefollowingis an implementation d the dgorithm in the high level language Jaa
(seein [Godling, 0Q the language’'s gedfi caions). For this code, a vertex "v" is evaluated
to classfy it asmanifold or nonmanifold. If the vertex is manifold (and for instance, the
apex of only one mneof face$, then the method returns true, ctherwise the vertex

is norrmanifold (it is the gpex of more than ore @ne of face$ and it returnsfalse



wWN P

4.1

4.2
4.3

bodean isManifoldV ertex(Polygon p,Vertex v)

{

Faceface$ | = getFaces$ncidentToVertex(p, V);
FacefirstFace = seedAndRemoveFacgfaces;
Edge €l = getincidentEdgeToV ertex(fir stFace V);
Edge gart = €l;

Edge ancther = el

do
{

if(getNumberOfl ncidentFaced oEdge(faces anather) > 1)
{

}

Facef = removeFacdncidentToEdge(faces anather);
Edge € = getincidentEdgeToVertex(f, ancther, v);
ancther = €2;

return false

while(ancther = dart);
if(facedength > 0)

{
}

return false

return true;

Using this dgorithm over the possble verticesin 3D-OPPs (sedion 4.4.) we have

the reallts presented in Table 4.14 which coincide with thosepreseated in [Aguil era, 9§).
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TABLE 4.14
3D-OPPs vertices tassfi caion.

3D vertex Configuration(s) |Classification

V3 b,f, 0, u Manifold

V4 j Manifold

VAN1 g, p Non-manifold

V4N2 k Non-manifold

V5N d,s Non-manifold

V6 el t Non-manifold for configurations e adt.

Manifold for configuration|.

VEN1 h, g Non-manifold

V6N2 n Non-manifold




4.4.4 Classifying the IT; in 4D Polytopes Through its Hyper-Cones of Volumes

Due to the analogy ketween 3D-OPPs verticesdesaibed in terms of their incident
manifold or nonmanifold edges and 4D-OPPs algesdesaibed in terms of their incident
manifold or nonmanifold faces [Pérez & Aguilera, 03 consider that the next logicd step
is to extend the concept of cones of facespreseaited in sedion 4.4.3to classfy 4D

paytopes edges asnanifold or non-manifold.

As introduced in sedion 2.1.4the faces edges ad vertices asboundiry elements
for 4D pdytopes and pseudo-paytopes may be ather manifold or nonmanifold elements.
We have dated that a manifold faceis ajacent to exadly two vdumes[Hansen, 93 while
[Pérez & Aguilera, 03 sugged that a manifold edge is the cmmon edge of only one
hyper-cone of volumes. Conversdy, we have suggeded that a nonmanifold face is
adjacent to more than two vdumes and nav we sugged that a nonmanifold edge is the

common edge of more than ore hyper -cone of volumes.

Using the mncept of hyper-cones of volumes it is eag to extend the dgorithm
presaited in sedion 4.4.3to allow us dassfying an edge, asmanifold o non-manifold, in
any 4D palytope or 4D pseudo-paytope [Pérez & Aguilera, 03. The dgorithm defined by
[Pérez & Aguilera, 03 with the following steps (1 to 6) that are an extension d those

presaited in sedion 4.4.3
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1 Get the sé of 3D I135'sthat areincident to edge A (aIly).

2 From the se of [15's séed one of them.

3 The séeded I3 hastwo I1y's that are incident to A, get one of them and label it as
START and ANOTHER.

4  Reped

4.1 If the number of incident I15's to ANOTHER is more than ore, then Aiis a

non-manifold I1;.

4.2 The ANOTHERTI, is ommonto ancther I3, findit.
4.3 The TI3 has aother IT, that is ommon to A, find it and label it as
ANOTHER.

4.4 Until START = ANOTHER (a hyper-cone of volumeshasbeen found.
5  If there ae more I3's to analyze then A is non-manifold (there ae more hyper-cones
of volumes.

6 Otherwise Aismanifold (A isthe cmmon edge of only one hyper-cone of volumes.

Thefollowingis an implementation d the dgorithm in the high level language Jaa
(seein [Gosling, 0Q the language’'s gedfi caions). For this mde, an edge "€" is evaluated
to classfy it as manifold or non-manifold. If the edge is manifold (and for instance, the
common edge of only one hyper-cone of volumes), then the methodreturns true, otherwise
the edge is nonmanifold (it is the cmmon edge of more than ore hyper-cone of volumeg

and it returnsfalse
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bodean isManif oldEdge(Polytope p, Edge ©

{
1 Volume volumeq | = getVolumedncidentToEdge(p, €);
2 Volume firstVolume = séedAndRemoveV olume(volumes);
3 Facef1l = getlncidentFacel oEdge(fir stVolume, e);
Face sart = f1;
Face acther =f1;
4 do
{
4.1 if(getNumberOfl ncidentV olumesT oFacgvolumes ancther) > 1)
return false
4.2 Volume v = removeV olumel ncidentToFacgvolumes anather);
4.3 Facef2 = getlncidentFacel oEdge(v, ancther, €);
ancther = f2;
4.4 while(ancther = dart);
5 if(volumeslength > 0)
{
return false
}
6 return true;
}

Using this dgorithm over the possble edgesin 4D-OPPs (sedion 4.4.2 we have
that the edges classfi caions ae analogots to the 3D-OPPs vertices classfi caions. Table
4.15 shows the edges classfi caions given by the extended algorithm and their analogows
3D reaults.

TABLE 4.15

4D-OPPs edges clasgficaions and their analogy with 3D-OPPs vertices
(taken from [Pérez& Aguilera, 03]).

4D Classification through 3D Classification through
edge hyper -cones of volumes vertex cones of faces
E3 Manifold V3 Manifold
E4 Manifold V4 Manifold
E4AN1 Norrmanifold VAN1 Non-manifold
E4AN2 Norrmanifold VA4N2 Non-manifold
E5N Non-manifold V5N Norrmanifold
E6 Non-manifold when 2 a 6 V6 Non-manifold for
hypervolumes are incident to it. configurations e andt.
Manifold when 4 hypervolumes Manifold for configuration .
areincident to it.
E6N1 Non-manifold V6N1 Non-manifold
E6N?2 Nornmanifold V6N?2 Non-manifold
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4.4.5 Classifying the IT,.3in nD Polytopes Through its nD Hyper-Cones of IT,.1’'s

Due to the analogy found ketween 3D vertices ad 4D edgeswith the extension d
the wncept of cones of faces it is feasble to generdize the dgorithms preseted in
sedions 4.4.3and 4.4.4t0 class$fy the IT,.3 asmanifold o norrmanifold in nD paytopes
through their nD hyper-cones of I1,1's. The genera algorithm propcsal by [Pérez &

Aguilera, 03 isthefollowing:

1 Getthe sé of I1,.1'sthat areincident to IT,.3 A.
2  From the se of I1,.1'S séed one of them.
3  The sdeded I1,; hastwo I1,,'s that are incident to ITn.3 A, get one of them and label

it asSTART and ANOTHER.

4  Reped

4.1 If the number of incident I1n.1's to ANOTHER is more than ore, then A is
anonmanifold IT,.s.

4.2 The ANOTHER 1,2 is ommon to ancther I, 4, findit.

4.3 The I, has aother I, that is ommon to A, find it and label it as

ANOTHER.
4.4 Until START = ANOTHER (it hasbeen foundanD hyper-cone of I1,1'S).
S5 If there ae more I1,;'s to analyze then T1n.3 A is nonmanifold (there ae more nD
hyper-conesof I1n1'S).

6  Otherwise I3 Ais manifold (A isthe gex of only one nD hyper-cone of IT,1'S).
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4.4.6 The Eight Types of IT,.3'sin n-Dimensional Orthogonal Pseudo-Polytopes

Due to the analogy between verticesin 3D-OPPs and edges in 4D-OPPs (see
Table 4.15), [Pérez & Aguilera, 03 extend their propertiesto propcsethe aght types of
ITy3's in ND Orthogoral Psaudo-Polytopes Such Tn.3's will be referred asIln.33, 134,
IT,.34N1, IT,34N2, TT1.35N, T1n.36, T1n36N1 and IT,36N2. In this nomenclature (just asthe
usel in sedions 4.4.1 and 4.4.2 "Il,3" indicaes the (n-3)-dimensional element (i.e.
verticesin 3D-OPPs and edgesin 4D-OPPyg), the first digit shows the number of
incident I, (i.e. edges in 3D-OPPs ad faces in 4D-OPPs), the "N" is present if at
leas one nonmanifold Iy, is incident to the I1,3 and the seond dgit is included to
distingush between two dff erent types of Il,3's that otherwise ould recave the same
name.

[Pérez& Aguilera, 03] desaibe the following propertiesfor ead Iy
e [I,33: dl threeincident I'T,..'s are manifold and perpendicular to ead ather.

e [l,.34: al four incident I'T,..'s are manifold, they lie on a hyperplane, and can be grouped
in two coudesof co-hyperplanar ITy.2's.

e TI,34N1: three of its four incident I1,.'s are perpendicular to ead ather and also
manifold ores while the fourth is nonrmanifold and co-hyperplanar to ore of the other
three

o II,34N2: two o itsfour incident IT.2's are manifold and co-hyperplanar, while eat of
its other two is nonrmanifold and perpendicular to the other three

e II,35N: four of its five incident I1,,'s are manifold and lie in a hyperplane, while the

fift h is nonrmanifold and perpendicular to the reg of them.
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e [In36: al six incident I,.2's are manifold.

e TI,36N1: three of its six incident I1n.'s are perpendicular to each other and also
manifold ones, while each of its remaining three Il,,'s is non-manifold and
co-hyperplanar to one of the first three.

e TI1,36N2: dl of itssix incident IT,,.,'s are non-manifold.

4.5 Extreme Edgesin the 4D-OPFP's

In this section we will introduce the Aguilera & Ayala's concept of Extreme Vertex
and how it is possible to proceed, as we have seen in the previous anaogies between
vertices in the 3D-OPP's and edges in the 4D-OPP's, to define its four-dimensional space’s
analogue: the Extreme Edges. In the last section, we will show that the (n-1)-dimensional
elements can be classified as extreme while the (n-2)-dimensional elements can be

classified as extreme or non-extreme.

4 5.1Extreme Verticesin the 3D-OPP's

[Aguilera, 98] defines a brink or extended-edge as the maximal uninterrupted
segment, built out of a sequence of collinear and contiguous two-manifold edges of a

3D-OPP with the following properties:

¢ Non-manifold edges do not belong to brinks.
e Every two-manifold edge belongs to a brink, whereas every brink consists of m edges

(m>1), and contains m+ 1 vertices.
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e Two o the verticesof type V3, VANL o V6NL1 (sedion 4.4.) are & either extreme of
the brink (Extreme Vertices). Theseverticeshave in common that they are the only ones
that have exadly threeincident two-manifold and perpendicular edges regardlessof the
number of incident non-manifold edges therefore thoseverticesmark the end d brinks
in all threeorthogoral diredions.

e The m-1 verticesof type V4, VAN2, V5N or V6 are the only common pant of two
collinea edgesof a sane brink (interior vertices.

e Dueto al six incident edgesof a V6N2 vertex are nonmanifold edges nore of them

belongs to a brink, thus this vertex doesnat belongto any brink.

SeeFigure 4.1.a for an example of a 3D-OPPs wireframe model. Also in Figure
4.1.b are hown the OPPs brinks parallel to X; axis. The @ntinuows lines indicae
manifold edges and the dotted ore anonmanifold edge (it doesnot belongto a brink). The

points & bath extremesof the brinks ae Extreme Vertices

_—
r R SN
'

* a4

‘—>x1 —_—— - X
3) ' b)
FIGURE 4.1

Example of a 3D-OPP. a) Wireframe model. b) Their brinks parall el to X, axis
(seetext for detail s. Taken from [Pérez& Aguilera, 034).

Basal in the previous analysis for brinks, [Aguilera, 98 presaits the following

propertiesfor the Extreme Verticesin the 3D-OPPs:
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e Every Extreme Vertex of a3D-OPPhas eadly 3 incident manif old edgesperpendicular
to ead ather. This number is even for every non-extreme vertex.

e Every Extreme Vertex has a odd number of incident faces and every nonextreme
vertex has a even number of incident faces

¢ Any Extreme Vertex of a 3D-OPP, when is locdly descaibed by a sé of surroundng
boxes is surrounced by an odd nunber of such boxes An even number of surroundng
boxes dther defines anon-extreme vertex, or doesnat define ay vertex at al (i.e., a

nonvalid vertex).

4.5.2The 2D Analysisfor Verticesin 3D-OPP's

In sedion 4.2.2were presated the 22 configurations, identified by [Aguilera, 99,
which determine a 3D-OPP through a sé of quas-digoint boxes (cubeg. Each o these
boxes vertices ca be mnsidered asthe origin of a3D locd coordinate s/stem. In such 3D
locd coordinate system can be identifi ed three main planes X1X», X1X3 and X,Xa. If the
facesthat are mplanar to such main panes ae grouped, ignaing thosefaceshat are shared
by two cubes (face @djacency), they composethree 2D configurations (one for eat main
plane). For these 2D configurations the vertex can be dassfied as manifold or non

manifold (sedion 4.3.). SeeTable 4.16for examplesfor 3D configurations b to k.

By applying this analysis over the 22 configurations for the 3D-OPP' s, it reaults that
for those onfigurations whosevertex is extreme (V3, VAN1 o V6N1) and their number of
boxesis odd, the threevertex analysis for their 2D configurations dassfy the 2D vertex as
manifold (in Table 4.16 configurations b and f, for example). From this pattern, we can

infer if avertex is extreme or non-extreme.
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TABLE 4.16

Vertex analysis for 2D configurations on the main planesin 3D configurations b to k
(taken from [Pérez& Aguilera, 030).

3D
configuration

2D
configuration
on XX, Plane

2D
configuration
on X;X3 Plane

2D
configuration
on X,X3 Plane

Analysisfor
2D vertex

X3

b

X
>
i

<
%
>
E

b

X2

X1 X2: Manifold

X1 X3: Manifold

.X3
X3

Xa
_ fﬂ/ X, \ X,X3: Manifold
-X, A2
a
X2 X2 X1 X2: Non wvertex
X3 -X3
Xxl X1X3: Non vertex
o o X3 Y X3 | X2X3: Non vertex
b
X, X1 Xo: Manifold
-X3 -X3
)Xxl X;X3: Manifold
- X3 X3 XoXs: Manifold
X,
d
X2 X1 X2: Non wertex
X3
X1 X1X3: Non vertex
3 X3 XoX3: Nonmanifold
Xy
C

X1 X2: Non wertex
X1 X3: Non wertex

XoX3: Non wvertex




4.5.3The 3D Analysisfor Edgesin 4D-OPFP's

The vertex anaysis for 2D configurations embedded in the main planes of a 3D
configuration (previous setion) classfy the 2D vertex as manifold or nonmanifold, and
throughthesethree 2D analysis we can infer if the 3D vertex is extreme or non-extreme.
For consequence, in analogows way, [Pérez & Aguilera, 03 propcsethat we can assime
that the edges aalysis for 3D configurations embedded in the main hyperplanesof a 4D
configuration will classfy to 3D edges asmanifold or non-manifold, and throughthese3D
analysiswe can infer, due to the analogy with 3D vertex, if the 4D edges ae “Extreme” or

“Non-Extreme”’.

In sedion 4.2.3and Appendix A are preseited the 253 configurations which
determine a4D-OPP through a sé of quas-digoint hyper-boxes (hypercubeg. Each o
thesehyper-boxes vertices ca be considered asthe origin of a4D loca coordinate g/stem.
In such 4D locd coordinate system can be identified four main hyperplanes X1X2Xs,
X1X2X4, X1X3X4 and XoX3X4. If the volumes that are co-hyperplanar to such main
hyperplanes ae grouped, ignaing those volumes that are sared by two hypercubes
(volume adjacency), they will compaose four 3D configurations (one for ead main
hyperplane). Table 4.17 preseits the four 3D configurations that are preseat in 4D

configurations 3to 6.
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TABLE 4.17

Determining the 3D configurations on the main hyperplanesin 4D configurations 3 to 6

(taken from [Pérez& Aguilera, 031).
3D 3D 3D 3D
4D configuration | configuration configuration configuration
configuration on X1 X2X3 on X1 X2X4 on X1X3X4 on XoX3X4
hyperplane hyperplane hyperplane hyperplane
3 b b a b
X Xy X X4 Xs X2
) - N \4 X\< !
T >
4 d d b b
X, X7 X, X4 X3 X2
X X3 X3 X X X3
NN
X1
X1 X1 X1
5 e d d d
X2 X3 X2 ’Xa X2 X3 X2 X3
X4 X4 X4 / X4 %/
6 e e e e
Xz X3 X2 X3 X2 X3 Xz
X4 7 X4 X, / X4 X3
d . ) N PAYA VAYANIN
: AN WaN

For the 3D configurations that are embedded in the main hyperplanesit is possble

to analyzetheir edges and classfy them asmanifold or nonmanifold (sedion 4.3.2. Table

4.18 shows the alges aalysis for the 3D configurations that are preseat in 4D

configurations 3to 6.
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TABLE 4.18

Edges analysis for 3D configurations on the main hyperplanesin 4D configurations 3 to 6
(taken from [Pérez & Aguilera, 030).

3D Edges Analysis
4D Configuration | Configuration Configuration Configuration
. . on X1X2X3 on X1 XoX4 on X1X3X4 on X,X3X4
Configuration
hyperplane hyperplane hyperplane hyperplane
3 X1: Nonedge X1: Nonedge X1: Nonedge X5 Manifold
-X1: Nonedge -X1: Nonedge -X1: Nonedge -X2: Manifold
X5 Manifold Xs: Manifold X3: Non edge X3 Nonedge
-X5: Manifold -X5: Manifold -X3: Nonedge -X3: Nonedge
Xs: Non edge X4 Nonedge X4 Nonedge X4 Nonedge
-X3: Nonedge -X4: Nonedge -X4: Nonedge -X4: Non edge
4 X1: Manifold X1 Manifold X1 Manifold X Manifold
-X1: Manifold -X1: Manifold -X1: Manifold -X,: Manifold
X5 Manifold X5 Manifold Xs: Non edge X3z Nonedge
-X5: Manifold -X5: Manifold -X3: Nonedge -X3: Non edge
X3: Non edge X4 Nonmanifold | X,4: Nonedge X4 Nonedge
-X3: Manifold -X4: Nonedge -X4: Nonedge -X4: Non edge
5 X1: Manifold X1 Manifold X1 Manifold X2 Manifold
-X1: Manifold -X1: Manifold -X1: Manifold -X,: Manifold
Xo: Manifold X Manifold Xz Manifold X3 Manifold
-X,: Manifold -X,: Manifold -X3: Manifold -X3: Manifold
X3 Manifold X4 Nonedge X4 Nonedge X4 Nonedge
-X3: Manifold -X4: Nonmanifold | -X4: Nonmanifold |-X. Nonmanifold
6 X1 Manifold X1 Manifold X1 Manifold X5 Manifold
-X1: Manifold -X1: Manifold -X1: Manifold -X,: Manifold
X2 Manifold X Manifold X3 Manifold X3 Manifold
-X5: Manifold -X5: Manifold -X3: Manifold -X3: Manifold
Xz Manifold X4 Manifold X4 Manifold X4 Manifold
-X3: Manifold -X4: Manifold -X4: Manifold -X4. Manifold

Through a cmputer program, the alges aalysis for the 3D configurations
embedded in the main hyperplanes of a 4D configuration, was gplied over the 253
configurations for the 4D-OPP's and the obtained reaults ae [Pérez& Aguilera, 034:

e An edge in a 4D-OPP can be dassfied by three 3D analysis (a 4D edge can orly be
present in threeof the four main hyperplaneg as

e 3times agnanifold and Otimes amonmanifold, o

e Otimes agnanifold and orce asnonmanifold, o

e Otimes agnanifold and 3times asnonmanifold, o

e (Otimes agnanifold and Otimes ashon-manifold.
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The &owve patterns can be foundin any 4D configuration becaiseit can havefrom0to 8
incident edgesto the origin.
Following the analogy with the vertex analysis for 2D configurations embedded in the
main planesof a 3D configuration (previous setion), it can be proposed that if a edge in
a4D-OPP hasbeen clasdfi ed in the 3D analysis threetimes asmanifold, then it can be
considered as an Extreme Edge, and any ather reault will classfy it as aNon-Extreme
Edge.
The manifold or nonrmanifold classfi caion for a edge in a 4D-OPP s independent of
its dasdficaion as &treme or nonextreme. Is the same Stuation for a vertex in a
3D-OPP, where its dasgficaion as etreme or nonextreme is independent of its
classfi cation asmanifold or nornrmanifold.
If we analyze the incident manifold or nonmanifold facesthat are incident to an
extreme or nonextreme alge in 4D-OPPs, we can olsave that the analogy with the
desciption d extreme or non-extreme verticesin terms of the incident manifold or non
manifold edgesthat are incident to thoseverticesis presaved, as siown in Table 4.19.
TABLE 4.19

The 4D-OPPs alges d¢assfi caions and their analogy with 3D-OPPs vertices
(taken from [Pérez& Aguilera, 031).

Classification | Classfication Classification | Classification
4D : 3D .
ed (manifold or (extremeor (manifold or (extremeor
ge : vertex .
non-manifold) | non-extreme) non-manifold) | non-extreme)
E3 Manifold Extreme V3 Manifold Extreme
E4 Manifold Non extreme V4 Manifold Non extreme
EAN1 |Non-manifold |Extreme VA4N1 | Non-manifold Extreme
E4N2 |Non-manifold [Nonextreme V4AN2 | Non-manifold Non extreme
E5SN Non-manifold | Nonextreme V5N Non-manifold Non extreme
E6 Non-manifold | Non extreme V6 Non-manifold Non extreme
Manifold Non extreme Manifold Non extreme
E6N1 |Non-manifold |Extreme VO6N1 | Non-manifold Extreme
E6N2 |Non-manifold [Nonextreme V6N2 | Non-manifold Non extreme
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45.4The Verticesin 4D-OPP's Desciibed in Terms of Extreme and Non-Extreme

Edges

We will descibe and classfy verticesin 4D-OPPs depending onthe number of
extreme and nonextreme algesincident to them. In the nomenclature to use V" means
vertex, the "X" indicaesthat the vertex is descibed in terms of extreme and nonextreme
edges the first digit shows the number of incident extreme edges the “N” followed by a
digit is present if there ae incident non-extreme algesto the vertex and the digit indicaes
the number of such edges and athird dgit isincluded to dstinguish between two dff erent
types that otherwise ©uld receve the same name. In Table 4.20 are down the 26

identifi ed 4D vertices
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edges(dotted linesindicate non-extreme alges and continuois linesindicae extreme

TABLE 4.20
Verticespresent in 4D-OPP s descibed in terms of their incident extreme and nonextreme

edges own elaboration).

VX0 VX ON2 VXON6 VX ON6-2
| N /
N/ N
s - X
. — = — RO / N\
/ N\ |
|
VXONS8 VX2
I
\‘ | ’/
- k- :
/o N\
|
VX2N3-2
I I
| ig'/
) AN
/o / N\
| |
VX4 VXA4N1
0 //<
VX4N1-2 VX4N2 VX4N2-2 VX4N3
™.
\ / \
VX4N3-2 VX4N4
_',>|<~
/ N\
|
VX6N2 VX8
\»
~
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Eadch vertex hasthe following properties[Pérez, 01):

e VXO0: Non walid vertex. It doegn't have incident extreme or non-extreme alges

e VXON2: Non valid vertex. Iltstwo nonextreme elges ae wlli nea.

e VXONG: All six incident edges ae non-extreme grouped in three pairs of collinea
edges

e VXONG6-2: All six incident edges ae non-extreme, four of them lie on a plane, and can
be grouped in two coupes of collinea edges while the remaining two are linedly
independent.

e VXONT7: All seven incident edges ae non-extreme, six of them lie in a hyperplane,
while the seventh is perpendicular to the reg of them.

e VXONS: All of its eght incident edges ae non-extreme.

e VX2: Non walid vertex. Itstwo extreme alges ae olli nea.

e VX2N2: Two of itsfour incident edges ae extreme and colli nea, while eat o its other
two is non-extreme and perpendicular to the other three

e VX2N3: Two o itsfive incident edges ae extreme and colli nea, while eabt o its other
threeis nonextreme and perpendicular to the other four.

e VX2N3-2. Two o its fiveincident edges ae extreme and collinea, other two are
non-extreme and collinea, bah pairs lie in a plane, while the fift h is non-extreme and
perpendicular to the other four.

e VX2N4: Two dits sx incident edges ae etreme and collinea, aher two are
nonextreme and collinea, bah pairs lie in a plane, while eat o its other two is

non-extreme and perpendicular to the other five.
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VX2N5: Four of its seven incident edges are non-extreme and lie in a plane, while other
two are extreme and collinear and the remaining is non-extreme and perpendicular to the
other six.

VX2NG6: Six of its eight incident edges are non-extreme and lie in a hyperplane, while
other two are extreme and collinear.

VX4 All four incident edges are extreme and perpendicular.

V X4-2: All four incident edges are extreme and liein a plane.

VX4N1: Four of its five incident edges are perpendicular and also extreme ones, while
the fifth is non-extreme and collinear to one of the other four.

VX4N1-2: Four of itsfive incident edges are extreme and lie in a plane, while thefifthis
non-extreme and perpendicular to the rest of them.

VX4N2: Four of its six incident edges are extreme and lie in a plane, while each of its
other two is non-extreme and perpendicular to the other five.

V X4N2-2: Four of its six incident edges are perpendicular and also extreme ones, while
each of its remaining two edges is non-extreme and collinear to one of the first four.
VX4N3: Four of its seven incident edges are perpendicular and also extreme ones, while
each of its remaining three edges is non-extreme and collinear to one of thefirst four.
VX4N3-2: Four of its seven incident edges are extreme and lie in a plane, while other
two are non-extreme and collinear and the remaining edge is non-extreme and
perpendicular to the other six.

VX4N4: Four of its eight incident edges are perpendicular and also extreme ones, while

each of its remaining four edges is non-extreme and collinear to one of the first four.
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VX4N4-2: Four of its aght incident edges @e extreme and lie in a plane, while the
remaining four are non-extreme andliein aplane.

VXG6N1: Six of its seven incident edges ae extreme and lie in a hyperplane, while the
seventh is non-extreme and perpendicular to the red of them.

VX6N2: Six of its eght incident edges ae extreme and lie in a hyperplane, while the
remaining two are olli nea and nonrextreme ones

VX8: All eight incident edges ae extreme.

4.5.5 The Extreme and Non-Extreme (n-1), (n-2) and (n-3)-Dimensional Elements

Althoughthe previous properties presented in the setion 4.5.1, dfine brinks in the

3D-OPPs, [Aguilera, 98 aso defines the properties for brinks in the 1D-OPPs and

2D-OPPs asfoll ows:

In the 1D-OPP s the only elements which exist are vertices ad edges If a vertex has
only oreincident edge, then it is an Extreme Vertex. Then, edges ad lrinks aein this
case quivaent.

In the 2D-OPP sthere ae only two typesof vertices(sedion 4.3.): the vertex with two
incident Manifold edges(V2) and the vertex with four incident Manifold edges(V4N).
In a 2D-OPPs brink, verticesof type V2 are Extreme Verticesbecaise eah ore of
theseverticeshastwo incident Manifold and perpendicular edges whil e verticesof type
V4N are interior verticesbecaise eah oreisthe cmmon pant of two edgesin abrink,

therefore they canna be the brink’s ending wertices
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Basal in the previous analysis, [Aguilera, 98 presents the following propertiesfor

Extreme Verticesin the 2D-OPP s and 1D-OPPs:

e An Extreme Vertex in the 1D space has only one incident manifold edge. Any non
extreme vertex will be the ommon pant of two edges

e Eadh Extreme Vertex in the 2D space has e&adly two incident manifold and
perpendicular edges

e Any Z2D-OPPs Extreme Vertex when is locdly descibed by a sé of surroundng
redangles(see setton 4.2.), it is surrounced by a odd number of thoseredangles An
even number of surroundng redangles defines éther a non extreme vertex or a non

valid vertex.

From thesepropertiesit is foundthat vertices the (n-1)-dimensional elements of a
sgment (1D-OPP), are dther extreme and Omanifold (or just manifold, see the
[Hansen,93' s rulesin sedion 2.1.5 or non extreme and nonmanifold (becaise they are

the common pant of two segments with vertex adjacency).

In sedion 4.31 it was preseited that vertices the (n-2)-dimensional elements in a
2D-OPPs, can have two posshle dharaderizaions: manifold or nonmanifold. Due to the
previous properties it is known that a vertex is extreme when it hastwo incident manifold
and perpendicular edges otherwise it will be anon extreme vertex. By as®ciating the
manifold vertex’s definition (sedion 4.3.) with the extreme vertex’s definition, we have
that avertex in a2D-OPPis:

e Manifold and Extreme: when it hastwo incident and perpendicular edges

¢ Non-Manifold and Non-Extreme: when it hasfour incident edges



The extreme vertex and manifold vertex’s mncepts ae equivalent in the 1D-OPPss,
therefore, and de to its analogy with the (n-1)-dimensional elements (in ather words, the
cells I,.; desaibed in sedion 2.1.9, it is posshle to generalize sich equivalence to
propcse

A cdl I1n1 inanD-OPPis Manifold and Extreme when it hasjust one incident cdl IT,.

For example, we can exped the foll owing charaderizaions:
e 1D-OPPs: Manifold/Extreme Vertices
e 2D-OPPs. Manifold/Extreme Edges
e 3D-OPPs: Manifold/Extreme Faces
e 4D-OPPs: Manifold/Extreme Volumes

e 5D-OPPs. Manif old/Extreme Hypervolumes

In the 2D-OPPs, the extreme vertex and manifold vertex’s amncepts ae equivalent.
In the samne way the non-extreme vertex and normanifold vertex’s mncepts ae ejuivalent.
Due to their analogy with the (n-2)-dimensional elements, it is passble to generalize sich
equivalencesto propose
A cdl IT,, inanD-OPPcan be:
1. Manifold/Extreme when it hastwo incident and perpendicular cdlsITp.;.

2. Non-Manifold/Non-Extreme when it hasfour incident cdlsTT,.1.
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Therefore, we can exped the foll owing charaderizations:
e 2D-OPPs: Manifold/Extreme Vertices ad Non-Manif old/Non-Extreme Vertices
e 3D-OPPs. Manifold/Extreme Edges aad Norn-Manif old/Non-Extreme Edges
e 4D-OPPs: Manif old/Extreme Faces ad Non-Manif old/Non-Extreme Faces

e 5D-OPPs; Manif old/Extreme Volumes and Non-Manif old/Non-Extreme Volumes

In the Table 4.15 was preseited the aalogy between 3D-OPPs vertices ad
4D-OPP's alges the (n-3)-dimensional elements. Their charaderizations ae product of the
methoddogies descibed in sedions 4.4.2 and 4.4.4(Manifold or Non-Manifold vertex-
edge). As obsaved in the mentioned sedions, their classfi caions ae the sane, which led
to [Pérez & Aguilera, 03 to generalize the @ght possble IT,3's in the nD-OPP's (sedion
4.4.9. As gpredated in sedion 4.5.3(Table 4.19), the vertices &ad edges classfi caions
as &treme or non-extreme are mnsistent with the previously identifi ed analogies between

those éements, leading wsto four passble dharaderizations:

Manifold and Extreme Vertex (V3) in the 3D-OPPs or Edge (E3) in the 4D-OPPs.

e Manifold and Non-Extreme Vertex (V4, V6) in the 3D-OPPs or Edge (E4, E6) in the
4D-OPPs.

e Non-Manifold and Extreme Vertex (V4N1, V6N1) in the 3D-OPPs or Edge (E4N1,
E6N1) in the 4D-OPPs.

e Non-Manifold and Non-Extreme Vertex (V4N2, V5N, V6, V6N2) in the 3D-OPPs or

Edge (E4N2, E5N, E6, EBN2) in the 4D-OPPs.

16¢



Finally, for the aght I'T,.3's in the nD-OPPs, descibed by [Pérez & Aguilera, 0],
it is posgble to annex their corregpondng charaderization asExtreme or Non-Extreme (see
their charaderisticsin sedion 4.4.6:

e Manifold/Extreme dement I1,33.

e Manifold/Non-Extreme dement I1,.34.

e Non-Manifold/Extreme dement I1,34N1.

¢ Non-Manifold/Non-Extreme dement I1,34N2.

e Non-Manifold/Non-Extreme dement IT,.35N.

e Manifold/Non-Extreme or Non-Manif old/Non-Extreme dement I1;..36.
e Non-Manifold/Extreme dement I1,.36N1.

e Non-Manifold/Non-Extreme dement I1,.36N2.

17C



