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Chapter 3 
Techniques for Visualizing the Four-Dimensional Space 

 

 Recent interest has been growing in studying multidimensional polytopes (4D and 

beyond) for representing multidimensional phenomena in the Euclidean n-Dimensional 

space. Some of these phenomena’s features rely on the polytope’s geometric and 

topological relations (as we will see in the next chapters). However, [Banchoff , 96] 

motivates us to think about two important questions: Is it possible to visualize a polytope to 

know how it looks like? And if we can’t see it, how can we be sure about the proper 

understanding of its relations and properties? The answer is that the task of visualizing 

polytopes in the fourth and higher dimensional spaces belongs to the computer graphics 

field [Banchoff , 96]. Visualizing these new dimensions leads us to learn and to understand 

the events, relationships and properties for these phenomena. In this chapter we will deal 

with three, yet introduced in chapter 1, methods for visualizing 4D and beyond Polytopes: 

(section 3.1) through their projections, (section 3.2) through their unravelings; and (section 

3.3) through their slicings with three-dimensional space. Moreover, we will consider the 

visualization of two interesting events: a polytope’s rotation around a plane and the 4D 

hypercube and simplex’ unraveling processes. 

 

3.1 Polytopes’ Projection 

 

3.1.1 The 3D-2D Projection 

 

 We can define a 3D-2D projection as the transformation of 3D scenes onto 2D 

viewing planes (a computer screen for example). A projection imitates the process by 
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which the eye maps world scenes into images onto the retina. In general terms, a projection 

transform points in a nD space to points onto a lower dimensional space [Foley, 96].  

 

 The projection of 3D objects is defined by projection straight rays, which emanate 

from a center of projection to pass by each point of the object and to finally, intersect a 

plane and create the projection [Foley, 96] (Figure 3.1).  

 

 
FIGURE 3.1 

Projecting a cube onto a plane (taken from [Aguilera & Pérez, 02]). 
 

 When the center of projection is at the infinite then the projection rays are parallel 

between them. This projection is defined as 3D-2D parallel projection, which informally is 

just to remove the X3 coordinate from the object's points if the projection plane is X3 = 0 

(which is the most popularly used in the Computer Graphics field). Then we have the 

matrix representation: 
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 If the projection plane is X1 = 0 or X2 = 0 then it will be enough to remove (or 

replace with zero) the appropriate coordinate from the object’s points. Then the 

corresponding matrix representations are then: 
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 When the center of projection is on X3 axis at a distance pz from the origin, and the 

projection plane is X3 = 0, then we have a 3D-2D perspective projection with the matrix 

representation: 
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 When the center of projection is on X1 axis at a distance px from the origin, and the 

projection plane is X1 = 0, then the matrix representation for this 3D-2D Perspective 

Projection is: 
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And the case when the center of projection is on X2 axis at a distance py from the 

origin, and the projection plane is X2 = 0, has the matrix representation:  
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3.1.2 The 4D-3D Projection 

 

 [Banks, 92] establishes that the same techniques used to project 3D objects onto 2D 

planes can be applied to project 4D polytopes onto 3D hyperplanes (our 3D space for 

example). Then we have that a 4D-3D parallel projection, which informally is the X1, X2, 

X3 or X4 coordinate’s removal from the polytope's points. It has the matrix representation 

(for the typically removed X4 coordinate):  
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 And a 4D-3D perspective projection is defined when the center of projection is on 

X4 axis at a distance pw from the origin.  If the projection hyperplane is X4 = 0 then we 

have the matrix representation: 
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 Because a 4D-3D projection will produce a volume as the "shadow" of a 4D 

polytope, [Hollasch, 91] considers valid to process this volume with some of the 3D-2D 

projections (parallel or perspective) to be projected finally onto a computer screen. Then 

we have four possible 4D-3D-2D projections: 

4D-3D Perspective Projection - 3D-2D Perspective Projection 

4D-3D Perspective Projection - 3D-2D Parallel Projection 

4D-3D Parallel Projection - 3D-2D Perspective Projection 

4D-3D Parallel Projection - 3D-2D Parallel Projection 

 

 

 In chapter 1, it was introduced the 4D hypercube’s projection as a cube inside 

another cube, or in other words, its central projection (Figure 1.4). This visualization is 

commonly the result of applying the combination of 4D-3D perspective and 3D-2D 

perspective projections. 

 

By applying the parallel and perspective projections, it is possible to visualize some 

interesting aspects related to some events in the 4D space. One of these events is the 

rotation of a hypercube. In Figure 3.2 are presented some snapshots of the 4D hypercube’s 

rotation around the X1X4 plane. The hypercube has its center at the origin and the rotation’s 

angle is 180°. There were applied on the sequence the 4D-3D perspective and 3D-2D 

perspective projections. 
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40° 50° 60° 70°
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160° 170° 180°
 

FIGURE 3.2 
4D Hypercube’s rotation around the X1X4 plane (own elaboration). 
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3.1.3 The nD – (n-1)D Projection 

 

The projection’s matrices used in 3D and 4D spaces can be generalized for any 

number of dimensions such that a n-dimensional polytope is projected onto a (n-1)-

dimensional space, therefore, we have a nD – (n-1)D projection. For visualizing a nD 

polytope on a computer screen, for example, the projections must be repetitively applied, in 

other words, to consider the projections (n-1)D – (n-2)D, (n-2)D – (n-3)D. Finally, a three-

dimensional object will be obtained, which represents the successive projections of the nD 

polytope [Noll , 67]. 

 

 The Parallel Projection of a nD polytope onto a (n-1)D hyperplane, or in other 

words, the nD – (n-1)D Parallel Projection consists on just removing the n-th coordinate, 

whose corresponding axis is Xn, from the nD polytope’s points. Then, the projection will be 

defined by the following operations: 
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The projection’s matrix will have n+1 columns and n+1 rows because it is 

considered that the points have the homogeneous representation. All the elements in the 

matrix’s main diagonal will be 1’s except the position (n,n) that is zero (for eliminating the 

Xn-axis); the matrix’s remaining elements will be all zero. 

 

The Perspective Projection nD – (n-1)D is defined when the projection’s center is 

on the Xn-axis (which corresponds to the n-th coordinate) to a distance pn from the origin. 

If the projection’s (n-1)D hyperplane is Xn = 0, then we will have the matrix representation: 
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 All the elements in the projection matrix’s main diagonal will have pn as its value, 

except the element in the position (n,n) that will be zero. The element in the row n and 

column n+1 will be equal to –1. Resuming, the perspective projection takes place when 

multiplying the n-1 coordinates by 
nxpn

pn

	
, leaving to the n-th coordinate as zero.  
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 Now, consider the k-th coordinate such that k < n (because the previous 

generalizations are based in the fact that the projection hyperplane is Xn=0, the popularly 

used for this end, where the Xn-axis corresponds to the last coordinate) and let xk be its 

respective axis. In this way, the Parallel Projection nD - (n-1)D substitutes the k-th 

coordinate by zero and its matrix representation is: 
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 All the elements in the matrix’s main diagonal are 1’s except the position (k,k) 

which is zero (in this way, the k-th coordinate is replaced by zero). The matrix’s remaining 

elements will be all zero. 

 

 And the Perspective Projection nD – (n-1)D, when the projection center is on the Xk 

axis at a distance pk from the origin, is defined by the matrix representation: 

 



 84 

)1()1(
0000000

0000000

00

000000

1000000

000000

00000

00000

]1[
1

111


�

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

	
�





	

nn
pk

pk

pk

pk

pk

xxxxx
n

nkkk

������

�

�

�

���

��

������ ������� ��
��  

]0[
1

111 ����������� ������������ ��
��





	 	�����

n

knkk xpkpkxpkxpkxpkx  

�
�
�
�

�

�

�
�
�
�

�

�

	

�

	

�

	

�

	

�
�





	

����������� ������������ ��

��

1

111 10

n

k

n

k

k

k

k

k xpk

pkx

xpk

pkx

xpk

pkx

xpk

pkx
 

 

 In this case, all the elements in the projection matrix’s main diagonal will have pk as 

their value, except the element in the position (k,k) which will be zero. The element in the 

row k and column n+1 will be equal to –1. The matrix’s remaining elements will be all 

zero. Resuming, the perspective projection takes place when multiplying all the coordinates 

by 
kxpk

pk

	
 except the k-th which is replaced by zero. 

 

 Through the generalization of the parallel and perspective projections, it is possible 

to obtain, in a simple way, the required matrices for visualizing polytopes beyond the 4D 

space. For example, in Figure 3.3 is presented a 5D Hypercube’s projection, which has its 

center at the origin. Also, all the projections, applied to it, (5D-4D, 4D-3D and 3D-2D) 

were perspective projections. As can be seen, that projection results to be the 5D 
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hypercube’s central projection, which can be considered as a 4D hypercube inside another 

4D hypercube (the interior 4D hypercube was remarked to facilit ate the visualization). 

 

 
FIGURE 3.3 

The 5D Hypercube’s central projection (own elaboration). 
 

3.2 The 4D Polytopes’ Unravelings and Unfoldings 

 

3.2.1 Unraveling the 4D Hypercube 

 

3.2.1.1 The Hypercube’s Unravelings 

 

In section 1.3 were discussed the methods for visualizing 4D polytopes. One of 

them is the visualization through the unravelings. We remember that the six faces on the 

boundary of a cube can be unraveled as a 2D cross (Figure 3.4). The set of unraveled faces 

is called the unravelings of the cube.  
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FIGURE 3.4 

Unraveling the cube (taken from [Aguilera & Pérez, 02]). 
 

In analogous way, the eight cubes on the boundary of a hypercube can be unraveled 

as a 3D cross (the hypercube’s properties were discussed in chapter 2). This 3D cross was 

named tesseract by C. H. Hinton in the XIX century (Figure 3.5). 

 

 
FIGURE 3.5 

The unraveled hypercube: the tesseract 
(taken from [Aguilera & Pérez, 02]). 

 

We also discussed that a flatlander will visualize the 2D cross, but he will not be 

able to assembly it back as a cube (even if the specifi c instructions are provided). This fact 

is true because of the needed face-rotations in the third dimension around an axis which are 

physically impossible in the 2D space. However, it is possible for the flatlander to visualize 

the raveling process through the projection of the faces and their movements onto the 2D 

space where he lives. 

 



 87 

Analogously, we can visualize the tesseract but we won't be able to assembly it back 

as a hypercube. We know this because of the needed volume-rotations in the fourth 

dimension around a plane which are physically impossible in our 3D space. 

 

 [Kaku, 94] and [Banchoff , 96] describe with detail the representation model for the 

hypercube through their unravelings. They also mention the physical incapacity of a 3D 

being to ravel the hypercube back, because the required transformations are not possible in 

our 3D space (Figure 3.6).  

?

X 1

X 4

X 2

X 3

X 1

X 3

X 2

-X 3

-X 1

-X 2  
FIGURE 3.6 

The hypercube's unraveling result (taken from [Aguilera & Pérez, 02c]). 
 

[Kaku, 94] and [Banchoff , 96] also describe that if we witness the raveling process, 

seven of eight cubes that compose the tesseract will suddenly disappear, because they have 

moved in the direction of the fourth dimension. However, they don't provide a methodology 

that indicates the transformations and their parameters to execute the raveling process. In 

spite of our physical incapacity, we can visualize a projection onto our 3D space of the 

cubes on the hypercube's boundary through the unraveling and raveling processes. 
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3.2.1.2 The Cube's Unraveling Methodology 

 

 Although this process is absolutely trivial, it is included here to underline some key 

points that will be very useful when extending it to the 4D case in section 3.2.1.3. 

 

 The unraveling process for a cube can be resumed in the following steps: 

1.  Identify a face that is "naturally embedded" into the plane where all the cube's faces will 

be positioned. This face will be called "central face". Because the central face is 

"naturally embedded" in the selected final plane (for example, the X1X2 plane), it will  

not require any transformation. 

 

2.  Identify those faces that share an edge with the central face. There are four of such faces 

and they will be called "adjacent faces". 

 

3.  After the identifi cation of the central and adjacent faces there will be a last face whose 

supporting plane is parallel to central face's supporting plane. This face will be called 

"satellit e face" because its movements will be around an edge that is shared with any 

arbitrary selected adjacent face (and the selected adjacent face will r otate around an edge 

that is shared with the central face). 

 

4.  The adjacent faces will r otate around those edges that share with the central face.  
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5.  When the central, adjacent and satellit e faces are identifi ed, it must be determined the 

rotating angles and their directions. All f our adjacent faces will r otate right angles, 

however two opposite adjacent faces will have opposite rotating directions; otherwise, 

one of them will end in the same position as the central face. 

 

Table 3.1 presents some snapshots from the cube's unraveling sequence. In 

snapshots 1 to 7 (except 5), the applied rotations are 0°, �15°, �30°, �45°, �60° and �75° 

(the rotation’s sign depends of the adjacent face). In snapshot 5, the applied rotation is 

�53°; the satellit e face looks like a straight line -an effect due to the selected 3D-2D 

projection. In snapshot 8, the applied rotation is �90°; the adjacent faces have finished their 

movements. In snapshots 9 to 14, the satellit e face moves independently and the applied 

rotations are +15°, +30°, +45°, +60°, +75° and +90°. 
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TABLE 3.1 
Unraveling the cube (taken from [Aguilera & Pérez, 02c]) 

(the red face is the satellit e face and the blue one is the central face). 
1 

 

2 

 

3 

 
4 

 

5 

 

6 

 
7 

 

8 

 

9 

 
10 

 

11 

 

12 

 
13 

 

14 
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3.2.1.3 Hypercube's Unraveling Methodology 

 

The process will be easier if we take the following considerations: 

 

� Select the hypercube's position in the 4D space. 

� Select the hyperplane (a 3D subspace embedded in the hyperspace) where the volumes 

will be directed to. 

� Establish the angles which guarantee that all volumes will be totally embedded in the 

selected hyperplane. 

� All the volumes through their movement into the selected hyperplane must maintain a 

face adjacent to another volume. 

 

The hypercube's position in the 4D space is essential, because it will define the 

rotating planes used by the volumes to be positioned onto a hyperplane. For simplicity, one 

vertex of the hypercube will coincide with the origin, six of its faces will coincide each one 

with some of the X1X2, X1X4, X2X3, X2X4, X3X1 and X3X4 planes and all the coordinates 

will be positive. The coordinates to use are presented in Table 3.2. 
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TABLE 3.2 
The hypercube’s coordinates (Reproduction of Table 2.3). 

X1 X2 X3 X4 
Binary 

Representation 
Vertices' decimal 

representation 
0 0 0 0 0000 0 
1 0 0 0 0001 1 
0 1 0 0 0010 2 
1 1 0 0 0011 3 
0 0 1 0 0100 4 
1 0 1 0 0101 5 
0 1 1 0 0110 6 
1 1 1 0 0111 7 
0 0 0 1 1000 8 
1 0 0 1 1001 9 
0 1 0 1 1010 10 
1 1 0 1 1011 11 
0 0 1 1 1100 12 
1 0 1 1 1101 13 
0 1 1 1 1110 14 
1 1 1 1 1111 15 

 

We know now why the hypercube's position in the 4D space is important, since it 

will define the rotating planes to use. The situation is the same for the selected hyperplane, 

because it is where all the volumes will be finally positioned. Observing the hypercube's 

coordinates we can see that eight of them present their fourth coordinate value (X4) equal to 

zero. This fact represents that one of the hypercube's volumes (formed by vertexes 0-1-2-3-

4-5-6-7) has X4=0 as its supporting hyperplane. Selecting the hyperplane X4=0 is useful 

because one of the volumes is "naturally embedded" in the 3D space and it won't require 

any transformations. 

 

Now, it is also useful to identify the hypercube's volumes through their vertices and 

to label them for future references. Until now we have one identifi ed volume, it is formed 

by vertexes 0-1-2-3-4-5-6-7, and it will be called volume A.  See Table 3.3. 
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TABLE 3.3 
The hypercube's volumes (taken from [Aguilera & Pérez, 01]) 

(the numbers indicate the vertices that compose them). 

X 1

X 2 X 3
X 4

 
Volume A 

(0-1-2-3-4-5-6-7) 

X 1

X 2 X 3

X 4

 
Volume B 

(0-1-2-3-8-9-10-11) 

X 1

X 2 X 3

X 4

 
Volume C 

(0-2-4-6-8-10-12-14) 

X 1

X 2
X 3

X 4

 
Volume D 

(0-1-4-5-8-9-12-13) 

X 1

X 2 X 3

X 4

 
Volume E 

(8-9-10-11-12-13-14-15) 

X 1

X 2 X 3

X 4

 
Volume F 

(4-5-6-7-12-13-14-15) 

X 1

X 2 X 3

X 4

 
Volume G 

(1-3-5-7-9-11-13-15) 

X 1

X 2 X 3

X 4

 
Volume H 

(2-3-6-7-10-11-14-15) 

 

We have already described volume A as "naturally embedded" in the 3D space, 

because it won't require any transformations. Volume A will occupy the central position in 

the 3D cross and it will be called the "central volume". 

 

From the remaining volumes, six of them will have face adjacency with the central 

volume.  Due to this characteristic they can easily be rotated toward our space because their 

rotating plane is clearly identifi ed.  Each of these volumes will r otate around the supporting 

plane of its shared face with central volume.  They will be called "adjacent volumes".  

Adjacent volumes are B, C, D, F, G and H.  The remaining volume E will be called 

"satellit e volume" and it will be discussed later on. 
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TABLE 3.4 
Applied transformations to the adjacent volumes 

(taken from [Aguilera & Pérez, 01]). 
Adjacent volume 

(previous to 
rotation), rotation 
plane and angle 

Position in the 3D 
space and in the 
tesseract after 

rotation 

Adjacent volume 
(previous to 

rotation), rotation 
plane and angle 

Position in the 3D 
space and in the 
tesseract after 

rotation 
X 2 X 3

X 1

X 4

 
B, X1X2, +90° 

X 1

X 3X 2

 
Front (-X3) 

X 2 X 3

X 1

X 4

 
C, X2X3, -90° 

X 1

X 2 X 3

 
Left (-X1) 

X 1

X 2

X 4

X 3

 
D, X3X1, +90° 

X 1

X 2 X 3

 
Down (-X2) 

X 1

X 2 X 3

X 4

 
F, X1X2, -90° 

X 1

X 2 X 3

 
Back (+X3) 

X 1

X 2
X 3

X 4

 
G, X2X3, -90° 

X 2 X 3

X 1  
Right (+X1) 

X 1

X 2 X 3

X 4

 
H, X3X1, -90° 

X 2 X 3

X 1  
Up (+X2) 

 

All of the adjacent volumes will r otate right angles. In this way we guarantee that 

their X4 coordinate will be equal to zero. As in the 3D case, it is also important to consider 

their rotating directions, because the volumes, after the rotations, could otherwise coincide 

with the central volume. The direction and rotating planes for each adjacent volume are 

presented in Table 3.4 (the central volume is also included in each image as a reference for 

the initial and final position of the volume being analyzed).  

 

At this point, we have seven of the eight hypercube's volumes placed in their fi nal 

positions (volumes A, B, C, D, F, G and H). Volume E will perform a rather more complex 

set of transformations.  There are two reasons that justify this conclusion: 
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� The supporting hyperplane for volume E is parallel to the supporting hyperplane for the 

central volume. Consequently, there are no adjacencies between volume E and central 

volume (this is the reason for not calli ng "adjacent volume" to volume E). 

� In the tesseract, we still have an empty position.  This position corresponds to the most 

distant volume from the central volume (the inferior position, Figure 3.5). This position 

will be occupied by volume E. This is the reason for calli ng E the "satellit e volume". 

 

At the beginning of this section its is mentioned the need for maintaining a face 

adjacency between all the volumes while they rotate towards the selected hyperplane. 

Volumes B, C, D, F, G and H share a face with central volume (remember that central 

volume is static during the whole unraveling process). In order to determine the needed 

transformations for the satellit e volume, we must first select the volume which will share a 

face with it.  Any volume, except the central one, can be selected for this.  In this work, 

volume D will be selected to share a face with satellit e volume through the hyper-flattening 

process. 

 

The direction and the rotation plane for volume D was determined before (X3X1 

plane +90°).  These transformations will t ake it to its final position.  During the beginning 

of the unraveling process, the same transformations will be applied to satellit e volume.  In 

this way, we ensure that volumes E and satellit e will share a face at all times. 

 

When volume D has finished its movement, it will be placed in its final position in 

the tesseract. At this moment, the satellit e volume's supporting hyperplane will be 
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perpendicular to the selected hyperplane and the shared face will be parallel to X3X1 plane.  

The last movement to apply to the satellit e volume will be a +90° rotation around the 

supporting plane of the shared face with volume D. 

 

The set of movements to be executed for the satellit e volume are resumed in the 

Table 3.5 (Central volume and volume D are shown too). 

 

Now, all the transformations to unravel the hypercube have been determined.  To 

ravel it back, the same process must be applied in an inverse way (the angles’ signs must be 

changed). This methodology was originally presented in [Aguilera & Pérez, 01]. 

 

TABLE 3.5 
Associated transformations to satellit e volume 

(taken from [Aguilera & Pérez, 01]). 
Current position Transformations 

X 1

X 2 X 3

X 4

 

Rotation of volumes D and 
satellit e around the plane 
X3X1 (+90°). 

X 1

X 2 X 3X 4

 

Volume D is in its final 
position. Rotation of sate-
llit e volume of +90° around 
the shared face with volume 
D (parallel plane to X3X1). 

X 1

X 2 X 3

-X 2

-X 4

 

Satellit e volume in its final 
position (inferior position in 
the 3D cross on –X2 axis). 
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3.2.1.4 Visualizing the Hypercube's Unraveling Process 

 

Table 3.6 presents some snapshots from the hypercube's unraveling sequence. In 

snapshots 1 to 6, the applied rotations are �0°, �15°, �30°, �45°, �60° and �75° (the 

rotation’s sign depends of the adjacent volume). In snapshot 7, the applied rotation is �82°; 

the satellit e volume looks like a plane -an effect due to the selected 4D-3D projection. In 

snapshot 8, the applied rotation is �90°; the adjacent volumes finish their movements. In 

snapshots 9 to 14, the satellit e volume moves independently and the applied rotations are 

+15°, +30°, +45°, +60°, +75° and +90°. 
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TABLE 3.6 
Unraveling the hypercube (taken from [Aguilera & Pérez, 02]) 
(satellit e volume is shown in blue and central volume in red). 
1 

 

2 

 

3 

 
4 

 

5 

 

6 

 
7 

 

8 

 

9 

 
10 

 

11 

 

12 

 
13 

 

14 
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3.2.1.5 The n-Dimensional Hyper-Tesseract 

 

 The properties of the unravelings for the parallelotopes in 2D, 3D and 4D space can 

be resumed in the following way (see Table 3.7): 

 

� Square: A central segment surrounded by other two through a vertex adjacency with 

each one; a satellite segment adjacent to any other of the segments except the central. 

Completely immersed in a 1D space (a straight line). 

 

� Cube: A central face surrounded by other four through an edge adjacency with each one; 

a satellite face adjacent to any other of the faces except the central. Completely 

immersed in a 2D space (a plane). 

 

� Hypercube: A central volume surrounded by other six through a face adjacency with 

each one; a satellite volume adjacent to any other of the volumes except the central. 

Completely immersed in a 3D space (a hyperplane). 
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TABLE 3.7 
Analogies between the unravelings of the square, the cube and the hypercube 

(the central cell i s shown in red and the satellit e cell i s shown in blue; own elaboration). 
 2D Space 

Square 
3D Space 

Cube 
4D Space 

Hypercube 

Parallelotope  
 

 
 

Unraveling 
process 

 
 

 
 

Unravellings 

 
 

 

 

 

 

Observing the unravelings for the square (C2), the cube (C3) and the 4D hypercube 

(C4) and the fact a nD parallelotopes-family share analogous properties, [Aguilera & 

Pérez,02] generalize the n-dimensional hyper-tesseract (n�1) as the result of the (n+1)-

dimensional parallelotope’s unraveling with the following properties: 

�The (n+1)-dimensional hypercube will have 2(n+1) n-dimensional cells on its boundary. 

�A central cell will be static during the unraveling/raveling process. 
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�2(n+1)-2 cells are adjacent to central cell . All of them will share a (n-1)-dimensional cell 

with central cell . 

�A satellit e cell won’t be adjacent to central cell because their supporting hyperplanes are 

parallel.  It will be adjacent to any of the adjacent cells (it will share a (n-1)-dimensional 

cell with the selected adjacent cell) . 

�All the adjacent cells and satellit e cell during the unraveling/raveling process will rotate 

�90° around the supporting hyperplane of the (n-1)-dimensional shared cells. 

 
 Then, for n = 4 we have the 4D hyper-tesseract as the result of the 5D hypercube’s 

unraveling. The 4D hyper-tesseract will be composed by 10 hypervolumes, where one of 

them will be the central hypervolume (static), eight of them are adjacent to central 

hypervolume (they share a volume) and the last one will be the satellit e hypervolume (it 

shares a volume with any of the adjacent hypervolumes). See Figure 3.7. The adjacent 

hypervolumes and the satellit e hypervolume will r otate around a volume or a hyperplane 

during the unraveling/raveling process. 

 
FIGURE 3.7 

The adjacency relations between the 4D hyper-tesseract's hypervolume’s 
(taken from [Aguilera & Pérez, 02]). 
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3.2.2 Unraveling the 4D Simplex 

 

3.2.2.1 Introduction 

 

 In the previous sections was presented the methodology used by [Aguilera & 

Pérez,01] for unraveling the 4D hypercube. Such method is based in the cube’s unraveling 

process for obtaining the analogous one. The idea is reconsidered again for determining the 

unraveling process for other polytopes, as the 4D Simplex (which was analyzed in chapter 

2), Figure 3.8. That means that the tetrahedron’s unraveling process will be first analyzed, 

and through it, a process for unraveling the 4D simplex will be proposed. As the 

hypercube's unraveling process, we will visualize a projection onto our 3D space of the 

volumes (tetrahedrons) on the 4D simplex's boundary through its unraveling and raveling 

processes. 

 

 
FIGURE 3.8 

The 4D simplex (taken from [Aguilera & Pérez, 02c]). 
 

3.2.2.2 The 3D Simplex (Tetrahedron) Unraveling Methodology 

 

 Although the tetrahedron's unraveling process is trivial, we will consider here some 

key points that will be extended later in the 4D simplex unraveling: 
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1 Identify a face that is "naturally embedded" into the plane where all the tetrahedron's 

faces will be positioned. This face will be called "central face". Because the central face 

is "naturally embedded" in the selected plane, it will not require any transformation. 

2 Each of the remaining faces shares an edge with the central face. These faces will be 

called "adjacent faces". 

3 The adjacent faces will r otate around those edges that share with the central face.  

4 When the central and adjacent faces are identifi ed, it must be determined the rotating 

angles and their directions. The rotating angle is the supplement of the tetrahedron's 

dihedral angle. Finally, the tetrahedron’s unravelings will compose a stellated triangle. 

 

TABLE 3.8 
Unraveling the 3D simplex (taken from [Aguilera & Pérez, 02c]). 

1  2  3  

4  5  6  

7  

 

8   
 

Table 3.8 presents some snapshots from the 3D simplex's unraveling sequence. In 

snapshots 1 to 4, the applied rotations are �0, �10.94°, �27.35° and �43.76° (the rotation's 
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sign depends of the adjacent face). In snapshots 5 and 6, the applied rotations are �54.7° 

and �65.64°; in each snapshot one adjacent face looks like a straight line -an effect due to 

the selected 3D-2D projection. In snapshots 7 to 8, the applied rotations are �76.58 and 

�109.4. 

 

3.2.2.3 The 4D Simplex's Unraveling Methodology 

 

 Because the 4D simplex boundary is composed by five tetrahedrons [Coxeter, 63], 

we can expect, by analogy, that the unravelings of the 4D simplex will be a tetrahedron 

surrounded by four other tetrahedrons and sharing a face with each one (the unravelings of 

the tetrahedron are a triangle surrounded by other three triangles and sharing an edge with 

each one). Aguilera and Pérez refer to the unravelings of the 4D simplex as a stellated 

tetrahedron (as the unravelings of the hypercube are referred as the tesseract) [Aguilera & 

Pérez, 02c]. 

 

 We will consider and adapt the same recommendations proposed by [Aguilera & 

Pérez, 01] to unraveling the simplex: 

� Select the simplex's position in the 4D space. 

� Select the hyperplane (a 3D subspace embedded in the hyperspace) where the volumes 

will be directed to. 

� Establish the angles which guarantee that all volumes will be totally embedded in the 

selected hyperplane. 

� All the volumes through their movement into the selected hyperplane must maintain a 

face adjacent to another volume. 
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  We consider that the simplex will have a position with the following characteristics: 

� One vertex of the simplex will be the origin. 

� An edge will coincide with X1 axis. 

� A face will coincide with X1X2 plane. 

� All the coordinates will be positive. 

  The coordinates to use are presented in Table 3.9. 

 

TABLE 3.9 
The 4D simplex coordinates (taken from [Aguilera & Pérez, 02c]). 

Vertex X1 X2 X3 X4 
0 0 0 0 0 
1 1 0 0 0 

2 1
2  3

2  0 0 

3 1
2  3

6  2
3

 0 

4 1
2  3

6  2
4 3

 5
8

 

 

Observing the 4D simplex's coordinates we can see that four of them present their 

fourth coordinate value (X4) equal to zero. This fact represents that one of the simplex's 

volumes (formed by vertexes 0-1-2-3) has X4=0 as its supporting hyperplane. Selecting the 

hyperplane X4=0 is useful because one of the volumes is "naturally embedded" in the 3D 

space and it won't require any transformations. 

 

Now, it is also useful to identify the simplex's volumes through their vertices and to 

label them for future references. Until now we have one identifi ed volume, it is formed by 

vertexes 0-1-2-3, and it will be called volume A. See Table 3.10. 
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TABLE 3.10 
The 4D simplex's boundary volumes (taken from [Aguilera & Pérez, 02c]). 

Volume's label and 
vertices 

Volume's positi on in the 
4D simplex Volume 

Volume A 
0-1-2-3 

1
2

0

3

4

 
 

Volume B 
0-1-2-4 

1
2

0

3

4

 

 

Volume C 
0-1-3-4 

1
2

0

3

4

 
 

Volume D 
0-2-3-4 

1
2

0

3

4

 
 

Volume E 
1-2-3-4 

1
2

0

3

4
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We have already described volume A as "naturally embedded" in the 3D space, 

because it won't require any transformations. Volume A will occupy the central position in 

the stellated tetrahedron and it will be called the "central volume". 

 

All of the remaining volumes will have face adjacency with the central volume. Due 

to this characteristic they can "easily" be rotated toward our space because their rotating 

plane is clearly identifi ed. Each of these volumes will r otate around the supporting plane of 

its shared face with central volume. They will be called "adjacent volumes".  

 

Although the rotating planes are clearly identifi ed, the main diff erence between the 

hypercube and simplex's unraveling is that the rotating planes don't correspond to 4D space 

main planes (X1X2, X2X3, X3X1, X1X4, X2X4 and X3X4) in the simplex's unraveling. Due to 

this situation, the volume's rotations will be a composition of rotations around the 4D space 

main planes. The objective taken for us was to position a volume's face in the X1X2 plane, 

and then rotate it 104° 29'. This angle corresponds to the supplement of the simplex's 

dihedral angle that is 75° 31' [Coxeter, 63]. In this way we guarantee that their X4 

coordinate will be equal to zero. The direction and rotating planes for each adjacent volume 

are presented in Table 3.11 (the central volume is also included in each image as a 

reference for the initial and final position of the volume being analyzed). 
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TABLE 3.11 
Applied transformations to the adjacent volumes. Rotation around X1X2 plane 

is the same for all volumes (taken from [Aguilera & Pérez, 02c]). 

Adjacent volume 
previous to rotation Transformations 

Positi on in the stellated 
tetrahedron after the 

transformations 

 

Volume B 
X1X2 104° 29’  

 

 

Volume C 
X1X4 109° 30’  
X1X2 104° 29’  
X1X4 -109° 30’  

 

 

Volume D 
X3X4 -60° 

X1X4 70° 30’  
X1X2 -104° 29’  
X1X4 -70° 30’  

X3X4 60°  

 

Volume E 
T(-1,0,0,0) 
X3X4 60° 

X1X4 70° 30’  
X1X2 -104° 29’  
X1X4 -70° 30’  

X3X4 -60° 
T(1,0,0,0) 

 

 

 

Now, all the transformations to unravel the simplex have been determined. To ravel 

it back, the same process must be applied in an inverse way but only the angles' signs for 

rotations around X1X2 plane must be changed, because the remaining rotations only 

position the volumes with a face on X1X2 plane. 
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TABLE 3.12 
Unraveling the 4D simplex1. 

t = 0.00 

 

t = 0.25 

 

t = 0.50 

 

t = 0.75 

 
t = 1.00 

 

t = 1.25 

 

t = 1.50 

 

t = 1.75 

 
t = 2.00 

 

t = 2.25 

 

t = 2.50 

 

t = 2.75 

 
t = 3.00 

 

t = 3.25 

 

t = 3.50 

 

t = 3.75 

 
t = 4.00 

 

t = 4.25 

 

t = 4.50 

 

t = 4.75 

 
t = 5.00 

 
                                                           
1 This sequence of images was originally rendered and kindly provided by this thesis’ advisor. The original 
wireframe model based sequence can be consulted in [Aguilera & Pérez, 02c] (see the appendix E). 
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3.2.2.4 Visualizing The 4D Simplex's Unraveling Process 

 

Table 3.12 presents some snapshots from the 4D simplex's unraveling sequence. 

From t = 0.00 until t = 0.75, the adjacent volumes (in red) are projected inside the central 

tetrahedron (in yellow). When t = 1.00, adjacent volumes are projected on the central 

tetrahedron’s faces (they look like planes) -an effect due to the selected 4D-3D projection. 

From t = 1.25 until t = 5.00, the adjacent volumes are projected outside the central 

tetrahedron. When t = 3.00 an interesting phenomenon arises, the projected volumes form 

an hexadron (a cube) –again, an effect due to the selected projection. When t = 5.00 the 

stellated tetrahedron is finally composed. 

 

3.2.2.5 The Stellated n-Dimensional Simplex 

  

Analyzing the unravelings for the triangle (a 2D simplex), the tetrahedron (a 3D 

simplex) and the 4D simplex and the fact a nD simplexes-family share analogous properties 

[Coxeter, 63], [Aguilera & Pérez, 02c] generalize the stellated n-dimensional simplex 

(n�1) as the result of the (n+1)-dimensional simplex's unraveling with the following 

properties: 

 

�The (n+1)-dimensional simplex will have (n+2) n-dimensional cells on its boundary. 

�A central cell will be static during the unraveling/raveling process. 

� (n+1) cells are adjacent to central cell . All of them will share a (n-1)-dimensional cell 

with central cell . 
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� All the adjacent cells during the unraveling/raveling process will rotate the supplement of 

the simplex's dihedral angle around the supporting hyperplane of the (n-1)-dimensional 

shared cells. 

 

For example, the unraveling process for the 5D simplex will generate a stellated 4D 

simplex (Table 3.13.a) which will be composed by six 4D simplexes, one of them will be 

the central 4D simplex (with continuous lines in the figure) and the remaining 5, the 

adjacent cells, will share a tetrahedron with it (Table 3.13.b. Due to the selected projection, 

is that the 4D simplexes look as distorted). 

 

TABLE 3.13 
The unravelings for the 5D simplex (see text for details). 

a) The stellated 4D simplex. 
b) The adjacencies between the central 4D 

simplex and the five adjacent simplexes. 

X 1

X 4

X 2

X
3

-X 1

-X 2

-X 4
-X 3

 

X 1

X 4

X 2

X
3

-X 1

-X 2

-X 4
-X 3

 
 
3.3 Polytope’s Intersection with Three-Dimensional Space 

 

As introduced in chapter 1, the intersections were the method used by Abbott in 

Flatland to describe the interactions between two and three-dimensional spaces 
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[Banchoff ,96]. Furthermore, the conic sections were presented as a daily example about the 

use of the intersections between an object, in that case a cone, with a plane. Section 3.3.1 

will tr eat the aspects related to the 4D hypercube’s intersections with our 3D space. In 

section 3.3.2, the [Rucker, 77]’ s method for visualizing the 4D hypersphere will be 

discussed. 

 

3.3.1 The Intersections Between a 4D Hypercube and the 3D Space 

 

[Banchoff , 96] identifi es three of the most important ways to intersect a cube with a 

2D space: (1) when one if it s faces is parallel to Flatland, (2) when one of its edges is 

parallel to Flatland, and (3) when the cube’s main diagonal coincides with the Flatland’ s 

normal vector. 

 

In the first case (Figure 3.9.a), and while the intersection takes place, a Flatlander 

will only appreciate a square whose size or shape don’t change (Figure 3.9.b). 

 

t=1

t=2

t=3

t=4

t=5

 

t=1 t=2 t=3

t=4 t=5  
a) b) 

FIGURE 3.9 
Intersections between a cube and Flatland when one of its faces is parallel to the 2D space. 

a) Three-Dimensional Space’s View. b) Flatland’ s View (own elaboration). 
 

The second case, when an edge is parallel to Flatland (Figure 3.10.a), provides a 

more interesting visualization. Because at the beginning, the Flatlander will visualize in 

first place a segment (the edge that is parallel to his 2D space, Figure 3.10.b, t=1) which 
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will become a rectangle whose two of its parallel edges, through all the process, will have 

the first visualized segment’s length, while the remaining two will be minor and 

perpendicular to it (Figure 3.10.b, t=2). However, in the middle of the process, these two 

edges will be greater than the two edges whose length is constant (Figure 3.10.b, t=3). 

Starting from this moment, the process is inverted taking place the reduction of the 

visualized rectangle (Figure 3.10.b, t=4), until fi nally, again is visualized an edge (Figure 

3.10.b, t=5). 

 

t=1

t=2

t=3

t=4

t=5

 

t=1

t=5

t=3t=2

t=4  

a) b) 
FIGURE 3.10 

Intersections between a cube and Flatland when one of its edges is parallel to the 2D space.  
a) Three-Dimensional Space’s View. b) Flatland’s View (own elaboration). 

 

The third case, when the cube’s main diagonal coincides with the 2D space’s 

normal vector (Figure 3.11), results to be one of the most interesting. In first place a point 

is visualized: one of the cube’s vertices that compose its main diagonal’ s boundary (Figure 

3.12, t=0.00). In the following instants, for t=0.01 until t=1.00, a triangle will be visualized, 

whose size will i ncrease, and its vertices belong to the three edges that are incident to the 

vertex visualized when t=0.00. When t=1.10 and until t=1.40 (Figure 3.12), the intersection 

between the cube and Flatland will generate an irregular hexagon whose vertices belong 

exclusively to those six edges that are not incident to the main diagonal’ s vertices. When 

t=1.50, a regular hexagon will be visualized, whose six vertices are the middle points of 
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those six edges not incident to the main diagonal’s vertices. From t=1.60 until t=1.90 an 

irregular hexagon will be visualized again. Finally, in t=2.00 until t=2.80 (Figure 3.12) a 

triangle will be visualized and its vertices belong to the three edges that are incident to the 

second vertex that defines the cube’s main diagonal, which will be visualized when t=2.90 

(Figure 3.12). 

t=0.00

t=1.00

t=1.50

t=2.00

t=2.90

 
FIGURE 3.11 

Intersections between a cube and Flatland when its main diagonal coincides with the 2D 
space’s normal vector (3D Space’s View. Own elaboration). 

 

t=0.00 t=0.10 t=0.20 t=0.30 t=0.40 t=0.50

t=1.10t=1.00t=0.90t=0.80t=0.70t=0.60

t=1.20 t=1.30 t=1.40 t=1.50 t=1.60 t=1.70

t=2.30t=2.20t=2.10t=2.00t=1.90t=1.80

t=2.40 t=2.50 t=2.60 t=2.70 t=2.80 t=2.90
 

FIGURE 3.12 
Visualizing in Flatland its intersections with a cube whose main diagonal coincides with 2D 

space’s normal vector (taken from [Aichholzer, 97]). 
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[Banchoff , 96] points out the existence of four important ways to intersect a 4D 

hypercube through the first cell that makes first contact with our space: (1) when a volume 

(cube), a face (2), an edge (3) or a vertex (4) starts the contact with three-dimensional 

space. 

 

In the first case, when a volume starts the contact with 3D space, it is only 

visualized, in all the instants where the intersection takes place, a cube (Figure 3.13) 

[Banchoff , 96]. This situation is analogous to the intersections between a cube and Flatland 

when one of its faces is parallel to 2D space (Figure 3.9.b). 

 

t=1 t=5t=4t=3t=2  
FIGURE 3.13 

Visualizing the intersections between a 4D hypercube with 3D space: the first element that 
makes contact with 3D space is a volume (own elaboration based in an ill ustration 

presented in [Banchoff , 96]). 
 

In the second case, in first place a face will be visualized which starts the contact 

with the 3D space (Figure 3.14, t=1). The face expands in a series of rectangular prisms 

whose bases are all equal to the first visualized face (t=2). The height of those prisms 

increases until it has the same length of the main diagonal of a hypercube’s face 

[Banchoff ,96] (t=3). Later on, the prisms’ height starts to decrease (t=4) until it i s zero 

(t=5). 
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t=1 t=5t=4t=3t=2  
FIGURE 3.14 

Visualizing the intersections between a 4D hypercube with 3D space: the first element that 
makes contact with 3D space is a face (own elaboration based in an ill ustration presented in 

[Banchoff , 96]). 
 

When an edge starts the contact with 3D space (Figure 3.15) it will be visualized an 

edge (t=1) that expands until compose a triangular prism (t=2,3) whose height is equal to 

the main edge’s length [Banchoff , 96]. The triangular prism then becomes a prism with 

hexagonal base (t=4). The process is then inverted, the prism becomes a triangular one 

(t=5,6) and finally to be a segment (t=7). 

 

t=1 t=5t=4t=3t=2 t=7t=6  
FIGURE 3.15 

Visualizing the intersections between a 4D hypercube with 3D space: the first element that 
makes contact with 3D space is an edge (own elaboration based in an ill ustration presented 

in [Banchoff , 96]). 
 

The fourth sequence of intersections is obtained by moving the 4D hypercube along 

the normal vector of the 3D space (a hyperplane) [Aichholzer, 97], in such way that the 4D 

hypercube’s main diagonal coincides with the normal vector. In this way, the first element 

which makes contact with our space will be a vertex (Figure 3.16, t=0.00). This vertex will 

expand to compose a tetrahedron (t=0.20 until t=1.00). Later on, the tetrahedron will start 

to experiment a truncation’s process in their corners, which induces the visualization of a 

polyhedron with eight faces, where four of them are triangular and the remaining are 

hexagonal [Banchoff , 96] (t=1.20 until t=1.80). Finally, the four hexagonal faces become 
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triangular (t=2.00) taking place a regular octahedron’s visualization ([Aichholzer, 97] &  

[Banchoff , 96]). The process’ second half i s the reversal respect the first half . The four 

triangular faces become again hexagonal (t=2.20 until t=2.80), it is visualized a 

tetrahedrons’ sequence whose size decreases (t=3.00 until t=3.80); and finally, the second 

vertex that compose the hypercube’s main diagonal is the last one to be visualized. 

t=0.00 t=0.20 t=0.40 t=0.60 t=0.80

t=1.80t=1.60t=1.40t=1.20t=1.00

t=2.00 t=2.20 t=2.40 t=2.60 t=2.80

t=3.00 t=3.20 t=3.40 t=3.60 t=3.80
 

FIGURE 3.16 
Visualizing the intersections between a 4D hypercube with 3D space: the first element that 

makes contact with 3D space is a vertex (taken from [Aichholzer, 97]). 
 

3.3.2 Visualizing the 4D Hypersphere 

 

 In section 1.3 it was described an example of the intersection between a sphere and 

a plane (the A.Sphere & Flatland’s relation). Basically, the sphere is visualized by 

A.Square as a point which, through the time, becomes a circumference whose diameter 
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increases. Later on, the circumference starts to decrease its size to become, again, a point 

(Figure 3.17).  

 

t=1 t=2 t=3 t=4 t=5  
FIGURE 3.17 

Visualizing the sphere’s intersections with Flatland 
(own elaboration). 

 

As ill ustrated in section 1.3, the situation is analogous to the intersection between a 

4D hypersphere and our three-dimensional space. In the first instant, a point would appear, 

which through the time, will be visualized as a sphere that increases its size. Later on, the 

sphere starts to decrease to finally become, again, a point (Figure 3.18). 

 

t=3t=1 t=2 t=4 t=5  
FIGURE 3.18 

Visualizing the intersections between a 4D hypersphere and the 3D space 
(own elaboration). 

 

[Rucker, 77] points out that a sphere’s surface can be considered as a set with an 

infinite number of circumferences. The method presented in Figure 3.17 only shows one of 

these circumferences in turn, in fact, when t = 3, the circumference with the greatest 

diameter is shown. In analogous way, due to the 4D hypersphere’s hypersuface will be 

composed by an infinite number of spheres, its intersection with our 3D space will show 
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only one sphere at the time. However, [Banchoff , 96] points out that visualizing the sphere 

and 4D hypersphere by these ways don’t provide more information about their boundary. It 

does not matter if they are rotated, because the visualized sequence is the same: just one 

circle/sphere increasing and decreasing its size. 

 

[Rucker, 77] presents a method by means of which it is possible to visualize a 

greater number of spheres that compose the 4D hypersphere’s hypersurface. In first place, 

we will describe such method for visualizing a sphere in Flatland. It was before mentioned 

that the sphere’s surface can be considered as composed by an infinite number of 

circumferences, because of that, we will consider the sphere’s intersection with Flatland so 

that the circumference with the greatest diameter must be embedded in the 2D plane 

(Figure 3.19.a). From the set of circumferences only will be considered those that are 

perpendicular to Flatland (Figure 3.19.b). 

 

  
a) b) 

FIGURE 3.19 
A sphere’s intersection with Flatland and considering some circumferences on its surface 

(own elaboration). 
 

 In Flatland, only the circumference embedded in the plane and two points for each 

selected circumference will be visualized (Figure 3.20.a). Those two points are the result 

of the intersection between a perpendicular circumference and Flatland (Figure 3.20.b). 
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a) b) 
FIGURE 3.20 

Visualizing some surface’s circumferences on a sphere from Flatland and from the 3D 
space (own elaboration). 

 

 The pair of points for each perpendicular circumference to Flatland describe a 

straight line in the 2D space, or a rotation’s axis in the 3D space (Figures 3.20.a and b). 

Each circumference can be rotated �� 90  around the axis described by its two intersection’s 

points. In this way, now, those circumferences will coincide with the plane, and all of them 

will be observable, together with the originally embedded circumference, by a two-

dimensional being (Figure 3.21). 

X 1

X2

 
FIGURE 3.21 

Visualizing the circumferences, now embedded in Flatland,  that compose 
the 3D sphere (own elaboration).  

 
 Now, we will show [Rucker, 77]’ s method for visualizing the 4D hypersphere. It 

will be considered the hypersphere’s intersection with our 3D space in such way that the 
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sphere  with the  greatest volume  will be  the first embedded (for example, in Figure 3.18, 

t = 3). It is known that the hypersphere’s hypersurface is composed by an infinite number 

of spheres (as the sphere’s surface is composed by an infinite number of circumferences). 

Only those spheres (initially embedded in the 4D space) that are perpendicular to our 3D 

space will be considered. 

 

Each one of the selected spheres can be considered as a 3D subspace embedded in 

the 4D space (in analogous way, the initially perpendicular circumferences to Flatland 

could be considered as 2D spaces embedded in our 3D space, Figure 3.20.b). It is known 

by [Sommervill e, 58] that the intersection between two perpendicular (n-1)-dimensional 

subspaces describe a (n-2)-dimensional subspace. By instantiation, in 4D space the 

intersection between two 3D subspaces will define a 2D subspace. In our current context, 

the intersection between each one of the spheres with our space will describe a plane (in 

analogous way, the intersection of each sphere’s circumferences with Flatland, both 

describing 2D subspaces, describe a straight line). Such intersections will be visualizable in 

our 3D space as parallel circles embedded in the main sphere. See Figure 3.22 

(analogously, the intersections between the circumferences and Flatland could be 

visualizable as straight lines inside the main circumference, see Figure 3.20.a). 

 
FIGURE 3.22 

The intersections (the parallel circles embedded in the sphere) between the 3D space and 
some spheres on the 4D hypersphere’s boundary (own elaboration). 
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The intersections between our space and the selected spheres describe a 2D 

subspace, which can be considered a rotation’s plane in the 4D space (in the same way the 

straight lines were considered rotation’s axis in the 3D space). Therefore, Since the selected 

spheres are perpendicular to our 3D space, it is suffi cient to apply to each sphere a rotation 

of �� 90  around the intersection’s plane, so that, they become embedded, and 

consequently, visualizable in our space. Figure 3.23.a shows five selected 4D 

hypersphere’s spheres: the central sphere is the one embedded in the 3D space that didn’t 

require any transformation (also shown in Figure 3.23.b), while the remaining four were 

rotated around the planes defined by the circumferences (shown in Figure 3.23.b) which 

are the product of the intersection between those four spheres with the 3D space. 

 

  
a) b) 

FIGURE 3.23 
Visualizing in the 3D space 4D Hypersphere’s five selected spheres 

(see text for details. Own elaboration). 
 

 


