Chapter 3
Tedniquesfor Visualizing the Four-Dimensional Space

Recent intered hasbeen growing in studying multidimensional polytopes (4D and
beyond) for representing multidimensional phenomena in the Euclidean n-Dimensional
space Some of these phenomena's fedures rely on the poytope's geometric and
topdogicd relations (as we will seein the next chapters). However, [Banchoff, 96
motivatesus to think abou two important quedions: Isit possble to visualize apaytope to
know how it looks like? And if we can't seeit, how can we be sure dou the proper
understanding o its relations and properties? The answer is that the tak of visualizing
paytopesin the fourth and hgher dimensional spacesbelongs to the computer graphics
field [Banchoff, 96|. Visualizing thesenew dimensions |leads us to lean and to understand
the events, relationships and propertiesfor thesephenomena. In this dapter we will ded
with threg yet introduced in chapter 1, methods for visualizing 4D and keyond Polytopes
(section 3.]) throughtheir projedions, (sedion 3.9 throughtheir unravelings; and (sed¢ion
3.3 throughtheir slicings with threedimensional space Moreover, we will consider the
visualization d two intereding events. a polytope's rotation around a plane and the 4D

hypercube and simplex’ unraveling pocesses
3.1 Polytopes Projedion
3.1.1The 3D-2D Projedion

We can define a3D-2D projedion as the transformation d 3D scenes onto 2D

viewing fdanes (a computer saeen for example). A projedion imitates the processby

75



which the eye maps world scenesinto imagesonto the retina. In general terms, a projedion

transform pointsin anD spaceto pants onto alower dimensional space[Foley, 96.

The projedion d 3D objeds is defined by pojedion straight rays, which emanate
from a center of projedion to passby eat pant of the objed and to finaly, intersed a

plane and crede the projedion[Foley, 96| (Figure 3.1).
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FIGURE 3.1
Projeding a aube onto a plane (taken from [Aguilera & Pérez 02]).

When the center of projedionis & the infinite then the projedion rays ae parall el
between them. This projedion is defined as3D-2D parallel projection, which informally is
just to remove the X3 coordinate from the objed's paints if the projedion daneis Xz = 0
(which is the most popuarly used in the Computer Graphics field). Then we have the

matrix representation:

1 00O
0100

[Xl X, X3 1]' 000 O:[Xl X, 0 1]
0 0 01

If the projedion dane is X3 = 0 or Xz = O then it will be enoughto remove (or
replace with zero) the gpropriate ordinate from the objed’s paints. Then the

correpondng matrix representations ae then:
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0O 00O
0100

[Xl X, X3 1]' 00 1 0:[0 X, X3 1]
_0 0O 1_
1 0 0 O]
0O 00O

[Xl X, X3 1]' 00 1 0:[X1 0 X3 1]
_O 00 1_

When the center of projection is on Xs axis at a distance pz from the origin, and the

projection plane is X3 = 0, then we have a 3D-2D perspective projection with the matrix

representation:
pz 0 0 O
pz 0 O X Pz X, pz
X, X, X 1 =|X-PZ X, -pz 0 pz-X|= 01
X % % 1] 0 -1 [ p 2 P p ] PZ—X, pz-%
0O 0 0 pz

When the center of projection is on X; axis at a distance px from the origin, and the

projection plane is X; = 0, then the matrix representation for this 3D-2D Perspective

Projection is:
0O 0 0 -1
O px 0 O X, - PX  Xg - PX
1' = O . . — — O 2 3 1
% % 2 x 0 [0 %,-px % -px px &]{ x pox }
0O 0 0 px

And the case when the center of projection is on X, axis at a distance py from the

origin, and the projection plane is X, = 0, has the matrix representation:

py 0O 0O O
0O 0 0 -1 X, - py X3 - Py
X, X; 1] =X, - 0 X;- -X,|= 0 1
L O | O - [x-py 0 X-py Py—x] vx ° oyox,
0O 0 O py

77



3.1.2 The 4D-3D Projection

[Banks, 92 edablishesthat the sane techniquesusel to projed 3D objeds onto 2D
planes ca be gplied to projed 4D paytopes onto 3D hyperplanes (our 3D space for
example). Then we have that a 4D-3D parallel projection, which informally is the X, Xz,
X3z or X4 coordinate's removal from the polytope's paints. It hasthe matrix representation

(for the typicdly removed X, coordinate):

1 0 0 0 O]
01000
[, X, X % 10 0 1 0 0|=[x X%, % 0 1]
00O0O0OO
000 0 1]

And a 4D-3D perspective projection is defined when the center of projedion is on
X4 axis at a distance pw from the origin. If the projedion hygerplane is X4 = 0 then we

have the matrix representation:

‘v 0 0 0 O
0O pv 0 0 O
[, X, X % 1[0 0 pw 0 O |[=[x-pW X,-pw X,-pw 0 pw-—X,]
O O O 0 -1
0 0 0 0 pw|

[xeoew g xpw
|l pw—Xx, pw—Xx, Ppw-X,
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Becaise a4D-3D projedion will produce avolume asthe "shadow" of a 4D
paytope, [Hollasd, 91 considers valid to processthis volume with some of the 3D-2D
projedions (parallel or perspedive) to be projeded finaly onto a cwmputer saeen. Then
we have four posshble 4D-3D-2D projedions:

4D-3D Perspedive Projedion - 3D-2D Perspedive Projedion
4D-3D Perspedive Projedion - 3D-2D Parallel Projedion
4D-3D Paral el Projedion- 3D-2D Perspedive Projedion

4D-3D Paral e Projedion- 3D-2D Parallel Projedion

In chapter 1, it was introduced the 4D hypercube's projedion as a abe inside
ancther cube, or in ather words, its central projedion (Figure 1.4). This visualizaion is
commonly the reallt of applying the combination o 4D-3D perspedive and 3D-2D

perspedive projedions.

By applying the parallel and perspedive projedions, it is passble to visualize some
intereding ageds related to some events in the 4D space One of these gents is the
rotation d a hypercube. In Figure 3.2 are preseaited some sapshats of the 4D hypercube’s
rotation aroundthe X1X4 plane. The hypercube hasits center at the origin and the rotation's
angle is 180°. There were gplied on the seuence the 4D-3D perspedive and 3ID-2D

perspedive projedions.
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160° 170° 180°

FIGURE 3.2
4D Hypercube's rotation aroundthe X1X4 plane (own elaboration).



3.1.3ThenD —(n-1)D Projedion

The projedion’'s matricesused in 3D and 4D spaces ca be generalized for any
number of dimensions such that a n-dimensional poytope is projeded orto a (n-1)-
dimensional space therefore, we have anD — (n-1)D projedion. For visualizing a nD
paytope on a cmmputer saee, for example, the projedions must be repetitively applied, in
other words, to consider the projedions (n-1)D — (n-2)D, (n-2)D — (n-3)D. Finaly, athree
dimensional objed will be obtained, which represents the successve projedions of the nD

paytope [Noll, 67].

The Pardlel Projedion d a nD padytope onto a (n-1)D hyperplane, or in other
words, the nD — (n-1)D Parallel Projedion consists on just removing the n-th coordinate,
whose orrepondng axisis X, from the nD palytope’'s paints. Then, the projedion will be

defined bythe following operations:

o O
o B
= O
- O O
o O
o O

(X, X X3 - Xop X, -|: :
n+l 000 100
000 00
_O 00 00 1_(n+1)><(n+1)
=[x X X3 X,y O 1

n+l
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The projedion’'s matrix will have n+l1 columns and n+1 rows becaise it is
considered that the paints have the homogeneous representation. All the elements in the
matrix’s main dagora will be 1's except the position (n,n) that is zeo (for eliminating the

Xn-axis); the matrix’s remaining elements will be dl zero.

The Perspedive Projedion nD — (n-1)D is defined when the projedion’'s center is
on the Xy-axis (which correponds to the n-th coordinate) to a distance pn from the origin.

If the projedion’s (n-1)D hyperplaneis X, = 0, then we will have the matrix representation:

pn 0 O - O O O
O pn O O 0 O
O O pn - O 0 O
[X, X, X, Xoqg X, Q| ¢ o oo
il O 0 0 - pn 0O O
O 0o 0 - 0 0 -1
Lo 0 0 - 0 0 pn (n+1)x(n+1)
=[X,;-pn X, -pn Xg-pn - X, -pn O pn—X,]
n+1
— X - pn X, - pn X3 - PN Xpg - PN 0 1
pn—-X, pn-=X, pn-X, pn—X,

n+1

All the dements in the projedion matrix’s main dagoral will have pn asits value,
except the dement in the paosition (n,n) that will be zeo. The dement in the row n and

column n+1 will be equal to —1. Resuming, the perspedive projedion takes place when

pn
pn-— X,

multi plying the n-1 coordinatesby , leaving to the n-th coordinate as zeo.
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Now, consider the k-th coordinate sich that k < n (becaise the previous
generdizaions ae basel in the fad that the projedion hyperplane is X,=0, the popuarly
usal for this end, where the X,-axis correponds to the lag coordinate) and let x¢ be its
regpedive ais. In this way, the Paralel Projedion D - (n-1)D substitutes the k-th

coordinate by zero and its matrix representationis:

1 .- 00O 00
: 0 0O 00
0 0100 00
0O 0 00O 00
[X1 o X Xklxk+1 X 1]' 00001 00
n+ . . : . . ... O O
0O 0000 O T1O0
0 0 000 O O 1] .
:[X1 X 0 Xy o X 1]

n+l

All the dements in the matrix’s main dagoral are 1's except the position (k,k)
which is zeo (in thisway, the k-th coordinate is replacel by zero). The matrix’s remaining

elements will be dl zero.

And the Perspedive Projedion rD — (n-1)D, when the projedion center is on the X

axis & adistancepk from the origin, is defined by the matrix representation:
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Pk - 0 0 0 0 0]

i 0O 0 O 0O O

0 0 pk 0 0 0 0

0O 0 O O o 0 -1

[X, - X Xk1Xk+l o X 4 0 0 0 0 pk 0 o
" I A

0O 0 0 0 0 0 pk O

0 0 00 0 0 0 pk

(n+1)x(n+1)

=[x-pk - X -pk 0 X, pkoo X pk pk— X ]

n+1

_ X Pk X - Pk 0 Xea - PK X, - pK 1
pk_xk pk—xk pk_xk pk—xk

n+1

Inthis caseall the dementsin the projedion matrix’s main dagoral will have pk as
their value, except the dement in the position (k,k) which will be zeo. The dement in the
row k and column n+1 will be equal to —1. The matrix’s remaining elements will be dl

zero. Reauming, the perspedive projedion takesplacewhen multi plying all the aordinates

pk
Pk — X,

by except the k-th which isreplaced by zero.

Throughthe generalization d the paralel and perspedive projedions, it is passble
to olktain, in a smple way, the required matricesfor visualizing pdytopes beyond the 4D
space For example, in Figure 3.3 is presaited a 5D Hypercube's projedion, which hasits
center at the origin. Also, all the projedions, applied to it, (5D-4D, 4D-3D and 3-2D)

were perspedive projedions. As can be sea, that projedion reallts to be the 5D
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hypercube's central projedion, which can be @mnsidered as a4D hypercube inside ancther

4D hypercube (the interior 4D hypercube wasremarked to fadlit ate the visuali zaion).

|

I
N TN 1

FIGURE 3.3
The 5D Hypercube's cantral projedion (own elaboration).

3.2 The 4D Polytopes Unravelings and Unfoldings

3.2.1Unraveling the 4D Hypercube
3.2.1.1TheHypercube s Unravelings

In sedion 1.3were disaussa the methods for visualizing 4D paytopes One of
them is the visuali zaion through the unravelings. We remember that the sx faceson the

boundxry of a aube can be unraveled as a2D cross(Figure 3.4). The se of unraveled faces

is cdl ed the unravelings of the aube.
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FIGURE 3.4
Unraveling the aube (taken from [Aguilera & Pérez 02).
In analogows way, the @ght cubeson the boundxry of a hypercube can be unraveled
as a3D cross (the hypercube's propertieswere disausseal in chapter 2). This 3D crosswas

named tesseract by C. H. Hintonin the X1X century (Figure 3.5).

FIGURE 3.5
The unraveled hypercube: the tessead
(taken from [Aguilera & Pérez 02).

We dso dsausseal that a flatlander will visualize the 2D cross bu he will nat be
able to assenbly it badk as a abe (even if the gedfic instructions ae provided). This fad
is true becaiseof the needed facerotations in the third dmension aroundan axis which are
physicdly impassble in the 2D space However, it is passble for the flatlander to visualize

the raveling pocessthroughthe projedion d the faces ad their movements onto the 2D

spacewhere he lives
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Analogously, we can visuali zethe tessead but we wont be &leto assenbly it badk
as ahypercube. We know this becaise of the neaded vdume-rotations in the fourth

dimension arounda plane which are physicdly impossblein ou 3D space

[Kaku, 94 and [Banchoff, 96 descibe with detail the representation model for the
hypercube through their unravelings. They also mention the physicd incgpadty of a 3D
being to ravel the hypercube badk, becausethe required transformations ae not posshblein

our 3D space(Figure 3.6).

Xy

V' N [
N4
Xy

_XL

Fl GURI-EX 36
The hypercube's unraveling reault (taken from [Aguilera & Pérez 02X]).

[Kaku, 94 and [Banchoff, 96 also desaibe that if we witnessthe raveling process
seven o eight cubesthat composethe tessead will suddenly disgppea, becaisethey have
moved in the diredion d the fourth dmension. However, they dont provide amethoddogy
that indicatesthe transformations and their parameters to exeaute the raveling pocess In

spite of our physicd incapadty, we can visualize aprojedion orto ou 3D spaceof the

cubeson the hypercube's boundiry throughthe unraveling and raveling processes
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3.2.1.2The Cube's Unraveling Methodology

Althoughthis processis ésolutely trivial, it isincluded here to underline some key

points that will be very useful when extendingit to the 4D casein se¢ion 3.2.1.3.

The unraveling processfor a aube can be resumed in the foll owing steps:
1. Identify afacethat is "naturally embedded” into the plane where dl the aube's faceswill
be paositioned. This face will be cdled "central face'. Becaise the ceitral face is
"naturally embedded" in the séeded final plane (for example, the X1X, plane), it will

not require any transformation.

2. |dentify thosefacesthat share an edge with the central face There ae four of such faces

and they will be cdled "adjacent faces.

3. After the identifi cation d the central and adjacent facesthere will be alad facewhose
suppating dane is paralel to central faces ppating dane. This facewill be cdled
"saellite face' because its movements will be aoundan edge that is ared with any
arbitrary sdeded adjacent face(and the séeded adjacent facewill r otate aroundan edge

that is dared with the central face.

4. The aljacent faceswill r otate aoundthose @lgesthat share with the central face
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5. When the central, adjacent and saellit e faces ee identifi ed, it must be determined the
rotating angles and their diredions. All four adjacent faceswill rotate right angles
however two oppaite ajacent faceswill have oppdasite rotating dredions; otherwise

one of them will endin the sane positionasthe central face

Table 3.1 preseits ome Sapshots from the cube's unraveling sequence In
snapshots 1 to 7 (except 5), the gplied rotations ae 0°, £15°, +30°, +45°, +60° and +75°
(the rotation's ggn depends of the aljacent face. In snapshat 5, the gplied rotation is
+53°% the saellite facelooks like a ¢raight line -an effed due to the séeded 3D-2D
projedion. In snapshat 8, the gpplied rotation is +90° the aljacent faceshave finished their
movements. In snapshots 9 to 14, the saellite face moves independently and the goplied

rotations ae +15°,+30°,+45°,+60°,+75° and +90°.
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TABLE 3.1
Unraveling the aube (taken from [Aguilera & Pérez 0X])
(the red faceis the saellit e face adthe blue oneisthe central face.

2
>
2
.




3.2.1.3Hypercube's Unraveling Methodology

The processwill be easer if we take the following considerations:

e Seled the hypercube's positionin the 4D space

o Seled the hyperplane (a 3D subspace enbedded in the hyperspace where the volumes
will be direded to.

e Establish the angleswhich guaranteethat al volumeswill be totally embedded in the
sdeded hyperplane.

e All the volumesthroughtheir movement into the séeded hyperplane must maintain a

face ajacent to another volume.

The hypercube's position in the 4D spaceis essatia, becaise it will define the
rotating danesused by the volumesto be positioned orto a hyperplane. For simplicity, one
vertex of the hypercube will coincide with the origin, six of itsfaceswill coincide eat ore
with some of the X1X5, X1X4, X2X3, X2X4 X3X1 and X3X4 planes and all the wordinates

will be paositive. The mordinatesto use ae presented in Table 3.2

91



TABLE 3.2
The hypercube’ s mordinates(Reproduction d Table 2.3).

Binar Vertices deamal
X1 | Xz | X3 | Xa Represmt)r:ltion represatation
0]0]0]0 0000 0
1{0(0]0 0001 1
0(1]0]0 0010 2
1/{1/01|0 0011 3
0(0]1]0 0100 4
1/10(11]0 0101 5
0]1]1]0 0110 6
111(11]0 0111 7
0]0]0|1 1000 8
10|01 1001 9
0Ol1]0]1 1010 10
11|01 1011 11
0O(0[1]1 1100 12
110|111 1101 13
Ol1]|1]1 1110 14
111|111 1111 15

We know now why the hypercube's pasition in the 4D spaceis important, since it
will define the rotating danesto use The stuation isthe sane for the séeded hyperplane,
becaiseit is where dl the volumeswill be finaly paositioned. Obsaving the hypercube's
coordinateswe can seethat eight of them present their fourth coordinate value (X4) equal to
zero. This fad represents that one of the hypercube's volumes(formed by \ertexes0-1-2-3-
4-5-6-7) has X4=0 asits suppating hyperplane. Seleding the hyperplane X,=0 is usé€ul
because one of the volumesis "naturally embedded" in the 3D space ad it won't require

any transformations.

Now, it is dso usdul to identify the hypercube's volumesthroughtheir vertices ad
to label them for future references Until now we have one identified vdume, it is formed

by vertexes0-1-2-3-4-5-6-7, and it will be cdled vdume A. SeeTable 3.3.
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TABLE 3.3
The hypercube's volumes(taken from [Aguilera & Pérez 01])

Volume A
(0-1-2-3-4-5-6-7)

/

Volume B
(0-1-2-3-8-9-10-11)

(the numbersindicate the verticesthat composethem).

/|

Volume C
(0-2-4-6-8-10-12-14)

Volume D

(0-1-4-5-8-9-12-13)

/

A

/

N

O

/

Volume E
(8-9-10-11-12-13-14-15)

Volume F
(4-5-6-7-12-13-14-15)

Volume G
(1-3-5-7-9-11-13-15)

VolumeH

(2-3-6-7-10-11-14-15)

We have drealy descibed vdume A as "naturally embedded” in the 3D space

becaiseit wont require any transformations. Volume A will occupy the central paositionin

the 3D cross and it will be cdl ed the "central volume".

From the remaining vdumes six of them will have face ajacency with the central

volume. Dueto this charaderistic they can eadly be rotated toward ou spacebecaisetheir

rotating daneis dealy identified. Each of thesevolumeswill r otate aoundthe suppating

plane of its shared face with central volume. They will be cdled "adjacent volumes'.

Adjacent volumes ae B, C, D, F, G and H. The remaining vdume E will be cdled

"sddllite volume" andit will be disausseal later on.
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TABLE 34
Applied transformations to the adjacent volumes
(taken from [Aguilera & Pérez, 01]).

Adjacent volume
(previousto
rotation), rotation

Position in the 3D
space andin the
tesseract after

Adjacent volume
(previousto
rotation), rotation

Position in the 3D
space andin the
tesseract after

plane and angle rotation plane and angle rotation
. X, X3 N X, />< X2 X3 X, /><;
><\ /
e
Xy 1 X1 X
!
B, X1 X5, +90° Front (-X3) C, XoX3, -90° Left (-Xl)
i o3 X, X 12 X3 "2 X3
X4 N
} X1 X Xy
D, X3X4, +90° Down (-Xz) F, XX, -90° Badk (+X3)
X, X3 X, X. X2 X3 Xy X3
2 j/ A /‘\'
X4 X4
X4 X4 Xy ) X1
G, XoX3, -90° Right (+X41) H, X3X3, -90° Up (+X2)

All of the aljacent volumeswill rotate right angles In this way we guarantee that

their X4 coordinate will be egual to zero. Asin the 3D caseit is dso important to consider

their rotating dredions, becaisethe volumes after the rotations, could ctherwise coincide

with the centra volume. The diredion and rotating danesfor ead adjacent volume ae

presented in Table 3.4 (the central volume is dso included in ead image as aeferencefor

theinitial andfinal pasition d the volume being analyzed).

At this paint, we have seven o the aght hypercube's volumes placel in their final

paositions (volumesA, B, C, D, F, G and H). Volume E will perform a rather more complex

sd of transformations. There aetwo rea®ns that justify this conclusion:
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e The auppating hyperplane for volume E is parall € to the suppating hygerplane for the
central volume. Consequently, there ae no adjacencies between vdume E and central
volume (thisisthe rea®nfor not cdli ng "adjacent volume' to vdume E).

¢ Inthetessead, we dill have an empty pasition. This pasition corregponds to the most
distant volume from the central volume (the inferior position, Figure 3.5). This position

will be occupied by vdume E. Thisistherea®n for cdling E the "saellit e volume".

At the beginning d this setion its is mentioned the need for maintaining a face
adjacency between all the volumes while they rotate towards the séeded hyperplane.
VolumesB, C, D, F, G and H share afacewith central volume (remember that central
volume is gatic during the whale unraveling poces$. In order to determine the needed
transformations for the saellit e volume, we must first sded the volume which will share a
facewith it. Any vdume, except the central one, can be séeded for this. In this work,
volume D will be séeded to share afacewith s&ellit e volume throughthe hyper-fl attening

process

The diredion and the rotation dane for volume D was determined before (X3X1
plane +90°). Thesetransformations will take it to its final position. During the beginning
of the unraveling process the same transformations will be gplied to saellite volume. In

thisway, we ensure that volumesE and s&ellite will share aface aall times

When vdume D hasfinished its movement, it will be placed in itsfinal positionin

the tessead. At this moment, the saellite volume's sippating hyperplane will be
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perpendicular to the séeded hyperplane and the dhared facewill be paralel to X3X; plane.
The lag movement to apply to the saellite volume will be a 90° rotation around the

suppating dane of the dared facewith vdume D.

The sé of movements to be exeauted for the saellite volume ae reumed in the

Table 3.5 (Central volume and vdume D are shown too).

Now, all the transformations to unravel the hypercube have been determined. To
ravel it badk, the same processmust be gplied in an inverseway (the angles signs must be

changed). This methoddogy wasoriginaly presented in [Aguilera& Pérez 01].

TABLE 35
Associated transformations to saellit e volume
(taken from [Aguilera & Pérez, 01]).
Current position Transformations
X, X

/ 3

Rotation d volumes D and
saedllite aound the plane
( X3X1 (+90°).

\ Volume D is in its fina
position. Rotation o sae-
llit e volume of +90° around
/ x| the shared facewith vdume
D (parallel planeto X3X3).

Satellite volume in its fina
pasition (inferior positionin
the 3D crosson—X; axis).
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3.2.1.4Visualizing the Hypercube's Unraveling Process

Table 3.6 preseats me gpshoats from the hypercube's unraveling sequence In
snapshots 1 to 6, the gplied rotations ae +0°, £15°, £30°, +45°, +60° and +75° (the
rotation’s sgn depends of the adjacent volume). In snapshat 7, the gplied rotation is +82°
the saellite volume looks like aplane -an effed due to the séeded 4D-3D projedion. In
snapshat 8, the gplied rotation is +90° the aljacent volumesfinish their movements. In

snapshats 9 to 14, the saellit e volume movesindependently and the gplied rotations ae

+15°,+30°,+45°,+60°,+75° and +90°.
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TABLE 3.6
Unraveling the hypercube (taken from [Aguilera & Pérez 02)
(saéllite volumeis srown in bue and central volumein red).

1

3
b
L
r
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3.2.1.5 The n-Dimensional Hyper-T esser act

The properties of the unravelings for the parallelotopesin 2D, 3D and 4D space can

be resumed in the following way (see Table 3.7):

e Square: A central segment surrounded by other two through a vertex adjacency with
each one; a satellite segment adjacent to any other of the segments except the central.

Completely immersed in a 1D space (a straight line).

e Cube: A central face surrounded by other four through an edge adjacency with each one;
a satellite face adjacent to any other of the faces except the central. Completely

immersed in a 2D space (a plane).

e Hypercube: A central volume surrounded by other six through a face adjacency with
each one; a satellite volume adjacent to any other of the volumes except the central.

Completely immersed in a 3D space (a hyperplane).
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TABLE 3.7

Anaogesbetweean the unravelings of the sjuare, the aube and the hypercube
(the central cdl is howninred and the saellite cdl is srownin bue; own elaboration).

2D Space
Square

3D Space
Cube

4D Space
Hyper cube

Par allelotope

|

Unraveling
process

=

Unravellings

?

Obseving the unravelings for the gquare (C,), the aube (C3) and the 4D hypercube

(C4) and the fad a nD parallelotopesfamily share analogows properties [Aguilera &

Pérez,02 generdlize the n-dimensional hyper-tesseract (n>1) asthe reallt of the (n+1)-

dimensional parall elotope’s unraveling with the following properties

e The (n+1)-dimensional hypercube will have 2(n+1) n-dimensional cdlsonits boundxry.

« A centra cdl will be gatic during the unraveling/raveling process
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e 2(n+1)-2 cdls ae ajacent to central cdl. All of them will share a(n-1)-dimensional cel
with central cel.

« A saellite cdl won't be adjacent to central cdl becausetheir suppating hyperplanes ae
paralel. It will be ajacent to any of the ajacent cdls (it will share a(n-1)-dimensional
cdl with the séeded adjacent cdl).

« All the ajacent cdls and saellite cdl during the unraveling/raveling processwill rotate

+90° aroundthe suppating hyperplane of the (n-1)-dimensional shared cdls.

Then, for n = 4 we have the 4D hyper-tessead asthe reault of the 5D hypercube’s
unraveling. The 4D hyper-tessead will be composed by 10 hygrvolumes where one of
them will be the ceitral hypervolume (static), eight of them are aljacent to central
hypervolume (they share avolume) and the lag one will be the saellite hypervolume (it
shares avolume with any of the aljacent hypervolumes. See Figure 3.7. The aljacent
hypervolumes and the saellite hypervolume will rotate aounda volume or a hyperplane

during the unraveling/raveling process

> ) & <
e
FIGURE 3.7

The ajacency relations between the 4D hyper-tesseract's hypervolume’s
(taken from [Aguilera & Pérez, 02).
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3.2.2 Unraveling the 4D Simplex

3.2.2.1 Introduction

In the previous setions was preseited the methoddogy wseal by [Agulera &
Pérez01] for unraveling the 4D hypercube. Such methodis basel in the aube’s unraveling
processfor obtaining the analogows one. The ideais reconsidered again for determining the
unraveling processfor other paytopes asthe 4D Simplex (which was analyzed in chapter
2), Figure 3.8. That means that the tetrahedron’s unraveling processwill be first analyzed,
and through it, a process for unraveling the 4D simplex will be proposed. As the
hypercube's unraveling pocess we will visualize aprojedion orto ou 3D spaceof the
volumes (tetrahedrons) on the 4D simplex's boundary throughits unraveling and raveling

processes

FIGURE 3.8
The 4D simplex (taken from [Aguilera & Pérez, 0Z]).

3.2.2.2 The 3D Simplex (Tetrahedron) Unraveling M ethodol ogy

Althoughthe tetrahedron's unraveling processis trivial, we will consider here sosme

key pantsthat will be extended later in the 4D simplex urraveling:

102



1 Identify afacethat is "naturaly embedded" into the plane where dl the tetrahedron's
faceswill be positioned. This facewill be cdled "central face'. Becausethe central face
is"naturally embedded” in the séeded plane, it will not require any transformation.

2 Ead o the remaining faces bares a edge with the cantral face Thesefaceswill be
cdled "adjacent faces.

3 The ajacent faceswill r otate aoundthose elgesthat share with the central face

4 When the central and adjacent faces ee identified, it must be determined the rotating
angles and their diredions. The rotating ange is the suipdement of the tetrahedron's

dihedral angle. Finally, the tetrahedron’s unravelings will compose astellated triangle.

TABLE 3.8
Unraveling the 3D simplex (taken from [Aguilera & Pérez, 0X]).
1 2 3
4 S 6
7 8

Table 3.8 presaits sme apshats from the 3D simplex's unraveling sequence. In

snapshats 1 to 4,the goplied rotations ae +0, £10.94°,+27.35°and +43.76°(the rotation's
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sign depends of the adjacent face. In snapshots 5 and 6, the goplied rotations ae +54.7°
and £65.649 in ead snapshat one aljacent facelooks like astraight line -an effed due to
the séeded 3D-2D projedion. In snapshots 7 to 8, the goplied rotations are +76.58 and

+109.4.

3.2.2.3The 4D Simplex's Unraveling Methodology

Becaisethe 4D simplex boundry is cmmposed by five tetrahedrons [Coxeter, 63,
we can exped, by analogy, that the unravelings of the 4D simplex will be atetrahedron
surrounced by four other tetrahedrons and sharing a facewith ead ore (the unravelings of
the tetrahedron are atriangle surrounced by aher threetrianges ad sharing an edge with
eath ore). Aguilera and Pérez refer to the unravelings of the 4D simplex as astellated
tetrahedron (asthe unravelings of the hypercube ae referred asthe tessead) [Aguilera &

Pérez, 0ZX].

We will consider and adapt the sane recommendations proposed by [Aguilera &
Pérez 01] to urraveling the smplex:
e Seled the smplex's positionin the 4D space
e Seled the hyperplane (a 3D subspace enbedded in the hyperspace where the volumes
will be direded to.
e Establish the angleswhich guaranteethat al volumeswill be totally embedded in the
sdeded hyperplane.
e All the volumesthroughtheir movement into the séeded hyperplane must maintain a

face ajacent to another volume.
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We nsider that the sSmplex will have apasitionwith the foll owing charaderistics
e Onevertex of the sSmplex will bethe origin.
e Anedgewill coincidewith X; axis.
e A facewill coincide with X1X> plane.
e All the wordinateswill be paositive.

The mordinatesto use ae presented in Table 3.9.

TABLE 3.9
The 4D simplex coordinates(taken from [Aguilera & Pérez 02X]).
Vertex X1 Xo X3 Xa
0 0 0 0
1 0 0 0

¥V | o 0
ho ¥ % | o
%1% | %s| %

A ITWI|IDN|FLIO

Obseving the 4D simplex's wordinateswe can seethat four of them present their
fourth coordinate value (X4) equal to zero. This fad represents that one of the smplex's
volumes (formed by \ertexes0-1-2-3) hasX4=0 asits suppating hyperplane. Seleding the
hyperplane X4=0 is usdul becaise one of the volumesis "naturally embedded” in the 3D

space adit won't require any transformations.

Now, it is dso usdul to identify the smplex's volumesthroughtheir vertices adto

label them for future references Until now we have one identified vdume, it is formed by

vertexes0-1-2-3, and it will be cdled vdume A. SeeTable 3.10.
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TABLE 3.10
The 4D simplex's boundiry volumes(taken from [Aguilera & Pérez 0X]).

Volume'slabel and | Volume'sposition in the
. : Volume
vertices 4D simplex
Volume A
0-1-2-3
1
2
/
Volume B
0-1-2-4
3
1
|
Volume C ‘/
0-1-3-4 \
3
2
Volume D \;
0-2-3-4 \
3
Volume E
1-2-3-4
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We have drealy descibed vdume A as "naturally embedded" in the 3D space
becaiseit won't require any transformations. Volume A will occupy the central positionin

the g€l ated tetrahedron and it will be cdl ed the "central volume".

All of the remaining vdumeswill have face ajacency with the central volume. Due
to this charaderistic they can "eadly" be rotated toward ou spacebecaise their rotating
planeis dealy identified. Each of thesevolumeswill r otate aoundthe suppating dane of

its hared facewith central volume. They will be cdled "adjacent volumes'.

Althoughthe rotating danes ae dealy identifi ed, the main dff erence between the
hypercube and smplex's unraveling is that the rotating danesdont correpondto 4D space
main planes(X1X2, X2X3, X3X1, X1X4, X2X4 and X3X4) in the sSmplex's unraveling. Due to
this stuation, the volume's rotations will be a @mpasition d rotations aoundthe 4D space
main planes The objedive taken for us wasto pasition a volume's facein the XX, plane,
and then rotate it 104° 29. This angle crreponds to the suppgement of the smplex's
dihedral angle that is 75° 31 [Coxeter, 63]. In this way we guarantee that their X4
coordinate will be equal to zero. The diredion and rotating danesfor eat adjacent volume
are presented in Table 3.11 (the centra volume is dso included in eat image as a

referencefor the initial and final position d the volume being analyzed).
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TABLE 3.11

Applied transformations to the adjacent volumes Rotation aroundX X, plane
isthe samefor all volumes(taken from [Aguilera & Pérez 0X)).

Position in the gellated

Transfor mations tetrahedron after the
transfor mations

Adjacent volume
previousto rotation

Volume B
X1 X2 104° 29

Volume C
X1X4109° 30
X1X5104° 29
X1X4-109° 30

Volume D
X3X4-60°
X1X4 70° 30
X1X,-104° 29
X1X4-70° 30
X3X4 60°
Volume E
T(-1,0,0,0
X3X4 60°
X1X470° 30
X1X,-104° 29
X1X4-70° 30
X3X4-60°
T(1,0,0,0

Ll

Now, al the transformations to urravel the smplex have been determined. To ravel
it badk, the sane processmust be gplied in an inverseway but only the angles signs for
rotations aound XX, plane must be danged, becaise the remaining rotations only

position the volumeswith afaceon X1 X, plane.
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TABLE 3.12

Unraveling the 4D simplex”.

t=0.25 t=0.50 t=0.75
t=1.00 t=1.25 t=1.50 t=1.75
t=2.00 t=2.25 t=2.50 t=2.75

t=5.00

! This squence of images was originally rendered and kindly provided by this thesis advisor. The original
wireframe model based sequence can be onsulted in [Aguilera & Pérez 02c] (seethe gpendix E).
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3.2.2.4Visualizing The 4D Simplex's Unraveling Process

Table 3.12 presaits me apshats from the 4D simplex's unraveling sequence.
From t = 0.00 uril t = 0.75,the aljacent volumes (in red) are projeded inside the central
tetrahedron (in yellow). When t = 1.00, adjacent volumes ae projeded on the central
tetrahedron’'s faces(they look like planeg -an effed due to the séeded 4D-3D projedion.
From t = 1.25 unil t = 5.00, the ajacent volumes a&e projeded ouside the centra
tetrahedron. When t = 3.00 an intereding prenomenon arises the projeded vdumesform
an hexadron (a aube) —again, an effed due to the séeded projedion. When t = 5.00 the

stell ated tetrahedronis finally composed.

3.2.2.5The Stellated n-Dimensional Simplex

Analyzing the unravelings for the triangle (a 2D simplex), the tetrahedron (a 3D
simplex) and the 4D simplex and the fad anD simplexesfamily share analogous properties
[Coxeter, 63, [Aguilera & Pérez, 0] generdize the stellated n-dimensional simplex

(n>1) as the reault of the (n+l)-dimensional simplex's unraveling with the following

properties

e The (n+1)-dimensional simplex will have (n+2) n-dimensional cdlsonits boundxry.
« A central cdl will be gatic during the unraveling/raveling process
e (ntl) cdls ae ajacet to central cdl. All of them will share a(n-1)-dimensional cdl

with central cdl.
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« All the adjacent cells during the unraveling/raveling process will rotate the supplement of
the ssimplex's dihedral angle around the supporting hyperplane of the (n-1)-dimensional

shared cells.

For example, the unraveling process for the 5D simplex will generate a stellated 4D
simplex (Table 3.13.9 which will be composed by six 4D simplexes, one of them will be
the centra 4D simplex (with continuous lines in the figure) and the remaining 5, the
adjacent cells, will share atetrahedron with it (Table 3.13b. Due to the selected projection,

isthat the 4D simplexes ook as distorted).

TABLE 3.13
The unravelings for the 5D simplex (seetext for details).

a) The stellated 4D simplex b) _The adj acencies betwgen the pentral 4D
simplex and the five adjacent simplexes.

XA D=
o ﬂk/ \\
TR
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3.3 Polytope's Intersedion with Three-Dimensional Space

As introduced in chapter 1, the intersections were the method used by Abbott in

Flatland to describe the interactions between two and three-dimensional spaces
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[Banchoff,96]. Furthermore, the mnic set¢ions were preseited as adaily example éou the
useof the intersedions between an oljed, in that case a ane, with a plane. Sedion 3.3.1
will trea the apeds related to the 4D hypercube's intersedions with ou 3D space In
sedion 3.3.2,the [Rucker, 77's method for visuaizing the 4D hypersphere will be

disaussel.

3.3.1 TheIntersections Between a 4D Hyper cube and the 3D Space

[Banchoff, 96 identifi esthreeof the most important ways to intersed a aube with a
2D space (1) when ore if its facesis parallel to Flatland, (2) when ore of its algesis
paralel to Flatland, and (3) when the aibe’s main dagoral coincideswith the Flatland's

normal vedor.

In the first case(Figure 3.9.a), and while the intersedion takesplace a Flatlander

will only appredate a sjuare whose $zeor shape dont change (Figure 3.9.b).

=5 —/
t=4 — |
=3 s t=1 t=2 t=3
t=2 — [~
t=1 %i t=4 t=5
a) b)

FIGURE 3.9
Intersedions between a awbe and Flatland when ore of itsfaceds paral el to the 2D space
a) ThreeDimensional Spacés View. b) Flatland’s View (own elaboration).
The seond case when an edge is paralel to Flatland (Figure 3.10.a), provides a

more intereding visualizaion. Because & the beginning, the Flatlander will visualize in

first place a sgment (the alge that is parallel to his 2D space Figure 3.10.b, t=1) which
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will become aredangle whosetwo o its parallel edges throughall the process will have
the first visualized segment’'s length, while the remaining two will be minor and
perpendicular to it (Figure 3.10.b, t=2). However, in the midde of the process thesetwo
edges will be greder than the two edges whose length is @nstant (Figure 3.10.b, t=3).
Starting from this moment, the processis inverted taking gace the reduction d the
visualized redange (Figure 3.10.b, t=4), urtil fi naly, again is visualized an edge (Figure

3.10.b, t=5).

t=5 ——

=3 , =1 t=2  t=3
t=2 —— |:|
t=4 t=5
t=1 ——
a) b)
FIGURE 3.10

Intersedions between a aube and Flatland when ore of its edgesis parall €l to the 2D space
a) ThreeDimensional Spaces View. b) Flatland' s View (own elaboration).

The third case when the abe’'s main dagoral coincides with the 2D spacés
normal vedor (Figure 3.11), reaults to be one of the most intereding. In first place apoint
is visualized: one of the aube’ s verticesthat composeits main dagoral’ s boundiry (Figure
3.12, t=0.00. In the foll owing instants, for t=0.01 unil t=1.00,atriangle will be visualized,
whose $ze will i ncrease and its verticesbelong to the three @lgesthat are incident to the
vertex visualized when t=0.00.When t=1.10and unil t=1.40(Figur e 3.12), the intersedion
between the aube and Flatland will generate an irregular hexagon whaose verticesbelong
exclusively to those $x edgesthat are nat incident to the main dagoral’ s vertices When

t=1.50, a regular hexagon will be visualized, whose $x vertices ae the midde points of
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those $x edgesnat incident to the main dagordl’s vertices From t=1.60 uril t=1.90 an
irregular hexagon will be visualized again. Finaly, in t=2.00 unil t=2.80 (Figure 3.12) a
triangle will be visualized and its verticesbelongto the three @lgesthat are incident to the
seond \ertex that definesthe aube’s main dagoral, which will be visualized when t=2.90

(Figure 3.12).

—1=2.00

t=2.90
t=1.50 —

t=1.00 —1f| - \_ |

t=0.00 —

FIGURE 3.11
Intersedions between a aube and Flatland when its main diagoral coincideswith the 2D
spaceésnormal vedor (3D Spacés View. Own elaboration).

b > > D D

t=0.00 t=0.10 t=0.20 t=0.30 t=0.40 t=0.50

P >
AL |
<

t:J.;O t=%
IQ t=1. Q
t=1.8 t=1.9 t:2.00:] t=2.10 ‘ t=2.20 t=2.

< 2 ]

t=2.40 t=2.50 t=2.60 t=2.70 t=2.80 t=2.90

FIGURE 3.12
Visualizingin Flatland its interse¢ions with a aube whosemain dagoral coincideswith 2D
spaceés normal vedor (taken from [Aichhdzer, 97).

2.30
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[Banchoff, 96 paints out the existence of four important ways to intersect a 4D
hypercube throughthe first cdl that makesfirst contad with ou space (1) when a volume
(cube), a face (2), an edge (3) or a vertex (4) starts the contad with threedimensional

space

In the first case when a volume darts the @ntad with 3D space it is only
visudlized, in al the instants where the intersedion takes place a aibe (Figure 3.13)
[Banchoff, 9. This stuationis analogots to the intersedions between a aube and Flatland

when ore of itsfacedss paral el to 2D space(Figure 3.9.b).

t=1 t=2 t=3 t=4 t=5
FIGURE 3.13
Visualizing the intersedions between a 4D hypercube with 3D space the fir st element that
makes ontad with 3D spaceis avolume (own elaboration basel in anill ustration
presated in [Banchoff, 96]).

In the seond case in first place afacewill be visualized which starts the @mntad
with the 3D space(Figure 3.14, t=1). The face &pands in a seiesof redanguar prisms
whose bases e dl equa to the first visualized face (t=2). The height of those prisms
increasesuntil it has the same length of the main dagoral of a hypercube’'s face

[Banchoff,96] (t=3). Later on, the prisms height starts to deaease(t=4) urtil it is zeo

(t=5).
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t=1 t=2 t=3 t=4 t=5
FIGURE 3.14
Visualizing the intersedions between a 4D hypercube with 3D space the fir st element that
makes ontad with 3D spaceis aface(own elaboration basel in an ill ustration preseated in
[Banchoff, 96]).

When an edge garts the mntad with 3D space(Figure 3.15) it will be visualized an
edge (t=1) that expands until compaose atrianguar prism (t=2,3) whose height is equal to
the main edge’s length [Banchoff, 96. The trianguar prism then becomes aprism with
hexagoral base (t=4). The processis then inverted, the prism becomes atrianguar one

(t=5,6) andfinaly to be a sgment (t=7).

t=1 t=2 t=3 t=4 t=5 t=6 t=7
FIGURE 3.15

Visualizing the intersedions between a 4D hypercube with 3D space the fir st element that

makes ontad with 3D spaceis an edge (own elaboration basel in an ill ustration preseanted

in [Banchoff, 96]).

The fourth seguence of intersedions is obtained by moving the 4D hypercube dong
the normal vedor of the 3D space(a hyperplane) [Aichhdzer, 97], in such way that the 4D
hypercube's main diagoral coincideswith the normal vedor. In this way, the first element
which makes ontad with ou spacewill be avertex (Figure 3.16, t=0.00. This vertex will
expand to compaose atetrahedron (t=0.20 uril t=1.00. Later on, the tetrahedron will start
to experiment a truncation’s processin their corners, which inducesthe visualizaion o a
poyhedron with eight faces where four of them are trianguar and the remaining are

hexagoral [Banchoff, 96 (t=1.20 uril t=1.80. Finaly, the four hexagoral facesbecome
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trianguar (t=2.00 taking dace aregular octahedron's visualizaion ([Aichhdzer, 97 &
[Banchoff, 96)). The process seond Hf is the reversd reped the first half. The four
trianguar faces become again hexagoral (t=2.20 unil t=2.80), it is visudized a
tetrahedrons' sequence whose $ze deaeaseqt=3.00 urtil t=3.80); and finaly, the sscond

vertex that composethe hypercube’s main dagorel isthe lag one to be visualized.

A @ g @
t=0.00 t=0.20 t=0.40 t=0.60 t=0.80
t=1.00 t=1.20 t=1.40 t=1.60 t=1.80
t=2.00 t=2.20 t=2.40 t=2.60 t=2.80

@ ﬁ J 9
t=3.00 t=3.20 t=3.40 t=3.60 t=3.80
FIGURE 3.16

Visualizing the intersedions between a 4D hypercube with 3D space the fir st element that
makes ontad with 3D spaceis avertex (taken from [Aichhdzer, 97)).

3.3.2Visualizing the 4D Hypersphere

In sedion 1.3it wasdescibed an example of the intersedion between a phere and
a plane (the A.Sprere & Flatlands relation). Bagcdly, the Phere is visualized by

A.Squae as apoint which, through the time, becomes a @cumference whase diameter
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increasesLater on, the drcumference darts to deaeaseits szeto beaome, again, a point

(Figure 3.17).

OQQQO

t=1 t=2 t=3 t=4 t=5
FIGURE 3.17
Visualizing the phere’ sintersedions with Flatland
(own elaboration).

As ill ustrated in sedion 1.3,the stuationis analogots to the intersedion between a
4D hypersphere and ou threedimensional space In the first instant, a point would appea,
which throughthe time, will be visualized as asphere that increasests sze Later on, the

sphere dartsto deaeaseo finally beame, again, apoint (Figure 3.18).

— T T e T
t=1 t=2 t=3 t=4 t=5

FIGURE 3.18
Visualizing the intersedions between a 4D hypersphere and the 3D space
(own elaboration).
[Rucker, 77] points out that a Phere’'s surface ca be wnsidered asa se with an
infinite number of circumferences The method pesented in Figure 3.17 only shows one of
these a@cumferencesin turn, in fad, when t = 3, the drcumference with the gredaeg

diameter is dhown. In analogows way, due to the 4D hypersphere’s hypersuface will be

composed by an infinite number of spheres its intersedion with ou 3D spacewill show
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only one phere & the time. However, [Banchoff, 96 points out that visualizing the ghere
and 4D hypersphere by theseways dont provide more information abou their boundary. It
doesnat matter if they are rotated, becaise the visualized sequenceis the sane: just one

circle/sphereincreasng and ceaeasngits sze

[Rucker, 77] presaits a method by means of which it is posgble to visuaize a
greder number of spheresthat compaosethe 4D hypersphere’ s hypersurface In first place
we will descibe sich methodfor visualizing a here in Flatland. It wasbefore mentioned
that the phere's surface ca be considered as omposed by an infinite number of
circumferences becauseof that, we will consider the here s intersedion with Flatland so
that the drcumference with the greaed diameter must be embedded in the 2D plane
(Figure 3.19.a). From the sé of circumferencesonly will be mnsidered those that are

perpendicular to Flatland (Figure 3.19.b).

N>

a) b)
FIGURE 3.19
A sphere sintersedion with Flatland and considering some drcumferencesonits surface
(own elaboration).
In Flatland, only the drcumference enbedded in the plane and two points for eat

sdeded circumference will be visualized (Figure 3.20.a). Thosetwo pdnts ae the reault

of the intersedion ketween a perpendicular circumference and Flatland (Figure 3.20.b).
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FIGURE 3.20
Visualizing some surfacés drcumferenceson a ghere from Flatland and from the 3D
space(own elaboration).

The pair of points for ead perpendicular circumference to Flatland descibe a
straight line in the 2D space or a rotation's &is in the 3D space(Figures 3.20.a and b).
Ead circumference can be rotated + 90° aroundthe ais descibed byitstwo intersedion's
paints. In thisway, now, those arcumferenceswill coincide with the plane, and al of them
will be obsavable, together with the originally embedded circumference, by a two-

dimensional being (Figure 3.21).

FIGURE 3.21
Visualizing the drcumferences nowv embedded in Flatland, that compose
the 3D sphere (own elaboration).
Now, we will show [Rucker, 77]'s method for visualizing the 4D hypersphere. It

will be @nsidered the hypersphere’s intersedion with ou 3D spacein such way that the
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sphere with the greaeg volume will be the first embedded (for example, in Figure 3.18,
t = 3). It is known that the hypersphere’s hypersurfaceis cmmpaosed by an infinite number
of spheres(asthe phere’s wurfaceis composed by an infinite number of circumferences.
Only those pheres (initially embedded in the 4D space that are perpendicular to our 3D

spacewill be considered.

Ead ore of the seéeded spheres ca be considered as a3D subspace enbedded in
the 4D space (in analogows way, the initially perpendicular circumferencesto Flatland
could be ansidered as2D spaces embedded in ou 3D space Figure 3.20.b). It is known
by [Sommerville, 58 that the intersed¢ion between two perpendicular (n-1)-dimensional
subspaces descibe a (n-2)-dimensional subspace By instantiation, in 4D space the
intersedion ketween two 3D subspaceswill define a2D subspace In ou current context,
the intersedion between eat ore of the ghereswith ou spacewill descaibe aplane (in
analogows way, the intersedion d ead sphere’'s drcumferences with Flatland, bdh
descibing 2D subspaces descibe a $raight line). Such intersedions will be visualizablein
our 3D space asparalel circles enbedded in the main sphere. See Figure 3.22
(andlogouwsly, the intersedions between the drcumferences ad Flatland could be

visualizable as gaight linesinside the main circumference seeFigure 3.20.a).

\

FIGURE 3.22
The intersedions (the parall el circles enbedded in the phere) between the 3D space ad
some pheresonthe 4D hypersphere’ s boundry (own elaboration).

121



The intersedions between ou space ad the séeded spheres descibe a 2D
subspace which can be @mnsidered arotation’s plane in the 4D space(in the sane way the
straight lineswere mnsidered rotation's aisin the 3D spacg. Therefore, Sincethe séeded
spheres ae perpendicular to ou 3D space it is suffi cient to apply to ead sphere arotation
of +90° around the intersedion's plane, so that, they beomme ambedded, and
consequently, visualizable in ou space Figure 3.23.a shows five séeded 4D
hypersphere’'s pheres the central sphere is the one anbedded in the 3D spacethat didn't
require any transformation (also shown in Figure 3.23.b), while the remaining four were
rotated around the planes defined by the drcumferences(shown in Figure 3.23.b) which

are the product of the intersedion between thasefour sphereswith the 3D space

b)

FIGURE 3.23
Visualizing in the 3D space4D Hypersphere' sfive séeded spheres
(seetext for detail s. Own elaboration).
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