Chapter 2
Geometry of the Four-Dimensional Space

This dchapter will f ocus on threeimportant topicsrelative to 4D space (sedion 2.J)
Badc definitions, (sedion 2.9 revision d four families of poytopes ad (sedion 2.3
geometric transformations. Although it is suggeded by the title, this dapter does't
concentrate exclusively on 4D spacés apeds, becaisethese sme apeds will save as

suppat for preseanting some formulations which are gplicable to n-Dimensional Space

2.1 Definitions

2.1.1Polyhedra

A polyhedron is abounded subsd of the 3D Euclidean Space @closed by a finite
sd of plane paygors such that every edge of a paygonis sared by exadly one other
poygon (adjacent poygors) [Preparata, 859. Additionaly, it can be esablished that the

poygorsthat areincident to avertex must compose a sgle drcuit [ Coxeter, 63.

[Coxeter, 63 edablished that the payhedron's boundxry is a $mple and closed
surface of a volume (therefore, “dangling’” faces ad edges ae not acceted). When the
volume's aurface(i.e. the payhedron’'s boundry) is cnsidered withou ageds like aeas
distancesor anglesbut only taking the surfacés apeds nat affeded by deformation, then
we will work with the surface stopology [Weeks, 02. In this ontext, the whole surfaceis

cdled atwo-dimensional manifold or a 2-manifold.

29



A 2-manifold has dther locd and dobal properties Locd properties ae those
obsavable inside amanifold's snall region, while global propertiesrequire to consider the
manifold entirely [Weeks, 02. For example, a 2-manifold defines a2D spacewith a locd
topdogy for a plane, however its global topdogy can correpondto a phere’s surfaceor a

torus' surface(or any ather).

The palyhedron's surfacemust fulfill t wo charaderistics dated by [Coxeter, 63: to
be smple and closed. The surfaceis dosed, o in aher words, the manifold is dosed when
it decomposesthe acewhere it is enbedded (3D spacg in two regions, ore of them
cdled the interior, isfinite [Coxeter, 63]. The wurfaceis smple and closed, a the manifold
Is oriented and closed, when it is possble to dstingush bah its oppasite sdesin the 3D
space that isto say, it is dealy posgble to distingush between the interior and the outside

(Klein'sbattleis an example of a dosed na oriented manifold) [Hansen, 93.

Edges ad \ertices as boundry elements for poyhedra, are dassfied as
2-Manifold (or just Manifold) elements. A Manifold edge is aljacent to exadly two faces
and a Manifold vertex is the goex (i.e., the ammmon wertex) of only one cone of faces (the

faces ompose a mgle drcuit) [Rossgnac, 91].
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2.1.2 Pseudo-Polyhedra

A pseudo-polyhedron is abounced subse of the 3D Euclidean Space @closal by a
finite clledion o planar faces sch that every edge hasat leas two adjacent faces and if
any two facesmed, they med at a common edge [Tang, 91. From this defi nition we have
that payhedra ae a pedal case(a subsd) of pseudo-paoyhedra when exadly two faces are
incident to all their edges The boundiry’s Pseudo-Polyhedra dso must fulfill t o be aclosed

surface(“dangling’ faces ad edges ae nat acceted).

From the topdogicd’ s point of view, orly some regions of the pseudo-payhedron’s
surface ae 2-manifold. This is because contrary to pdyhedra, the pseudo-poyhedra’s
interior is composed by more than two regions. An interior region can be sea aslimited by
a surface In a psaudo-poyhedron, at leas two interior regions’ surfaceshave common
points, which compose the regions, from the srface see dgobaly (the pseudo
poyhedron's whole surface that are not 2-manifold, a in ather words, theseregions ae
nonmanifold. For example, seethe pseudo-payhedron pesented in Figure 2.1.a. That
pseudo-payhedron can be sea astwo cubes $aring avertex (Figure 2.1.b). The boundry
of ead cube istopdogicdly equivalent to a phere’s surface(Figure 2.1.c). Finaly, bah
surfaceswill have a @mmon pant, that is to say, the dared vertex (Figure 2.1.d). All the
surfacés regions ae 2-manifold, except the point that corregpond to the dared vertex,

which is non-manifold.
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FIGURE 2.1
A psaudo-payhedron (a) anditstopdogicd considerations (b, ¢ & d).
Seetext for detail s (Own elaboration).

Edges and \ertices asboundry elements for pseudo-payhedra, may be ather two-
manifold (or just manifold) or non-manifold elements. In the caseof edges they are (non)
manif old elements when every pantsof it is dso a (non) manifold pant, except that either
or both of its ending wertices might be a point of the oppasite type [Aguilera, 9§. A
manifold edge is ajacet to exadly two faces and a manifold vertex is the gex (i.e., the
common ertex) of only one cone of faces. Conversdy, a non-manifold edge is ajacent to

more than two faces and a nonrmanifold vertex is the gex (i.e.,, the common ertex) of

more than ore cone of faces [Rosggnag, 91].
2.1.3 Four-Dimensional Polytopes

We will extend the payhedron’s definition preseited by [Preparata, 85 (see setton

2.1.1) for defining the 4D Polytopes A 4D Polytope is aclosed subsd from the 4D
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Euclidean Space which is delimited by finite sé of threedimensional cdls or volumes
(pdyhedra) such that every volumes faceis dared oy with ancther volume (adjacent
volumes. In the sane way, it can be esablished that a 4D Polytope's boundxry will be a
simple and closad hyper-surfaceof a hyper-volume, therefore, “dangling” volumes faces
and edges ae not accepted (it has been extended, in analogows way, ore of the most
important propertiesthat must fulfill a poyhedron, which hasbeen cited by [Coxeter, 63

and also mentioned in sedion 2.1.).

[Weeks, 02 points out that the definitions related to the 2-manifolds topdogy
(surface$ can be extended for defining the 3-manifolds topdogy. [Weeks, 02 defines a
2-manifold as aspace with a plane's locd topdogy onits boundry, and analogously,
defines a 3-manifold as a pace with ou “ordinary” threedimensional spacés locd

topdogy onits boundry.

We can apped to Flatland for a better understanding. Flatland is atwo-dimensional
universe therefore, it is a sirfaceor a 2-manifold, which is inhabited by pdygoral beings.
A.Sguare’s interadion with his universe will alow him to determine that Flatland is a
plane, however, this conclusionistopdogicdly valid from alocd point of view. Flatland's
global topdogy could belongto a phere's surface(asdeseibed in Sphereland [Burger,83))
or atorus surface for example. Our threedimensiona universe which we inhabit, can be
sea as Jpaceland [Abbat, 84). However, since Einstein, ou universeis sea as ahyper-
surface or better, a 3-manifold [Sagan, 8(Q. Our universe ca be the hyper-sphere's
boundry (asEinstein believed), or a 4D torus boundry. Becausewe ae anbedded in a

3-manifold, ou universe we can nd perceve the dfeds by its aurvature, or in aher
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words, by its global topdogy. Since the 4D Polytopes boundry is composed by three

dimensional cdls, itstopaogy will be related with a 3-manifold.

Facesedges and \ertices asboundry elements for 4D polytopes will be manifold.
[Hansen, 93 has etablished that a manifold faceis aljacent to exadly two vdumes and
[Pérez & Aguilera, 03 have suggeded that a manifold edge is the cmmmon edge of only
one hyper-cone of volumes (the faces ad edges charaderizaions will be anayzed with

more detail i n chapter 4).

2.1.4 Four-Dimensional Pseudo-Polytopes

We will extend the pseudo-payhedron’s definition preseated by [Tang, 93 for
defining the 4D Psaudo-Polytopes A 4D Pseudo-Polytope is abounced subsé of the 4D
Euclidean Space @closal by afinite wlledion o volumes sich that every facehasat leas
two adjacent volumes and if any two vdumes med, they med at a common face From
this defi nition we have that 4D Polytopes ae a pedal case(a subsd) of Psaudo-Polytopes
when exadly two vdumes are incident to al their faces The boundxry’s Psaudo-Polytopes
also must fulfill t o be ahyper-volume's dosed hyper-surface (“dangling’” volumes faces

and edges ae not acceted).

Bagcdly, the topdogicd diff erencesbetween 4D Polytopes and Psaudo-Polytopes
are analogots to the Polyhedra and Psaudo-Polyhedra's caseCertain regions from the 4D
Psaudo-Polytopes boundry can be considered as not belong exclusively to just one

3-manifold, because as aalogowsly to Pseudo-Polyhedra, theseregions (faces edges or
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verticeg can be sea as $ared by several hyper-surfaces Therefore, faces edges and
vertices asboundry elements for 4D paytopes may be ather manifold or nonrmanifold
elements. We have dated that a manifold face is ajaceit to exadly two vadumes
and a manifold edge is the ommon edge of only ore hyper-cone of volumes.
[Pérez & Aguilera, 03 have propcseal that a nonmanifold faceis ajacent to more than
two vdumes and a nonmanifold edge is the common edge of more than ore
hyper-cone of volumes (chapter 4 will descibe the methoddogies that lead to these

charaderizaions).

2.1.5 The n-Dimensional Polytopes

[Coxeter, 63 defines a Euclidean pdytope I, as afinite region o n-dimensional
Euclidean space @closed by a finite number of (n-1) dimensional hyperplanes The
finitenessof the region impliesthat the number N, of boundng hyperplanes s#sfiesthe
inequality N,..>n. The part of the palytope that lieson ore of thesehyperplanesis cdled a
cdl. Each cdl of aIl,is an (n-1)-dimensional palytope, I1,1. The cdlsof all,; are [1,.2's,
and so or we thus obtain a descading sequence of elements I',,3, [1y.4, ... ,I11 (an edge),

Iy (avertex).

The way that the cdls I, ITho, In3, Iha, ... , I3, I are related is given by the

following [Sommervill e, 58’ s obsavations:
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e Thell,.i'ssharell,,'s, in that way, it is defined a Polytope I'T, when two and orly two
[Ty1's dare alln.z; when more that two In.1’s are all,, then it is defined a Psaudo
Polytope I'T, (the notationIT, is mmmonto pdytopes and pseudo-palytopes.

e Threeor moreIl, ;' swill have a ©mmonIl,.s.

e por morellns swill have a @mmon I1p.p.

e n o morell,, swill have a @mmonIl, (avertex).

We know that a IT3 (a 3D Euclidean pdytope) is apayhedron. The poyhedron's
cdls aeIl,. A T, (a 2D Euclidean pdytope) is apaygon. The paygon's cdls aeIl;. A
IT; (a 1D Euclidean pdytope) is a sgment. Finaly, the sgment’s cdls ae Iy, a sé of
vertices The cdls of a Iy (a 4D Euclidean pdytope) are I3 (poyhedra, also cdled

volumesin the context of Iy).

From the topdogicd’s point of view, n-dimensional Polytopes aie cnsidered by
[Hansen, 93 as a tosad sd of n-manifolds, orne for ead cdl IT,.1. In the previous setions,
the 3D and 4D Polytopes boundry was etirely considered as amanifold. For example, a
cube’'s boundxry is topdogicdly equivalent to a phere, bu from [Hansen, 93’ s paint of
view, eat faceof the aube will be topdogicdly equivalent to a plane, or in ather words,
eat ore will be a2-manifold. Furthermore, [Hansen, 93 statesthat ead element ona cédl
IT..1's boundiry will have its regpedive topdogic equivaence In this way, the elgesof a
cube’'s face will be topdogicdly equivalent to a 1-manifold (a gace with the locd
topdogy d aline [Weeks, 02) and so forth. By representing the nD Polytopesby this way,

[Hansen, 93 presants the foll owing properties(which will be recmnsidered in chapter 4):
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1. A O-manifoldis apaint, andit hasno boundry.

2. All boundry elements of an n-manifold are (n-1)-manif old elements.

3. All (n-1)-dimensional elements belongto exadly two n-manifold elements (or twice to
the same dement).

4. Manifold elements may nat interse¢ ead ather except at common boundry elements.

2.2 Some Polytopes Families

In the following sedions, threeof the main familiesof paytopeswill be descibed.
These poytopes families «ist in al hyperdimensional spaces|[Aichhdzer, 0Q: the
parallelotopes, the simplexes and the cross polytopes (sedions 2.2.1, 2.2.2and 2.2.3
regedively). Furthermore, it will be deseibed the 0/1-Polytopes, which are dosdy related

to the parellelotopes (sedion 2.2.3.

2.2.1TheHypercube

2.2.1.10btaining aSegment, a Square, a Cube and a Hypercube

[Rucker, 77 preseats Claude Bragdoris methodto define a seesof figureswhich

are cdled the parallelotopes [Coxeter, 63 or the orthotopes [Sommervill e, 5. First a 0D

point is taken and moved ore unit to the right. The path between the first and the seond

new point produces alD segment. The first dimension, represented by the X;-axis (X), has

appeaed (Figure 2.2).
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0 0 1

FIGURE 2.2
Generation and final 1D unit segment C, (own elaboration).

The new segment is then moved ore unit upward. The path between the fir st and the
seond rew segment produces a2D square (a parallelogram). The seond dmension,

represated bythe X -axis (Y), has gpeaed (Figure 2.3).

X X1

FIGURE 2.3
Generation and final 2D unit square C, (own elaboration).

The new sguare is then moved ore unit forward ou this paper. The path between
the first and the seond rew square produces a3D cube (a paraleepiped). The third
dimension, represanted by the Xsz-axis (Z), has gpeaed (Figure 2.4). Becaise we ae
working ona 2D surface(this paper or the mmputer’s seeean), a diagoral between X; (X)
and Xy-axis (Y) represaits the Xs-axis (Z), however it should be interpreted as a line

perpendicular to this 2D surface.
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FIGURE 2.4
Generation and final 3D unit cube C; (own elaboration).

N

We know that the fourth dimension has a direction perpendicular to the other three
dimensions, in this case the Xs-axis (W) is presented as a perpendicular line to the Ws-axis
(2). Then the cube is moved one unit in direction of the X-axis (W). The path (six cubes
perpendicular to the first one) between the first and the second new cube produces the 3D

boundary of a 4D hypercube (a 4D paralelotope). The fourth dimension has appeared

(Figure 2.5).
X5 X5
. X3 XS
NI
X4
\ Z \ N
N4 AN 7
NP\
(; - X1 0 Xy
FIGURE 2.5

Generation and final 4D unit hypercube C4 (own elaboration).

39



Definition 2.1: Let C,, be the n-dimensional parallelotope, then Cy is a point and

Figures 2.2to 2.5 correspond to C; to Ca.

TABLE 2.1

The hypercube's volumes(own elaboration).

v{
N

N

NN
N

N

N

2.2.1.2 The 4D Hypercube Properties

The analysis of the hypercube is dso intereging becaiseit can be dore using the
analogy with the 3D cube and the method peseited in sedion 2.2.1.1.[Hilbert, 52
identifi ed that the boundary of a hypercube is mmpaosed by eight three-dimensional regions
cdled cubes voumesor cdls (Table 2.1), and cdl the hypercube an 8-cdl paytope. To
better ill ustrate this, let’s sedts analogy with its 3D counterpart. The 3D cube’'s boundary
faces ca be grouped into threepairs of parallel faces where their suppating danesdefine
two 2D-spacesparall €l to ead ather. Each pair can be obtained byignaing al those @lges

paralel to main axesXi, X, and X3 [Aguilera, 0], seeFigure 2.6.
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FIGURE 2.6
Viewingthe aube' s boundry faceqtaken from [Aguilera& Pérez 02).

Similarly, and as $iown in Figure 2.7, al the hypercube's boundary volumes ca be
grouped into four pairs of parallel cubes furthermore, their suppating hyper-planesdefine

two 3D-spacesparal el to ead aher.

FIGURE 2.7
Viewing the hypercube' s boundry volumes(taken from [Aguilera & Pérez 02).

[Coxeter, 84 adso edablishes that beddes these &ht volumes the hypercube's
boundry is mmpaosel by 24 faces 32 edges and 16 \ertices Every faceis dhared by two
cubesthat dornit lie onthe sane threedimensional space bu rather both have rotated about
the plane represaited by the common face until the two threedimensional spaces

represanted bythe aubesform aright angle (Table 2.2)
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TABLE 2.2
The hypercube's 24 faces and their incident volumes (own elaboration).

If we position the hypercube where one of its vertices is at the origin and six of its
faces coincide each one with some of XX, (XY), X1X4 (XW), X2X3 (YZ), X2X4 (YW),
X3X1 (ZX), and X3X4 (ZW) planes, then we have the positive coordinates presented in

Table2.3.
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TABLE 2.3
The hypercube's mordinates(own elaboration).

Xi| Xa | X3 | Xq Binary Vertices deamal
X)| (V)| (Z2) | (W) |Representation | representation

0[] 0] O 0 0000 0

1)1 0] 0 0 0001 1

O 110 0 0010 2

1/ 1] 0 0 0011 3

0| 0| 1 0 0100 4

11 0] 1 0 0101 5

0| 1] 1 0 0110 6

111 ] 1 0 0111 7

0] 0] O 1 1000 8

1/ 0[O0 1 1001 9

O 10 1 1010 10

1 1 0 1 1011 11

0| 0| 1 1 1100 12

11 0] 1 1 1101 13

0 1 1 1 1110 14

111 ] 1 1 1111 15

We can olseve that al vertices coordinatespresented in Table 2.3 can be used to
descibe a binary number, where X; coordinate is the less gynificant digit and X4
coordinate is the most significant digit. In this way, we have that using the deamal
representation for thase binary numbers, we can refer, for example, to vertex 14 as that
whaose oordinates ae (0,1,1,1). In thiswork, we will r efer to the hypercube's verticesusing

their dedmal representation.

2.2.1.3 Counting the Number of Lower Dimensional Elementsin a nD Hypercube

From the Bragdoris method peseaited in sedion 2.2.1.1t is eay to olsave that
eadt time we move C, to generate Cp.1 the number of verticesdouldes becaisewe have an
initial and a final position. From this analysis, we can conclude that the number of vertices

inaC,is?2".
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Definition 2.2: Let Q(n,k) be the number of kD cubesin a rD hypercube, i.e. the

number of C/sin aC,for 0<k <n.

To compute Q(n,k) we must first cdculate how many C(’'s ae incident to eat
vertex in a C,. There ae n incident edgesto ead vertex in C, and we get a Cy for eah
subse of k distinct edgestaken from thesen incident edges(this property can be visuali zed
obsaving the se@uence of Figures 2.2 to 2.5). For instance, the number of kD cubes &
ead vertex of anD hypercubeis:

K n!
Cn k) = in—w)
Becaisewe have C(n,k) C¢’sin ead ore of the 2" C.'s vertices we get 2" -C(n,k) C¢'s.

However, eat Cy is murted 2 times for consejuence, we must divide the intermediate
formula by this number to get the final formula (preseitted in [Coxeter, 63 and

[Banchoff,96]):

Q(n, k) = sznk) _ 2"k.C(n,K)

SeeTable 2.4 for the formula' s gplication.

TABLE 24
Obtaining the propertiesof apoint, a sgment, a guare, a aube and a hypercube
(own elaboration).
nD hyper cubes (C,) 0 1 2 3 4
kD cubes (Cy) (point) (segment) | (square) (cube) | (hypercube)

0 (verticeg 1 2 4 8 16
1 (edges 1 4 12 32
2 (face$ 1 6 24

3 (volumes 1 8

4 (hypervolumes 1
kD cubes sum 1 | 3 | 9 | 27 81
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[Banchoff, 96 points that the am of the C¢’s in ead column (in Table 2.4)

provides apower of 3. Furthermore, we present the following

Theorem 2.1: > Q(n,k)=3" VneN

k=0

Proof: By substituting Q(n,k) with its formula we obtain
D Q(n,k) =>"2"*-C(n,k)
k=0 k=0
where theright hand side is aparticular caseof the well known Binomial Theorem:
n N n n-kp k
(a+b)"=>'C| |a"*b
k=0 k

when a = 2andb = 1, which evaluatesto 3". [

n(n
Corolary 2.1: Each termin the im ZC(JQ”“‘ represents the number of Cy's

k=0

inaCy.

For example, for the aube (C3) we have:

< 3 3-k 3 3 3 2 3 1 3 0
Y Cl |-2%=Cl _[-2°+C| |- 2°+C| _|-2'+C| _|-2°=8+12+6+1
= (K 0 1 2 3

which corregponds to the number of vertices (8), edges (12), faces(6) and cubes (1)

repedively.
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Corolary 2.2: The total number of all lower dimensional boundary elementsin C,

is3"-1.

Proof: By Corolary 2.1 ead term in the Im
D Q(n,k)=> 2" -C(n,k)
k=0 k=0

correponds to the number of C¢’s onthe C,'s bourdary, except the lad term (when k = n)
which evaluates to 1 (one) and correponds to C, itsdf. Therefore the number of all

boundng elementsin C, is

Ly

n—:

Qnk) =3"-1 [

T
o

For example, a aibe (C3) has3"— 1 = 26 boundihg elements (8 vertices 12 edges
and 6face$. Moreover, the @bove wrollary with n= 4 sdisfiesthe Coxeter’s courting o
the hypercube’'s (C4) boundry (see setton 2.2.1.2.

2.2.1.4 Coordinatesfor the nD Hyper cube

[Coxeter, 63 edablishesthat the mordinates for a nD hypercube with edges of

length 2can be descibed in genera as
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For example, using the dowve desciption, the wordinatesfor a guare (n = 2) are:

(+1+1
(+1-1)
(-1+1)
(-1-1)

If we gply the trandation (1,...,1), and the scding (0.5,...,0.5 we oltain the

general sd of coordinatesfor aunit Cy:

(0,0...0,0), (_1,,0,...00), ...,(L...1,0,...0), .,(1L..1 0 ), (LL...11) =
T S e i e Sl e

n n- n—i n-1 n

1°,0m, @,o0™, ..., @,0m), .., @04, (1",0%

where the mordinatesmust be permuted in baseof the following dstribution:

clob el i - el o)

n n!
where C(ij = i(n—1)! defines the number of those ordinates that have i ones and

n—i zeros. Then we can evaluate and relate the previous distribution with the number of

verticesin the Cy;

n! - (N N
1+ n+"'+i!(n—i)!+"'+ n+1:§Ci = 2

Table 2.5 shows the gplicaion d the procedure onthe 4D hypercube.
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TABLE 2.5
Defining the 4D hypercube’ s vertices oordinates(own elaboration).

Vertex

Va“.Je of Num_ber_of Coordinates (Decimal

i Combinations .

r epresentation)

0 1 (0,0,0,0 0
. (1,0,0,0 1
(0,1,0,0 2
! C(J =4 (0,0,1,9 4
(0,0,0,1 8
(1,1,0,0 3
A (1,0,1,0 5
(0,1,1,0 6
2 C@ =6 (1,0,0, 9
(0,1,0) 10
(0,0,1,1 12
4 (1,1,1,9 7
1,1,0, 11
3 C(sj =4 0] 13
(0,1,1,9 14
4 1 (1,1,1,9 15

2.2.2 The Simplex

In [Coxeter, 63 is preseaited a methodfor obtaining afamily of poytopes c#l ed the
simplexes. Badcdly, these pdytopes ae the smpled that can be generated in their
regedive gaces First, consider a OD point which in fad (and obvously) descgibes aOD
space(Figure 2.8). Now, sded any pant nat embedded in this 0D space The two pdnts
union will generate a sgment, the 1D simplex (In Figure 2.9 we ae wnsidering the

speda casewhen the new poaint is onthe Xi-axis).

0D

[ ]
FIGURE 2.8
The OD simplex (own elaboration).
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> 1D
—

——————— o e
° ) X,

FIGURE 2.9
Generationandfinal 1D simplex, a sgment (own elaboration).
Now, athird pant is séeded in the way that it is not embedded in the graight line
(a 1D space defined by the original segment. The new paint is united to the 1D simplex’s
two vertices which generates atriangle, a 2D simplex (In Figure 2.10 we cnsider the

spedal casewhen the new third pdant isonaline parall el to the X»-axis).

A L4 sz
X7 X
FIGURE 2.10

Generation and final 2D simplex, atriangle (own elaboration).

The next step is ansider a fourth pdnt which is nat embedded in the plane (a 2D
space defined by the original triangle. The new paint is united to the 2D simplex’s three
vertices which generates atetrahedron, a 3D simplex (In Figure 2.11 we mnsider the

speda casewhen the new fourth pdnt isonaline parallel to Xs-axis).

'/ /X3
x5 X7
FIGURE 2.11

Generation andfinal 3D simplex, atetrahedron (own elaboration).
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We seect a new fifth pant which is not embedded in the hyperplane (a 3D space
defined by the origina tetrahedron. The new point is united to the 3D simplex’s four
vertices which generates a4D simplex (In Figure 2.12 we mnsider the gedal casewhen

the new fifth pant isonaline paralel to the Xs-axis).

FIGURE 2.12
Generation and final 4D simplex (own elaboration).

Any nt+1 linedly independent points (or in ather words, all the points dont liein a
[n-k]-dimensional hyperplane) will be the n-dimensional simplex’s vertices The dements
in the nD simplex’s boundxry will be dl (n-1), (n-2), ..., 1, Gdimensional simplexes

composed bythe possble subses of the n+1 pants. Then, anD simplex will have:

n+1 . n+1 n+1 n+1
C[ 1 ]VGF'[ICGS C( 5 Jedges C( 3 Jfaces C( 4 jvolumes

Let N, be the number of the k-dimensional elements on the n-dimensional

simplex’s boundxry. Its formulais then ([Sommervill e, 58 & [ Coxeter, 63):

n+1
N;:c[ j
k+1
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By applying the formula onthe 4D simple, it isfoundthat it has5 vertices(OD), 10
edges(1D), 10(trianguar and 2D) faces ad 5(tetrahedricd and ) volumes(seeFigure

2.13).

FIGURE 2.13
Viewing the 4D simplex’ s five bourdary volumes(Own elaboration).

[Coxeter, 63 pointsout that the well known relation

fraldurd

represeants the smplex’s wnstruction as a piramid”, with any cdl as ‘base” and the vertex,
which is outside the (n-1)D hiperplane descibed by the “base’, asits “apex” (seeFigures
2.8 10 2.12). The number of k-dimensional elements that compasethe “base” aie indicated
by the first term (when n=k + 1 the base ourts itsdf), while the number of k-dimensional
elements that are incident to the apex are mwunted by the seondterm (when n=k + 1 the

apex courtsitsdf). Table 2.6 shows the gplicaion d the relation onthe tetrahedron.
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TABLE 2.6
The kD elements of the tetrahedron bult as a pyramid” (own elaboration).

kD elementsthat kD elements
composethebase | incident tothe apex
kD elements n n
C
[y )
Vertices— 0D 3 1
Edges— 1D 3 3
Faces- 2D 1 3

The mordinatesof the nD simplex’sfirst n vertices ae given by permuting:

(1,0,0,...0)

Whil e the vertex n+1 isthe origin [Cohen, 79. For example, the vertices coordinatesfor

the 4D simplex are presented in the Table 2.7.

TABLE 2.7
The vertices coordinatesfor the 4D simplex (own elaboration).

\éﬁrl' ‘f X1 | Xo | Xs | Xa
1 10|00
2 01100
3 01010
4 01001
5n+1) | 0 | 0| 0] 0

2.2.3 The Cross Polytope

The methoddogy presented by [Coxeter, 63 will be used again for generating a
third family of paytopes the Cross Polytopes. Just asin bah previous methoddogies
(hypercube and simplex) we gart with a OD point (Figure 2.14). Beddesthe original point

it will be generated ather two which are trandated in oppaite diredions dongthe new fir st
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dimension, represented by the X; axis. Both points are joined to the first one to compose
the 1D cross polytope (Figure 2.15), that is, a segment (this is the only case where the
original first point is eliminated from the final segment, because it is the common point of

the two segments composed by the union of the two new points on the X; axis and it).

0D
o

FIGURE 2.14
The OD cross polytope (own elaboration).

FIGURE 2.15
Generation and final 1D cross polytope, a segment (own elaboration).

In the 1D space are generated two new points in addition to the existent two. The
new points are translated in opposite directions along the new second dimension, the X
axis. Both points then are joined with the original two to compose the 2D cross polytope, a

square (Figure 2.16).

P

FIGURE 2.16
Generation and final 2D cross polytope, a square (own elaboration).
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Again, two new points, additionally to the existent four, are generated in the 2D
space. Both points are translated in opposite directions along the new third dimension,
which is represented by X3 axis. The new points are joined to the original four to compose

the 3D cross polytope (Figure 2.17), or in other words, a octahedron.

3D

FIGURE 2.17
Generation and final 3D cross polytope, an octahedron (own elaboration).
Finally, two new points are generated, additionally to the six original pointsin the
3D space, and trandated in opposite directions along the new fourth dimension, that is, the
X4 axis. Asin the previous steps, both points are joined to the original six, inthisway, it is

obtained the 4D cross polytope (Figure 2.18).

FIGURE 2.18
Generation and final 4D cross polytope (own elaboration).



[Coxeter, 63 points out that the nD crosspaolytope can be cnsidered as adipiramid
which is baseal in the (n-1)D crosspaytope, where there ae two apexesin bah dredions
of the new dimension. Seethe aosspaytope’s building sequencein Figures 2.14 to 2.18.
For example, octahedron is adipiramid basel in the gquare (Figure 2.17) while the 4D
cross polytope is a4D “dipiramid” basel in the octahedron (Figure 2.18). Both cross
polytopes have their pair of apexesin bah dredions of the third and four dimensions

regedively.

One of the fundamental properties of the Euclidean n-dimensiona spaceis the
posshility of configuring n mutualy perpendicular lines passng through any point
[Coxeter, 63. When sdeding equidistant points from the origin alongthe main axisin bah
diredions, the adosspaytope's 2n wertices ae defined (the main axis compaose a “coss”,

that the origin for the paytope’s name). Then, the vertices coordinatesfor the nD cross

polytope with edgesof length -/2 are given by permuting:

(£10,...0)

n

For example, the vertices coordinatesfor the 4D cross polytope ae preseited in

Table2.8.
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TABLE 2.8
The vertices coordinatesfor the 4D crosspalytope (own elaboration).

Vertex X1 X X3 Xa
1 1 0 0 0
2 -1 0 0 0
3 0 1 0 0
4 0 -1 0 0
5 0 0 1 0
6 0 0 -1 0
7 0 0 0 1
8 0 0 0 -1

When there ae considered orly n pants which are equidistant from the origin along
the main axis, the (n-1)-dimensional simplex’s vertices ae defined. In fad, this (n-1)D
simplex is anbedded in a nD spacés hyper-octant. For example, in Figure 2.19 is
presated a triangle anbedded in the octant which is defined by the paositive sdesof 3D

spaces X1, X, and X3 axis.

X3
FIGURE 2.19

Triangle enbedded in the octant defined by the positive sdes
of the 3D spacés X1, X, and X3 axis (own elaboration).

Consider the aosspaytope whose oordinates ae basel in permuting (£1,0,...0).

Therefore, due to the eistence of 2" possble hyper-octants in nD space the number of

(n-1)D smplexeson the aosspalytope’s boundry will be 2" [Coxeter, 63. For example,
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octahedron is composed by 8trianguar faces(one for ead octant in 3D spaceg, while the
4D crosspaytope has16 tetrahedrica volumeson its boundry (Figure 2.20), ore of eat

4D spaceés hyper-octant.

FIGURE 2.20
Viewingthe 4D crosspalytope’ s 16 boundry volumes(Own elaboration).

The aosspaytope can be obtained, from ancther point of view, throughthe Duality
Principle [Banchaff, 96. In brief, for building a payhedron’s dual a vertex in the center of
eadt faceis chosen. The vertices fi na se obtained in this way, defines adual polyhedron.

As an example, we have the well known duality between the aube and the octahedron.
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The Duadlity Principle can be gplied in the sane way in the 4D space(and in the
subsequent spaces, therefore, the 4D hypercube's aght volumes ©rregpond to the 4D
cross polytope’'s aght vertices The dudlity between nD hypercube and cross polytope
generates a orrepondnce between their elements on their repedive boundries The
courting d the dements on the 4D cross paytope’'s boundry by [Sommerville, 58
edablishes that it has 8 vertices 24 edges 32 faces ad 16 vdumes See Table 2.9 to
appredate the relation between the 4D hypercube and crosspalytope’s dements.

TABLE 2.9

Correpondencesbetweean elements
onthe 4D hypercube and crosspadytope’ s boundries(own elaboration).

4D Hypercube | 4D Cross Polytope | Number of kD
(k) (k) elements
0 3 16
1 2 32
2 1 24
3 0 8

The duality, between hypercubes ad cross paytopes edablishesthat courting the
hypercube’'s k-dimensional elementsis equivalent to courting the aosspadlitope’s (n-k-1)-
dimensional elements [Sommerville, 5§. It is known that the hypercube’s k-dimensional

elements @muning (seeSedion 2.2.1.3isgiven by.

n-k n
Q(n, k) =2 -c(kj

If inthe eowve formula, k (the dimensionality of the dements on the hypercube’ s boundary)
isreplaced by nk-1, a in ather words, the k-dimensional elements on the dosspalytope’s

boundiry will be munted using the hypercube’ s formula, then we will have:

Q-2 1 Jozed n
n-k-1 n—(k+1)
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Be (k+1) =r, then by applying the well known relation:

The formulawill be finally:

k+1 n
Q(n,k) =2 -c(“l}

Which coincides with that presented by [Coxeter, 63 for courting the k-dimensional

elements on the nD crosspalytope’s boundry.
2.2.4 The 0/1-Polytopes

Let C, be an-dimensiona hypercube whosevertices coordinateshold the deamal

represeantation (see Table 2.3). Consider the ®nwvex hul of the suibsd V < C, of the

n-dimensional hypercube’s vertices The palytope P that represents the wnvex hul of V is
cdled a 0/1-Polytope or a sibpdytope of the hypercube [Aichhdzer, 0Q (it recevesthe
name of 0/1-Polytope because its vertices coordinates ae predsdy 0's and Is). The
subse V will descibe avalid O/1-Polytope under three ondtions: its cadinality must be
greder than n(remember that n+1 padnts ae required to compaose a snplex); al itsvertices
doean't liein a(n-1)-dimensional hyperplane; and finally, it must be convex (this cndtion

isobviously asaired byits relation with the convex hul).

There ae 2(2n) possble subsds of the nD hypercube’'s vertices The subsds with n
verticesor less & not considered. Furthermore, a grea part of the subsds ae equivalent,

in ather words, they are refledions or rotations between eat aher. A “Classof Vertex
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Sets” is defined by [Aichhdzer, 97 asthe one that contains ses of verticesthat can be
transformed in another sd, in the same dass by applying some transformation d refledion

or rotation.

There ae four sds of 3 verticestaken from the guare (in 2D spaceg, which are
presented in Table 2.10. For example, suitable rotations can be gplied to combination 1
for obtaining combinations 2, 3 and 4. Moreover, a sitable refledion can be gplied to
combination 2 for obtaining combination 3 (in a smilar way to combinations 1 and 4).

Therefore, al the cmbinations belongto the sane dass

TABLE 2.10

In the 2D spacethere ae 2* = 16 subses of verticestaken from a sjuare. The
posshle deven sds with 0, 1and 2 \ertices ae nat considered. Therefore, it will be
considered 4 sds with 3 \ertices (seethe previous paragraph) and ore se with four
vertices Finaly, by the gplicaion d the transformations of rotation and refledion, there
are only two classeof 0/1-Polygorsin the 2D space(seeTable 2.11), ore dasswith three

vertices(atriangle) and ore dasswith four vertices(a gjuare).
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TABLE 2.11
The two 0/1-Polygons (own elaboration).

¢

3 vertices 4 vertices

There ae 2° = 256 pssble sés of verticestaken from a aibe. Those sés with 0, 1,
2 and 3 erticeswon't be considered. By applying rotations and refledions between the
remaining ses with the sane number of vertices [Aichhdzer, 00 has ®©ncluded the
existence of 12 (classey 0/1-Polyhedra in the 3D space(seeTable 2.12). The distribution

for the cnsidered combinations of verticesis the following:

8

e C 4= 70 sdaswith four vertices(4 classes
8 - :

e C c =56 sdswith five vertices(3 classes
8 o .

e C 6= 28 sdswith six vertices(3 classek

8 . .
o C( ] =8 sdswith seven vertices(1 class.

\]

(o]

o C(8j =1 sd with orevertex (1 classg.
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TABLE 2.12
The twelve 0/1-Polyhedra (own elaboration).

0/1-Polyhedra

Vertices
Number

It is known that the 4D hypercube has 16 \erticeson its boundry. From these
vertices atotal of 2'° = 65,536ses with Oto 16 \ertices ca be formed. The séswith 0, 1,
2, 3and 4 \erticeswill be ignared. It must be considered, with the remaining ses, that al
their vertices donit lie in a 3D hyperplane. In the Table 2.13 are s1own some 4D
0/1-Polytopes classes in fad, six examples of sds with five vertices a&e preseited

(al the 4D 0/1-Polytopes with five vertices a 3smplexes in general, al the nD
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0/1-Polytopes with n+1 vertices ae smplexes. [Hill, 9§ presents a ourting d 402

classegor the 4D 0/1-Polytopes(however, [Hill, 98 considered al the 2'° pessble sés).

TABLE 2.13
Some 4D 0/1-Polytopes(1 to 6) composed byfive vertices smplexes
(own elaboration).

\
7
1 2 3
7 J ~
/
4 5 6

It has been mentioned that the number of sds of vertices taken from the nD

hypercube is 2(2"). When n < 5, ore of the most common methoddogiesfor finding the
classesfor 0/1-Polytopes is the exhaustive seaching [Aichhdzer, 97]. However, for
determining the 5D 0/1-Polytopes classesit must be onsidered the eistence of
232 = 4,294,967,296 Esble ses (with 0to 32 \erticed. Moreover, for determining the 6D
0/1-Polytopes classesit must be @nsidered 2* sds (with 0 to 64 \erticey. In
[Aichhdzer,0Q is preseited a methoddogy, that minimizesthe cmplexity imposed by the
exhaustive seaching, for determining the 5D 0/1-Polytopes classes (in fad,

[Aichhdzer,00] reports 1,226,525lassek
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2.3 The 4D Geometric Transformations

2.3.1 The 3D Geometric Transformations as Extension of the 2D Geometric

Transformations

[Hean, 95 considers 3D geometric transformations (translation, rotation, scding,
etc.) as etensions of the 2D geometric transformations for these sme operations with the

consideration d the X3 coordinate.

2.3.1.1 Trandlations

Trangating in the 2D space implies adisplacanent of apoygonin dredion d X;
and X,-axis, in ather words, we gply atransation over a paygonto change its pasition. A
2D point is onverted when the translation dstancest; and t, are added to the origina
coordinate (x1,X2) to move it to the new pasition (x1',x2"):

X=X +1
X,' =X, +1,

Or using hanogeneous mordinates and the matrix representation:

100
[x,' %" 1=[x x, 1|0 1 0
t, t, 1

Basal in the previous ideg trandating in 3D space implies adisplacement of an

objed in dredion d the X4, X, and Xz-axis. We translate a3D objed when it is moved in
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eat ore of the threediredions of the wordinates We translate apoint (X1,X2,X3) to the

pasition (x1',x2',x3") adding the corregpondng dstancests, t; and ts:

X=X +t

X,' =X, +1,

X3'= X5 +1

or

1 0 0O
[x' %' %' 1=[x x, x 1]0100
Xl 2 3 M 2 3 O 1 O
t, t, t; 1

2.3.1.2 Scaling

Scaling in 2D space implies a bange of size (and in some casesf shape and
position) of an oljed through two fadors eabt ore with relation with X; and X
coordinates A 2D paint is anverted when it is multiplied by the scéing fadors S; and S,
to produce the transformed coordinates (xi', X2'). The scéing fador S; scdesobjedsin the
diredion paralel to X; axis, while the scéing fador S, scdes objeds in the diredion

paralel to X, axis. We have then:

X1=SL'X1
X,'=S, - X,
or
S 0 0
[Xll X2' 1]:[)(1 X, 1]' 0 Sz 0
0O 0 1
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Again, it is posgble to extend the previous 2D concept and to conclude that scaling
in 3D space implies a diange of size of a pdyhedron by three fadors eat ore with
relation with X;, X, and X3 coordinates We @nwvert a 3D paint (X1, Xz, X3) when it is

multiplied by the @rregpondng scding fadors S;, S, and S; to get the wordinates

(X1, X', X3):
X'=S X
X'=S,%,
X3'=S; - X
or

o o oW,
o o W o
R O O O

o MW o o

2.3.1.3 Rotations

The rotation's caseis more gedal than trandation and scding. Rotation in 2D
spaceis dways given abou a point. However, in the 2D spacethere ae an infinite number
of paints. [Hean, 99 defines a2D rotation asthe change of position d a figure dong a
circumference s trgjedory in the 2D space (the X1X; plane, for example). The 2D points
can rotate an angle @ aroundthe origin, which is the eaged point, then we have that a

rotation is defi ned mathematicdly as

X,'= X, - €O — X, -Sing
X,'= X, -sind + X, - cosd

or
cosd singd O
[x,' %' 1=[x x, 1]-|-sin@ cosd 0
0 0O 1
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However, in the 3D space arotation must be given abou a line and there ae an
infinite number of linesin space The eaged way to caculate arotation in the 3D spaceis
when the rotating axis (a line) coincides with the X3, X, or X3 axis. Moreover, if we
consider the 2D space asthe X;X, plane where rotations ae aound an axis that is
perpendicular to such plane, then we have the first of the main rotating axis in 3D space
spedficdly rotation around X3 axis [Hean, 95:

X, '= X, - €0Sf — X, -Siné@
X,'=X, -Sin@ + X, - cosd

X3'= X,
or
cosy sind 0 O
R,(0) = —sind cos® 0 O
1o 0 10
0 0O 01

[Hean, 99 poaints that equations for rotations aound X; and X, axis can be

obtained with the following cyclic substitutions:

Xz —> X = X, —> Xy
Then, applying the indicated substitutions over the eguations for rotation around X3 axis,
we have the rotation around X axis:

X,'=X, - C0SH — X; - Sind
X3'= X, - SiN@ + X, - COSH

X=X
or
1 0 O O
R.(0) = 0O cosf# singd O
|0 —sind cos® O
0 0 0O 1
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And naw, applying the indicated substitutions over the equations for rotation around X;
axis, we have the rotation aroundX, axis:

X3'= X, - COSH — X, -SiNG
X, '= X, - SiNG + X, - c0sd

lezxz
or
cos¥® 0 —-singd O
R,(0) = 0 1 0 0
2/ 1sind 0 cos® O
0O O 0 1

2.3.2 The 4D Geometric Transformations as Extension of the 3D Geometric

Transformations

Probably the smpleg transformation operations to be derived from 3D spaceto 4D
space a@e trandation and scding. We sav before how the definition d 2D trandation and
scding were eagy adapted for working inside the 3D space Now, we will define these

geometric transformationsin the 4D and rD spaces

2.3.2.1 Trandationsin the 4D and nD Spaces

The trandlation in the 4D space implies the displacement of a 4D polytope in

diredion d X1, Xz, X3 and Xs-axis with the foll owing equations and transformation matrix

(which are a ample extension d trandationin the 3D space:
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X=X+t

X,'=X, +1,

X3'= X5 +1

X,'=X, +t,

or

1 0 0 0 O]
01 0 0O
[xl' X' Xyt X, l]z[x1 X, X3 X, 1]- 0O 01 0O
0O 0 010
ottty 1]

Finally, the trandation in the nD space will imply to pcsition a nD polytope in a
new locaion by adding trandation valuesto eat ore of its points n coordinates Ead
point (X1, X2, X3, X4, ...,%,) Will be moved t; units paralel to the Xi-axis, t; units parallel to
the X -axis, and so forth urtil it is moved t, units paralée to the X,-axis. In this way, the
new point (X1', X2', X3, X4, ..., X/') is obtained. This operation is descibed through the

foll owing matrix operation:

1 0 0 O 0

0O 1 0O 0

0O 01 0 0

(X" X' X' X, X," U=[X X, X3 X, x, 10 0 0 1 0
n+l n+l :

0O 0 0O 1

ottt t,

The trandation matrix will have n+1 columns aaxd n+1 rows because we ae

considering that the points will have the homogeneous representation. All the dements in
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the matrix’s main dagoral will be 1's. The trandation values a&e located in the lag row
eat ore positioned in the alumn that corregonds to their repedive ais. The matrix’s

remaining elements ae0's.

2.3.2.2 Scaling in the 4D and nD Spaces

Scaling in 4D space will imply a dhange of size of a palytope by four fadors eat
one with relation with X1, X5, X3 and X4 axes We mnvert a4D point (X1,X2, X3, Xs) When it

is multiplied by the corregpondng scding fadors S;, S, Sz and Sy to get the wordinates

(X1, X2', X3', X4'):
X'=S5 X
X,'=S, - X,
X3l_53'X3
X4':S4'X4
or
[X:I.I le Xsl X4' 1]:[)(1 X, X3 X 1]

O o o oW’
oo oY o
oo MM o o
oW o oo
L O O o o

The scéing in the nD spacewill refer to change the sze of a nD paytope through
the fadors S;, S, Sz, S, ... and S, dongthe X, Xo, X3, Xy, ... and X,, axesregedively.
The matrix representation will show that all the scéing fadors ae locaed in the main

diagoral ead ore positioned in the amlumn that correponds to their repedive ais:
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S 0 0 O 0

0 S 0 O 0

0 0 5 O 0

[X' %" X" X' - X" =[x, X X X, == X, {0 0 0 S, 0
n+1 n+1 . :

0 O S.

i 0 O 0

2.3.3 Rotationsin 4D Space

[Banks, 92 and [Hollasd, 9] have identifi ed that if in 2D space arotationis given
arounda point, and in 3D spaceis given aroundaline, then in 4D space in analogous way,

it must be given arounda plane.

[Hollasd, 9] considers that rotations in 3D spacemust be considered asrotations
paralel to a2D plane instead o rotations aoundan axis. [Hollasd, 9]] suppats this idea
considering that given an arigin o rotation and a degination pant in the 3D space the sé
of al rotated pdnts for a given rotation matrix lie in a snge plane, which is cdled the
rotation dane. Moreover, the rotation axis in 3D space oincide with the normal vedor of
the rotation dane. The concept of rotation dane is mnsistent with the 2D spacebecaise d
the rotated pants lie in the same and ory plane. Finaly, with the abowve ideas
[Hollas,91] constructs the $x basc 4D rotation matrices @aoundthe main panesin 4D
space namely X1Xz, X1X3, X1X4, X2X3, X2X4 and X3X4 planes basal in the fad that only
two coordinates diange for a given rotation (these tanging coordinates orregpondto the

rotation dane):
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10 O 0 0] [ cos®# 0 0 send O]

01 O 0 0 0 10 0 O
R.,(@)=|0 0 cos¥# —-send O R;@)=| O 01 0 O
O O send <cos¥ O -send 0 0 cos¥ O

00 O 0 1] | 0 00 0 1]

1 0 O 0 0] 1 0 0 0 0]

O cosf 0 —send O O cos¥ send 0O O
R:;@)=0 0 1 0 0 R.,(@)=|0 —sengd cos® 0 O
0 send 0 cos¥ O 0 0 0O 10

0 0 0 0 1] 10 0 0 0 1]

[cos® 0 —send 0 O] [ cos® send 0 0 O]

0O 1 0 00 —-send cos® 0 0 O
R,,(@)=|send 0 cos® 0 O R.,@)= O 0O 100
0O O 0 10 0 0O 010

| 0 O 0 0 1] | 0 0O 00 1

2.3.4 Rotationsin the nD Space

We know that in 3D spacethe rotations ae defined in terms of the ais aoundthey
take place However, we know from sedion 2.3.3that it is more gpropriate to consider
that 3D rotations take placein a plane enbedded in the 3D space(the plane’s normal vedor
coincideswith the rotation axis). Using theseideas [Duffin, 94 generalize the mncept of
rotation in a nD space(n> 2) asthe rotation d an axis X, in dredion to an axis X,. The
plane descibed by axis X, and X, is what [Hollasd, 9] defined as rotation dane.

[Duffin,94 presents the following general rotation matrix:
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Rab (6) = r'j

ro=1 i#aizb]
I, = Coséd

Iy, = COSH

Iy, =—SN@

M = SINE

r, =0 elsewhere

The matrix R, (6) is an identity matrix except in the intersection of columns a and b and

n
rows a and b. Because in a nD space there are C(Z) main planes, this is precisaly the

number of main rotations for such space.

From these concepts, we must consider that a rotation can be referenced by using

two notations. using the axis that describe the rotation plane or using the axis that describe

the (n-2)D subspace that is fixed during the rotation. In this work we will refer to rotations

using the second notation. In Table 2.14, we present the application of both notations on

the rotations for 2D, 3D and 4D space.

TABLE 2.14
Defining the rotation plane for rotationsin 2D, 3D and 4D space (own elaboration).
Number of (n-2)D Main axisthat Main axis that
nD possible . describe the fixed describe therotation
: subspace fixed . . .
Space main duri . subspace in each planein each possible
. uring rotation . . . . .
rotations possible main rotation main rotation
2D C@j =1 0D - Point - X1X2
3 X1 X2X3
3D C( j =3 1D - Edge (aXIS) Xo X1X3
2 X3 XXz
X1X2 X3X4
4 XoX3 X1X4
X1X3 X2X4
4D C(Zj =6 2D - Plane X 1Xa XoXa
X2X4 X1X3
X3X4 X1X2
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