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Chapter 2 
Geometry of the Four-Dimensional Space 

 

 This chapter will f ocus on three important topics relative to 4D space: (section 2.1) 

Basic definitions, (section 2.2) revision of four families of polytopes and (section 2.3) 

geometric transformations. Although it is suggested by the title, this chapter doesn’t 

concentrate exclusively on 4D space’s aspects, because these same aspects will serve as 

support for presenting some formulations which are applicable to n-Dimensional Space. 

 

2.1 Definitions 

 

2.1.1 Polyhedra 

 

 A polyhedron is a bounded subset of the 3D Euclidean Space enclosed by a finite 

set of plane polygons such that every edge of a polygon is shared by exactly one other 

polygon (adjacent polygons) [Preparata, 85]. Additionally, it can be established that the 

polygons that are incident to a vertex must compose a single circuit [Coxeter, 63]. 

 

[Coxeter, 63] established that the polyhedron’s boundary is a simple and closed 

surface of a volume (therefore, “dangling” faces and edges are not accepted). When the 

volume’s surface (i.e. the polyhedron’s boundary) is considered without aspects like areas, 

distances or angles but only taking the surface’s aspects not affected by deformation, then 

we will work with the sur face’s topology [Weeks, 02]. In this context, the whole surface is 

called a two-dimensional manifold or a 2-manifold. 
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A 2-manifold has either local and global properties. Local properties are those 

observable inside a manifold’s small region, while global properties require to consider the 

manifold entirely [Weeks, 02]. For example, a 2-manifold defines a 2D space with a local 

topology for a plane, however its global topology can correspond to a sphere’s surface or a 

torus’ surface (or any other). 

 

The polyhedron’s surface must fulfill t wo characteristics cited by [Coxeter, 63]: to 

be simple and closed. The surface is closed, or in other words, the manifold is closed when 

it decomposes the space where it is embedded (3D space) in two regions, one of them 

called the interior, is finite [Coxeter, 63]. The surface is simple and closed, or the manifold 

is oriented and closed, when it is possible to distinguish both its opposite sides in the 3D 

space, that is to say, it is clearly possible to distinguish between the interior and the outside 

(Klein’s bottle is an example of a closed not oriented manifold) [Hansen, 93]. 

 

Edges   and   vertices,   as   boundary   elements  for  polyhedra,  are  classifi ed  as 

2-Manifold (or just Manifold) elements. A Manifold edge is adjacent to exactly two faces, 

and a Manifold vertex is the apex (i.e., the common vertex) of only one cone of faces (the 

faces compose a single circuit) [Rossignac, 91]. 
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2.1.2 Pseudo-Polyhedra 

 

 A pseudo-polyhedron is a bounded subset of the 3D Euclidean Space enclosed by a 

finite collection of planar faces such that every edge has at least two adjacent faces, and if 

any two faces meet, they meet at a common edge [Tang, 91]. From this definition we have 

that polyhedra are a special case (a subset) of pseudo-polyhedra when exactly two faces are 

incident to all their edges. The boundary’s Pseudo-Polyhedra also must fulfill t o be a closed 

surface (“dangling” faces and edges are not accepted). 

 

From the topological’ s point of view, only some regions of the pseudo-polyhedron’s 

surface are 2-manifold. This is because, contrary to polyhedra, the pseudo-polyhedra’s 

interior is composed by more than two regions. An interior region can be seen as limited by 

a surface. In a pseudo-polyhedron, at least two interior regions’ surfaces have common 

points, which compose the regions, from the surface seen globally (the pseudo-

polyhedron’s whole surface) that are not 2-manifold, or in other words, these regions are 

non-manifold. For example, see the pseudo-polyhedron presented in Figure 2.1.a. That 

pseudo-polyhedron can be seen as two cubes sharing a vertex (Figure 2.1.b). The boundary 

of each cube is topologically equivalent to a sphere’s surface (Figure 2.1.c). Finally, both 

surfaces will have a common point, that is to say, the shared vertex (Figure 2.1.d). All the 

surface’s regions are 2-manifold, except the point that correspond to the shared vertex, 

which is non-manifold. 



 32 

 
a) 

 
b) 

 
c) 

 
d) 

FIGURE 2.1 
A pseudo-polyhedron (a) and its topological considerations (b, c & d). 

See text for details (Own elaboration). 
 

 Edges and vertices, as boundary elements for pseudo-polyhedra, may be either two-

manifold (or just manifold) or non-manifold elements. In the case of edges, they are (non) 

manifold elements when every points of it is also a (non) manifold point, except that either 

or both of its ending vertices might be a point of the opposite type [Aguilera, 98]. A 

manifold edge is adjacent to exactly two faces, and a manifold vertex is the apex (i.e., the 

common vertex) of only one cone of faces. Conversely, a non-manifold edge is adjacent to 

more than two faces, and a non-manifold vertex is the apex (i.e., the common vertex) of 

more than one cone of faces [Rossignac, 91]. 

 

2.1.3 Four-Dimensional Polytopes 

 

We will extend the polyhedron’s definition presented by [Preparata, 85] (see section 

2.1.1) for defining the 4D Polytopes: A 4D Polytope is a closed subset from the 4D 
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Euclidean Space, which is delimited by finite set of three-dimensional cells or volumes 

(polyhedra) such that every volumes’ f ace is shared only with another volume (adjacent 

volumes). In the same way, it can be established that a 4D Polytope’s boundary will be a 

simple and closed hyper-surface of a hyper-volume, therefore, “dangling” volumes, faces 

and edges are not accepted (it has been extended, in analogous way, one of the most 

important properties that must fulfill a polyhedron, which has been cited by [Coxeter, 63] 

and also mentioned in section 2.1.1). 

 

[Weeks, 02] points out that the definitions related to the 2-manifolds’ topology 

(surfaces)  can be extended for defining the 3-manifolds’ topology. [Weeks, 02] defines a 

2-manifold as a space with a plane’s local topology on its boundary, and analogously, 

defines a 3-manifold as a space with our “ordinary” three-dimensional space’s local 

topology on its boundary. 

 

We can appeal to Flatland for a better understanding. Flatland is a two-dimensional 

universe, therefore, it is a surface or a 2-manifold, which is inhabited by polygonal beings. 

A.Square’ s interaction with his universe will allow him to determine that Flatland is a 

plane, however, this conclusion is topologically valid from a local point of view. Flatland’ s 

global topology could belong to a sphere’s surface (as described in Sphereland [Burger,83]) 

or a torus’ surface, for example. Our three-dimensional universe, which we inhabit, can be 

seen as Spaceland [Abbott, 84]. However, since Einstein, our universe is seen as a hyper-

surface, or better, a 3-manifold [Sagan, 80]. Our universe can be the hyper-sphere’s 

boundary  (as Einstein believed), or a 4D torus’ boundary. Because we are embedded in a 

3-manifold, our universe, we can not perceive the effects by its curvature, or in other 
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words, by its global topology. Since the 4D Polytopes’ boundary is composed by three-

dimensional cells, its topology will be related with a 3-manifold. 

 

Faces, edges and vertices, as boundary elements for 4D polytopes, will be manifold. 

[Hansen, 93] has established that a manifold face is adjacent to exactly two volumes, and 

[Pérez & Aguilera, 03] have suggested that a manifold edge is the common edge of only 

one hyper-cone of volumes  (the faces and edges’ characterizations will be analyzed with 

more detail i n chapter 4).  

 

2.1.4 Four-Dimensional Pseudo-Polytopes 

 

 We will extend the pseudo-polyhedron’s definition presented by [Tang, 91] for 

defining the 4D Pseudo-Polytopes: A 4D Pseudo-Polytope is a bounded subset of the 4D 

Euclidean Space enclosed by a finite collection of volumes such that every face has at least 

two adjacent volumes, and if any two volumes meet, they meet at a common face. From 

this definition we have that 4D Polytopes are a special case (a subset) of Pseudo-Polytopes 

when exactly two volumes are incident to all their faces. The boundary’s Pseudo-Polytopes 

also must fulfill t o be a hyper-volume’s closed hyper-surface (“dangling” volumes, faces 

and edges are not accepted). 

 

Basically, the topological diff erences between 4D Polytopes and Pseudo-Polytopes 

are analogous to the Polyhedra and Pseudo-Polyhedra’s case. Certain regions from the 4D 

Pseudo-Polytopes’  boundary  can  be considered as  not  belong  exclusively to  just  one 

3-manifold, because, as analogously to Pseudo-Polyhedra, these regions (faces, edges or 
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vertices) can be seen as shared by several hyper-surfaces. Therefore, faces, edges and 

vertices, as boundary elements for 4D polytopes, may be either manifold or non-manifold 

elements.  We  have  stated  that  a  manifold  face  is  adjacent  to exactly two volumes, 

and a manifold  edge  is  the common  edge  of  only  one  hyper-cone  of  volumes.  

[Pérez & Aguilera, 03] have proposed that a non-manifold face is adjacent to more than 

two  volumes,  and  a  non-manifold  edge  is  the  common  edge  of  more  than  one 

hyper-cone of volumes (chapter 4 will describe the methodologies that lead to these 

characterizations). 

 

2.1.5 The n-Dimensional Polytopes 

 

[Coxeter, 63] defines an Euclidean polytope �n as a finite region of n-dimensional 

Euclidean space enclosed by a finite number of (n-1) dimensional hyperplanes. The 

finiteness of the region implies that the number Nn-1 of bounding hyperplanes satisfies the 

inequality Nn-1>n. The part of the polytope that lies on one of these hyperplanes is called a 

cell . Each cell of a �n is an (n-1)-dimensional polytope, �n-1. The cells of a �n-1 are �n-2's, 

and so on; we thus obtain a descending sequence of elements �n-3, �n-4, ... , �1 (an edge), 

�0 (a vertex).  

 

The way that the cells �n-1, �n-2, �n-3, �n-4, ... , �1, �0 are related is given by the 

following [Sommervill e, 58]’ s observations: 
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�� The �n-1’ s share �n-2’ s, in that way, it is defined a Polytope �n when two and only two 

�n-1’ s share a �n-2; when more that two �n-1’ s share a �n-2 then it is defined a Pseudo-

Polytope �n (the notation �n is common to polytopes and pseudo-polytopes). 

�� Three or more �n-1’ s will have a common �n-3. 

�� p or more �n-1’ s will have a common �n-p. 

�� n or more �n-1’ s will have a common �0 (a vertex). 

 

We know that a �3 (a 3D Euclidean polytope) is a polyhedron. The polyhedron’s 

cells are �2. A �2 (a 2D Euclidean polytope) is a polygon. The polygon’s cells are �1. A 

�1 (a 1D Euclidean polytope) is a segment. Finally, the segment’s cells are �0, a set of 

vertices. The cells of a �4 (a 4D Euclidean polytope) are �3 (polyhedra, also called 

volumes in the context of �4). 

  

From the topological’ s point of view, n-dimensional Polytopes are considered by 

[Hansen, 93] as a closed set of n-manifolds, one for each cell �n-1. In the previous sections, 

the 3D and 4D Polytopes’ boundary was entirely considered as a manifold. For example, a 

cube’s boundary is topologically equivalent to a sphere, but from [Hansen, 93]’ s point of 

view, each face of the cube will be topologically equivalent to a plane, or in other words, 

each one will be a 2-manifold. Furthermore, [Hansen, 93] states that each element on a cell 

�n-1’ s boundary will have its respective topologic equivalence. In this way, the edges of a 

cube’s face will be topologically equivalent to a 1-manifold (a space with the local 

topology of a line [Weeks, 02]) and so forth. By representing the nD Polytopes by this way, 

[Hansen, 93] presents the following properties (which will be reconsidered in chapter 4): 
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1. A 0-manifold is a point, and it has no boundary. 

2. All boundary elements of an n-manifold are (n-1)-manifold elements. 

3. All (n-1)-dimensional elements belong to exactly two n-manifold elements (or twice to 

the same element). 

4. Manifold elements may not intersect each other except at common boundary elements. 

 

2.2 Some Polytopes’ Famili es 

 

 In the following sections, three of the main families of polytopes will be described. 

These polytopes’ f amilies exist in all hyperdimensional spaces [Aichholzer, 00]: the 

parallelotopes, the simplexes and the cross polytopes (sections 2.2.1, 2.2.2 and 2.2.3 

respectively). Furthermore, it will be described the 0/1-Polytopes, which are closely related 

to the parellelotopes (section 2.2.4). 

 

2.2.1 The Hypercube 

 

2.2.1.1 Obtaining a Segment, a Square, a Cube and a Hypercube 

 

[Rucker, 77] presents Claude Bragdon's method to define a series of fi gures which 

are called the parallelotopes [Coxeter, 63] or the orthotopes [Sommervill e, 58]. First a 0D 

point is taken and moved one unit to the right. The path between the first and the second 

new point produces a 1D segment. The first dimension, represented by the X1-axis (X), has 

appeared (Figure 2.2). 
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X
OO 1  

FIGURE 2.2 
Generation and final 1D unit segment C1 (own elaboration). 

 

The new segment is then moved one unit upward. The path between the first and the 

second new segment produces a 2D square (a parallelogram). The second dimension, 

represented by the X2-axis (Y), has appeared (Figure 2.3).   
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FIGURE 2.3 
Generation and final 2D unit square C2 (own elaboration). 

 

The new square is then moved one unit forward out this paper. The path between 

the first and the second new square produces a 3D cube (a parallelepiped). The third 

dimension, represented by the X3-axis (Z), has appeared (Figure 2.4). Because we are 

working on a 2D surface (this paper or the computer’s screen), a diagonal between X1 (X) 

and X2-axis (Y) represents the X3-axis (Z), however it should be interpreted as a line 

perpendicular to this 2D surface. 
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FIGURE 2.4 
Generation and final 3D unit cube C3 (own elaboration). 

  

We know that the fourth dimension has a direction perpendicular to the other three 

dimensions, in this case the X4-axis (W) is presented as a perpendicular line to the W3-axis 

(Z). Then the cube is moved one unit in direction of the X4-axis (W). The path (six cubes 

perpendicular to the first one) between the first and the second new cube produces the 3D 

boundary of a 4D hypercube (a 4D parallelotope). The fourth dimension has appeared 

(Figure 2.5). 
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FIGURE 2.5 

Generation and final 4D unit hypercube C4 (own elaboration). 
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Definition 2.1: Let Cn be the n-dimensional parallelotope, then C0 is a point and 

Figures 2.2 to 2.5 correspond to C1 to C4. 

 

TABLE 2.1 
The hypercube's volumes (own elaboration). 
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2.2.1.2 The 4D Hypercube Properties 
 

 

The analysis of the hypercube is also interesting because it can be done using the 

analogy with the 3D cube and the method presented in section 2.2.1.1. [Hilbert, 52] 

identifi ed that the boundary of a hypercube is composed by eight three-dimensional regions 

called cubes, volumes or cells (Table 2.1), and call the hypercube an 8-cell polytope. To 

better ill ustrate this, let’s see its analogy with its 3D counterpart. The 3D cube’s boundary 

faces can be grouped into three pairs of parallel faces, where their supporting planes define 

two 2D-spaces parallel to each other. Each pair can be obtained by ignoring all  those edges 

parallel to main axes X1, X2 and X3 [Aguilera, 02c], see Figure 2.6. 
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FIGURE 2.6 

Viewing the cube’s boundary faces (taken from [Aguilera & Pérez, 02]). 
 

Similarly, and as shown in Figure 2.7, all the hypercube's boundary volumes can be 

grouped into four pairs of parallel cubes, furthermore, their supporting hyper-planes define 

two 3D-spaces parallel to each other. 

 

 
FIGURE 2.7 

Viewing the hypercube’s boundary volumes (taken from [Aguilera & Pérez, 02]). 
 

[Coxeter, 84] also establishes that besides these eight volumes the hypercube’s 

boundary is composed by 24 faces, 32 edges and 16 vertices. Every face is shared by two 

cubes that don't lie on the same three-dimensional space, but rather both have rotated about 

the plane represented by the common face until the two three-dimensional spaces 

represented by the cubes form a right angle (Table 2.2) 
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TABLE 2.2 
The hypercube's 24 faces and their incident volumes (own elaboration). 

 
  

 

    

    

    

 
  

 

 
  

 
 

If we position the hypercube where one of its vertices is at the origin and six of its 

faces coincide each one with some of X1X2 (XY), X1X4 (XW), X2X3 (YZ), X2X4 (YW), 

X3X1 (ZX), and X3X4 (ZW) planes, then we have the positive coordinates presented in 

Table 2.3. 
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TABLE 2.3 
The hypercube's coordinates (own elaboration). 

X1 
(X) 

X2 
(Y) 

X3 
(Z) 

X4 
(W) 

Binary 
Representation 

Vertices' decimal 
representation 

0 0 0 0 0000 0 
1 0 0 0 0001 1 
0 1 0 0 0010 2 
1 1 0 0 0011 3 
0 0 1 0 0100 4 
1 0 1 0 0101 5 
0 1 1 0 0110 6 
1 1 1 0 0111 7 
0 0 0 1 1000 8 
1 0 0 1 1001 9 
0 1 0 1 1010 10 
1 1 0 1 1011 11 
0 0 1 1 1100 12 
1 0 1 1 1101 13 
0 1 1 1 1110 14 
1 1 1 1 1111 15 

 

 We can observe that all vertices' coordinates presented in Table 2.3 can be used to 

describe a binary number, where X1 coordinate is the less signifi cant digit and X4  

coordinate is the most signifi cant digit. In this way, we have that using the decimal 

representation for those binary numbers, we can refer, for example, to vertex 14 as that 

whose coordinates are (0,1,1,1). In this work, we will r efer to the hypercube's vertices using 

their decimal representation. 

 

2.2.1.3 Counting the Number of Lower Dimensional Elements in a nD Hypercube 

 

 From the Bragdon’s method presented in section 2.2.1.1, it is easy to observe that 

each time we move Cn to generate Cn+1 the number of vertices doubles, because we have an 

initial and a final position. From this analysis, we can conclude that the number of vertices 

in a Cn is 2n.  
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Definition 2.2: Let Q(n,k) be the number of kD cubes in a nD hypercube, i.e. the 

number of Ck’ s in a Cn for nk ��0 . 

 

 To compute Q(n,k) we must first calculate how many Ck’ s are incident to each 

vertex in a Cn. There are n incident edges to each vertex in Cn and we get a Ck for each 

subset of k distinct edges taken from these n incident edges (this property can be visualized 

observing the sequence of Figures 2.2 to 2.5). For instance, the number of kD cubes at 

each vertex of a nD hypercube is: 

C n k
n

k n k
( , )

!

!( )!
�

�
 

Because we have C n k( , )  Ck’ s in each one of the 2n Cn’ s vertices, we get ),(2 knCn
�  Ck’ s. 

However, each Ck is counted 2k times, for consequence, we must divide the intermediate 

formula by this number to get the final formula (presented in [Coxeter, 63] and 

[Banchoff ,96]): 

),(2
2

),(2
),( knC

knC
knQ kn

k

n

��
�

�
�  

See Table 2.4 for the formula’s application. 

 

TABLE 2.4 
Obtaining the properties of a point, a segment, a square, a cube and a hypercube 

(own elaboration). 
nD hypercubes (Cn) 

kD cubes (Ck) 
0 

(point) 
1 

(segment) 
2 

(square) 
3 

(cube) 
4 

(hypercube) 
0 (vertices) 1 2 4 8 16 
1 (edges)  1 4 12 32 
2 (faces)   1 6 24 

3 (volumes)    1 8 
4 (hypervolumes)     1 

kD cubes sum  1 3 9 27 81 
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 [Banchoff , 96] points that the sum of the Ck’ s in each column (in Table 2.4) 

provides a power of 3. Furthermore, we present the following 

 

Theorem 2.1: �	
��
�

nknQ n
n

k

3),(
0

 

 

Proof: By substituting Q(n,k) with its formula we obtain  

� �
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where the right hand side is a particular case of the well known Binomial Theorem: 
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when a = 2 and b = 1, which evaluates to 3n.  

 

Corolary 2.1: Each term in the sum kn
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in a Cn.  

 

For example, for the cube (C3) we have: 
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which corresponds to the number of vertices (8), edges (12), faces (6) and cubes (1) 

respectively. 
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Corolary 2.2: The total number of all lower dimensional boundary elements in Cn 

is 3n-1. 

 

Proof: By Corolary 2.1 each term in the sum  

� �
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n

k

n

k

kn knCknQ
0 0

),(2),(   

corresponds to the number of Ck’ s on the Cn’ s boundary, except the last term (when k = n) 

which evaluates to 1 (one) and corresponds to Cn itself . Therefore the number of all 

bounding elements in Cn is  

�
�

�

��
1

0

13),(
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For example, a cube (C3) has 3n – 1 = 26 bounding elements (8 vertices, 12 edges 

and 6 faces). Moreover, the above corollary with n = 4 satisfies the Coxeter’s counting of 

the hypercube’s (C4) boundary (see section 2.2.1.2). 

 

2.2.1.4 Coordinates for the nD Hypercube 

 

 [Coxeter, 63] establishes that the coordinates for a nD hypercube with edges of 

length 2 can be described in general as: 

 

(
�����

n

1,...,1 �� ) 
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For example, using the above description, the coordinates for a square (n = 2) are: 
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If we apply the translation (1,…,1), and the scaling (0.5,…,0.5) we obtain the 

general set of coordinates for a unit Cn: 
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where the coordinates must be permuted in base of the following distribution: 
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in �  zeros. Then we can evaluate and relate the previous distribution with the number of 

vertices in the Cn: 
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Table 2.5 shows the application of the procedure on the 4D hypercube. 
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TABLE 2.5 
Defining the 4D hypercube’s vertices coordinates (own elaboration). 

Value of 
i 

Number of 
Combinations Coordinates 

Vertex 
(Decimal 

representation) 
0 1 (0,0,0,0) 0 

1 C
4

1
4

�

�
�

�



� �  

(1,0,0,0) 
(0,1,0,0) 
(0,0,1,0) 
(0,0,0,1) 

1 
2 
4 
8 

2 C
4

2
6

�

�
�

�



� �  

(1,1,0,0) 
(1,0,1,0) 
(0,1,1,0) 
(1,0,0,1) 
(0,1,01) 
(0,0,1,1) 

3 
5 
6 
9 
10 
12 

3 C
4

3
4

�

�
�

�



� �  

(1,1,1,0) 
(1,1,0,1) 
(1,0,1,1) 
(0,1,1,1) 

7 
11 
13 
14 

4 1 (1,1,1,1) 15 
 

2.2.2 The Simplex 

 

In [Coxeter, 63] is presented a method for obtaining a family of polytopes called the 

simplexes. Basically, these polytopes are the simplest that can be generated in their 

respective spaces. First, consider a 0D point which in fact (and obviously) describes a 0D 

space (Figure 2.8). Now, select any point not embedded in this 0D space. The two points’ 

union will generate a segment, the 1D simplex (In Figure 2.9 we are considering the 

special case when the new point is on the X1-axis).  

 

0 D0 D

 
FIGURE 2.8 

The 0D simplex (own elaboration). 
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1 D1 D

X 1  
FIGURE 2.9 

Generation and final 1D simplex, a segment (own elaboration). 
 

 Now, a third point is selected in the way that it is not embedded in the straight line 

(a 1D space) defined by the original segment. The new point is united to the 1D simplex’s 

two vertices, which generates a triangle, a 2D simplex (In Figure 2.10 we consider the 

special case when the new third point is on a line parallel to the X2-axis). 

X 1

X 2

X 1  
FIGURE 2.10 

Generation and final 2D simplex, a triangle (own elaboration). 
 

 The next step is consider a fourth point which is not embedded in the plane (a 2D 

space) defined by the original triangle. The new point is united to the 2D simplex’s three 

vertices, which generates a tetrahedron, a 3D simplex (In Figure 2.11 we consider the 

special case when the new fourth point is on a line parallel to X3-axis). 

 

X 3

X 1

X 2 X 2

X 1  
FIGURE 2.11 

Generation and final 3D simplex, a tetrahedron (own elaboration). 
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 We select a new fift h point which is not embedded in the hyperplane (a 3D space) 

defined by the original tetrahedron. The new point is united to the 3D simplex’s four 

vertices, which generates a 4D simplex (In Figure 2.12 we consider the special case when 

the new fift h point is on a line parallel to the X4-axis). 

 

X 3

X 2

X 4

X 1

X 3

X 1

X 2

 
FIGURE 2.12 

Generation and final 4D simplex (own elaboration). 
 

Any n+1 lineally independent points (or in other words, all the points don’t li e in a 

[n-k]-dimensional hyperplane) will be the n-dimensional simplex’s vertices. The elements 

in the nD simplex’s boundary will be all (n-1), (n-2), …, 1, 0-dimensional simplexes 

composed by the possible subsets of the n+1 points. Then, a nD simplex will have: 
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Let n
kN  be the number of the k-dimensional elements on the n-dimensional 

simplex’s boundary. Its formula is then ([Sommervill e, 58] & [ Coxeter, 63]): 
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By applying the formula on the 4D simplex, it is found that it has 5 vertices (0D), 10 

edges (1D), 10 (triangular and 2D) faces and 5 (tetrahedrical and 3D) volumes (see Figure 

2.13).  

 

 
FIGURE 2.13 

Viewing the 4D simplex’s five boundary volumes (Own elaboration). 

 

[Coxeter, 63] points out that the well known relation 
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represents the simplex’s construction as a “piramid” , with any cell as “base” and the vertex,  

which is outside the (n-1)D hiperplane described by the “base”, as its “apex” (see Figures 

2.8 to 2.12). The number of k-dimensional elements that compose the “base” are indicated 

by the first term (when n = k + 1 the base counts itself) , while the number of k-dimensional 

elements that are incident to the apex are counted by the second term (when n = k + 1 the 

apex counts itself) . Table 2.6 shows the application of the relation on the tetrahedron. 
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TABLE 2.6 
The kD elements of the tetrahedron built as a “pyramid” (own elaboration). 

kD elements 

kD elements that 
compose the base 
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�1k

n
C  

kD elements  
incident to the apex 
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�

�

k

n
C  

Vertices – 0D 3 1 
Edges – 1D 3 3 
Faces – 2D 1 3 

 

The coordinates of the nD simplex’s first n vertices are given by permuting: 

(
�����

n

0,...,0,0,1 ) 

While the vertex n+1 is the origin [Cohen, 79]. For example, the vertices’ coordinates for 

the 4D simplex are presented in the Table 2.7. 

 

TABLE 2.7 
The vertices’ coordinates for the 4D simplex (own elaboration). 

Vertices 
(n = 4) X1 X2 X3 X4 

1 1 0 0 0 
2 0 1 0 0 
3 0 0 1 0 
4 0 0 0 1 

5 (n+1) 0 0 0 0 
 

2.2.3 The Cross Polytope 

 

The methodology presented by [Coxeter, 63] will be used again for generating a 

third family of polytopes, the Cross Polytopes. Just as in both previous methodologies 

(hypercube and simplex) we start with a 0D point (Figure 2.14). Besides the original point 

it will be generated other two which are translated in opposite directions along the new first 
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dimension, represented by the X1 axis. Both points are joined to the first one to compose 

the 1D cross polytope (Figure 2.15), that is, a segment (this is the only case where the 

original first point is eliminated from the final segment, because it is the common point of 

the two segments composed by the union of the two new points on the X1 axis and it).  

 

0 D

 
FIGURE 2.14 

The 0D cross polytope (own elaboration). 
 

X 1

1 D

 
FIGURE 2.15 

Generation and final 1D cross polytope, a segment (own elaboration). 
 

 In the 1D space are generated two new points in addition to the existent two. The 

new points are translated in opposite directions along the new second dimension, the X2 

axis. Both points then are joined with the original two to compose the 2D cross polytope, a 

square (Figure 2.16). 

 

2 D

X 2

X 1
X 1

 
FIGURE 2.16 

Generation and final 2D cross polytope, a square (own elaboration). 
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 Again, two new points, additionally to the existent four, are generated in the 2D 

space. Both points are translated in opposite directions along the new third dimension, 

which is represented by X3 axis. The new points are joined to the original four to compose 

the 3D cross polytope (Figure 2.17), or in other words, a octahedron.  

 

3 D

X 3

X 1

X 2

X 1

X 2 X 3

 
FIGURE 2.17 

Generation and final 3D cross polytope, an octahedron (own elaboration). 
 

 Finally, two new points are generated, additionally to the six original points in the 

3D space, and translated in opposite directions along the new fourth dimension, that is, the 

X4 axis. As in the previous steps, both points are joined to the original six, in this way, it is 

obtained the 4D cross polytope (Figure 2.18). 

 

X 3
X 4

X 1

X 2

X 1

X 2

X 3

 
FIGURE 2.18 

Generation and final 4D cross polytope (own elaboration). 
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[Coxeter, 63] points out that the nD cross polytope can be considered as a dipiramid 

which is based in the (n-1)D cross polytope, where there are two apexes in both directions 

of the new dimension. See the cross polytope’s building sequence in Figures 2.14 to 2.18. 

For example, octahedron is a dipiramid based in the square (Figure 2.17) while the 4D 

cross polytope is a 4D “dipiramid” based in the octahedron (Figure 2.18). Both cross 

polytopes have their pair of apexes in both directions of the third and four dimensions 

respectively. 

 

One of the fundamental properties of the Euclidean n-dimensional space is the 

possibilit y of configuring n mutually perpendicular lines passing through any point 

[Coxeter, 63]. When selecting equidistant points from the origin along the main axis in both 

directions, the cross polytope’s 2n vertices are defined (the main axis compose a “cross”, 

that the origin for the polytope’s name). Then, the vertices’ coordinates for the nD cross 

polytope with edges of length 2  are given by permuting: 

 

(
�����

n

0,...,0,1� ) 

 

For example, the vertices’ coordinates for the 4D cross polytope are presented in 

Table 2.8. 
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TABLE 2.8 
The vertices’ coordinates for the 4D cross polytope (own elaboration). 

Vertex X1 X2 X3 X4 
1 1 0 0 0 
2 -1 0 0 0 
3 0 1 0 0 
4 0 -1 0 0 
5 0 0 1 0 
6 0 0 -1 0 
7 0 0 0 1 
8 0 0 0 -1 

 

When there are considered only n points which are equidistant from the origin along 

the main axis, the (n-1)-dimensional simplex’s vertices are defined. In fact, this (n-1)D 

simplex is embedded in a nD space’s hyper-octant. For example, in Figure 2.19 is 

presented a triangle embedded in the octant which is defined by the positive sides of 3D 

space’s X1, X2 and X3 axis. 

 

X 1

X 3

X 2

 
FIGURE 2.19 

Triangle embedded in the octant defined by the positive sides 
of the 3D space’s X1, X2 and X3 axis (own elaboration).  

 

Consider the cross polytope whose coordinates are based in permuting )0,...,0,1(� . 

Therefore, due to the  existence of 2n possible  hyper-octants in nD space,  the number of 

(n-1)D simplexes on the cross polytope’s boundary will be 2n [Coxeter, 63]. For example, 
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octahedron is composed by 8 triangular faces (one for each octant in 3D space), while the 

4D cross polytope has 16 tetrahedrical volumes on its boundary (Figure 2.20), one of each 

4D space’s hyper-octant. 

 

 
FIGURE 2.20 

Viewing the 4D cross polytope’s 16 boundary volumes (Own elaboration). 
 

The cross polytope can be obtained, from another point of view, through the Duality 

Principle [Banchoff , 96]. In brief, for building a polyhedron’s dual a vertex in the center of 

each face is chosen. The vertices’ fi nal set obtained in this way, defines a dual polyhedron. 

As an example, we have the well known duality between the cube and the octahedron. 
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The Duality Principle can be applied in the same way in the 4D space (and in the 

subsequent spaces), therefore, the 4D hypercube’s eight volumes correspond to the 4D 

cross polytope’s eight vertices. The duality between nD hypercube and cross polytope 

generates a correspondence between their elements on their respective boundaries. The 

counting of the elements on the 4D cross polytope’s boundary by [Sommervill e, 58] 

establishes that it has 8 vertices, 24 edges, 32 faces and 16 volumes. See Table 2.9 to 

appreciate the relation between the 4D hypercube and cross polytope’s elements. 

 

TABLE 2.9 
Correspondences between elements 

on the 4D hypercube and cross polytope’s boundaries (own elaboration). 
4D Hypercube 

(k) 
4D Cross Polytope 

(k) 
Number of kD 

elements 
0 3 16 
1 2 32 
2 1 24 
3 0 8 

 

The duality, between hypercubes and cross polytopes, establishes that counting the 

hypercube’s k-dimensional elements is equivalent to counting the cross politope’s (n-k-1)-

dimensional elements [Sommervill e, 58]. It is known that the hypercube’s k-dimensional 

elements counting (see Section 2.2.1.3) is given by: 
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If i n the above formula, k (the dimensionality of the elements on the hypercube’s boundary) 

is replaced by n-k-1, or in other words, the k-dimensional elements on the cross polytope’s 

boundary will be counted using the hypercube’s formula, then we will have: 
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Be (k+1) = r, then by applying the well known relation: 
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The formula will be finally: 
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Which coincides with that presented by [Coxeter, 63] for counting the k-dimensional 

elements on the nD cross polytope’s boundary. 

 

2.2.4 The 0/1-Polytopes 

 

Let Cn be a n-dimensional hypercube whose vertices’ coordinates hold the decimal 

representation (see  Table 2.3).  Consider  the  convex  hull  of the subset  nCV �  of  the 

n-dimensional hypercube’s vertices. The polytope P that represents the convex hull of V is 

called a 0/1-Polytope or a subpolytope of the hypercube [Aichholzer, 00] (it receives the 

name of 0/1-Polytope because its vertices’ coordinates are precisely 0’s and 1’s). The 

subset V will describe a valid 0/1-Polytope under three conditions: its cardinality must be 

greater than n (remember that n+1 points are required to compose a simplex); all it s vertices 

doesn’t li e in a (n-1)-dimensional hyperplane; and finally, it must be convex (this condition 

is obviously assured by its relation with the convex hull) . 

 

There are � �n22  possible subsets of the nD hypercube’s vertices. The subsets with n 

vertices or less are not considered. Furthermore, a great part of the subsets are equivalent, 

in other words, they are reflections or rotations between each other. A “Class of Vertex 
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Sets” is defined by [Aichholzer, 97] as the one that contains sets of vertices that can be 

transformed in another set, in the same class, by applying some transformation of reflection 

or rotation.  

 

There are four sets of 3 vertices taken from the square (in 2D space), which are 

presented in Table 2.10. For example, suitable rotations can be applied to combination 1 

for obtaining combinations 2, 3 and 4. Moreover, a suitable reflection can be applied to 

combination 2 for obtaining combination 3 (in a similar way to combinations 1 and 4). 

Therefore, all the combinations belong to the same class. 

 

TABLE 2.10 
The possible four 0/1-Polygons with three vertices (own elaboration). 

 

 
1 

 

 
2 

 

 
3 

 

 
4 

 

In the 2D space there are 24 = 16 subsets of vertices taken from a square. The 

possible eleven sets with 0, 1 and 2 vertices are not considered. Therefore, it will be 

considered 4 sets with 3 vertices (see the previous paragraph) and one set with four 

vertices. Finally, by the application of the transformations of rotation and reflection, there 

are only two classes of 0/1-Polygons in the 2D space (see Table 2.11), one class with three 

vertices (a triangle) and one class with four vertices (a square). 
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TABLE 2.11 

The two 0/1-Polygons (own elaboration). 
 

 
3 vertices 

 

 
4 vertices 

 

There are 28 = 256 possible sets of vertices taken from a cube. Those sets with 0, 1, 

2 and 3 vertices won’t be considered. By applying rotations and reflections between the 

remaining sets with the same number of vertices, [Aichholzer, 00] has concluded the 

existence of 12 (classes) 0/1-Polyhedra in the 3D space (see Table 2.12). The distribution 

for the considered combinations of vertices is the following : 
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�� 56
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C  set with one vertex (1 class). 
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TABLE 2.12 
The twelve 0/1-Polyhedra (own elaboration). 

Vertices 
Number 0/1-Polyhedra 

4 

 

                
 

5 

 

           
 

6 

 

           
 

7 

 

 
 

8 

 

 
 

 

It is known that the 4D hypercube has 16 vertices on its boundary. From these 

vertices, a total of 216 = 65,536 sets with 0 to 16 vertices can be formed. The sets with 0, 1, 

2, 3 and 4 vertices will be ignored. It must be considered, with the remaining sets, that all 

their  vertices  don’t  li e  in  a  3D  hyperplane.  In  the Table 2.13 are shown  some  4D 

0/1-Polytopes’  classes,  in  fact,  six  examples  of  sets  with  five vertices are presented 

(all  the  4D  0/1-Polytopes  with  five  vertices  are  simplexes;  in  general,  all  the  nD 
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0/1-Polytopes with n+1 vertices are simplexes). [Hill , 98] presents a counting of 402 

classes for the 4D 0/1-Polytopes (however, [Hill , 98] considered all the 216 possible sets). 

 

TABLE 2.13 
Some 4D 0/1-Polytopes (1 to 6) composed by five vertices: simplexes 

(own elaboration). 
 

 
 

 

 
1 

 

 
2 

 

 
3 

 

 
4 

 

 
5 

 

 
6 

 

It has been mentioned that the number of sets of vertices taken from the nD 

hypercube is � �n22 . When n < 5, one of the most common methodologies for finding the 

classes for 0/1-Polytopes is the exhaustive searching [Aichholzer, 97]. However, for 

determining   the  5D  0/1-Polytopes’  classes  it  must  be  considered  the  existence  of  

232 = 4,294,967,296 possible sets (with 0 to 32 vertices). Moreover, for determining the 6D 

0/1-Polytopes’ classes it must be considered 264 sets (with 0 to 64 vertices). In 

[Aichholzer,00] is presented a methodology, that minimizes the complexity imposed by the 

exhaustive searching, for determining the 5D 0/1-Polytopes’ classes (in fact, 

[Aichholzer,00] reports 1,226,525 classes). 
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2.3 The 4D Geometric Transformations 

 

2.3.1 The 3D Geometric Transformations as Extension of the 2D Geometric 

Transformations 

 

 [Hearn, 95] considers 3D geometric transformations (translation, rotation, scaling, 

etc.) as extensions of the 2D geometric transformations for these same operations with the 

consideration of the X3 coordinate. 

 

2.3.1.1 Translations 

 

Translating in the 2D space implies a displacement of a polygon in direction of X1 

and X2-axis, in other words, we apply a translation over a polygon to change its position. A 

2D point is converted when the translation distances t1 and t2 are added to the original 

coordinate (x1,x2) to move it to the new position (x1',x2'): 
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Or using homogeneous coordinates and the matrix representation: 
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Based in the previous idea, translating in 3D space implies a displacement of an 

object in direction of the X1, X2 and X3-axis. We translate a 3D object when it is moved in 
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each one of the three directions of the coordinates. We translate a point (x1,x2,x3) to the 

position (x1',x2',x3') adding the corresponding distances t1, t2 and t3: 
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2.3.1.2 Scaling 

 

Scaling in 2D space implies a change of size (and in some cases of shape and 

position) of an object through two factors each one with relation with X1 and X2 

coordinates. A 2D point is converted when it is multiplied by the scaling factors S1 and S2 

to produce the transformed coordinates (x1', x2'). The scaling factor S1 scales objects in the 

direction parallel to X1 axis, while the scaling factor S2 scales objects in the direction 

parallel to X2 axis. We have then: 
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Again, it is possible to extend the previous 2D concept and to conclude that scaling 

in 3D space implies a change of size of a polyhedron by three factors each one with 

relation with X1, X2 and X3 coordinates. We convert a 3D point (x1, x2, x3) when it is 

multiplied  by  the  corresponding  scaling  factors  S1,  S2  and S3 to get the coordinates 

(x1', x2', x3'): 
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2.3.1.3 Rotations  

The rotation’s case is more special than translation and scaling. Rotation in 2D 

space is always given about a point. However, in the 2D space there are an infinite number 

of points. [Hearn, 95] defines a 2D rotation as the change of position of a figure along a 

circumference’s trajectory in the 2D space (the X1X2 plane, for example). The 2D points 

can rotate an angle �  around the origin, which is the easiest point, then we have that a 

rotation is defined mathematically as: 
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However, in the 3D space a rotation must be given about a line and there are an 

infinite number of li nes in space. The easiest way to calculate a rotation in the 3D space is 

when the rotating axis (a line) coincides with the X1, X2 or X3 axis. Moreover, if we 

consider the 2D space as the X1X2 plane where rotations are around an axis that is 

perpendicular to such plane, then we have the first of the main rotating axis in 3D space, 

specifi cally rotation around X3 axis [Hearn, 95]: 
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 [Hearn, 95] points that equations for rotations around X1 and X2 axis can be 

obtained with the following cyclic substitutions: 

3213 xxxx ���  

Then, applying the indicated substitutions over the equations for rotation around X3 axis, 

we have the rotation around X1 axis: 
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And now, applying the indicated substitutions over the equations for rotation around X1 

axis, we have the rotation around X2 axis: 

22

131

133

'

cossin'

sincos'

xx

xxx

xxx

�

����

����

��

��

 

or 

�
�
�
�

�

�

�
�
�
�

�

� �

�

1000

0cos0sin

0010

0sin0cos

)(2
��

��

�R  

 

2.3.2 The 4D Geometric Transformations as Extension of the 3D Geometric 

Transformations  

 

Probably the simplest transformation operations to be derived from 3D space to 4D 

space are translation and scaling. We saw before how the definition of 2D translation and 

scaling were easily adapted for working inside the 3D space. Now, we will define these 

geometric transformations in the 4D and nD spaces. 

 

2.3.2.1 Translations in the 4D and nD Spaces 

 

The translation in the 4D space implies the displacement of a 4D polytope in 

direction of X1, X2, X3 and X4-axis with the following equations and transformation matrix 

(which are a simple extension of translation in the 3D space): 
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 Finally, the translation in the nD space will im ply to position a nD polytope in a 

new location by adding translation values to each one of its points’ n coordinates. Each 

point (x1, x2, x3, x4, …,xn) will be moved t1 units parallel to the X1-axis, t2 units parallel to 

the X2-axis, and so forth until it i s moved tn units parallel to the Xn-axis. In this way, the 

new point (x1’ , x2’ , x3’ , x4’ , …, xn’) i s obtained. This operation is described through the 

following matrix operation: 
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 The translation matrix will have n+1 columns and n+1 rows because we are 

considering that the points will have the homogeneous representation. All the elements in 
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the matrix’s main diagonal will be 1’s. The translation values are located in the last row 

each one positioned in the column that corresponds to their respective axis. The matrix’s 

remaining elements are 0’s. 

 

2.3.2.2 Scaling in the 4D and nD Spaces 

 

Scaling in 4D space will im ply a change of size of a polytope by four factors each 

one with relation with X1, X2, X3 and X4 axes. We convert a 4D point (x1 ,x2, x3, x4) when it 

is multiplied by the corresponding scaling factors S1, S2, S3 and S4 to get the coordinates 

(x1', x2', x3', x4'): 
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 The scaling in the nD space will r efer to change the size of a nD polytope through 

the factors S1, S2, S3, S4, … and Sn along the X1, X2, X3, X4, … and Xn axes respectively. 

The matrix representation will show that all the scaling factors are located in the main 

diagonal each one positioned in the column that corresponds to their respective axis:  
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2.3.3 Rotations in 4D Space 

 

[Banks, 92] and [Hollasch, 91] have identifi ed that if in 2D space a rotation is given 

around a point, and in 3D space is given around a line, then in 4D space, in analogous way, 

it must be given around a plane.  

 

[Hollasch, 91] considers that rotations in 3D space must be considered as rotations 

parallel to a 2D plane instead of rotations around an axis. [Hollasch, 91] supports this idea 

considering that given an origin of rotation and a destination point in the 3D space, the set 

of all rotated points for a given rotation matrix lie in a single plane, which is called the 

rotation plane. Moreover, the rotation axis in 3D space coincide with the normal vector of 

the rotation plane. The concept of rotation plane is consistent with the 2D space because all 

the rotated points lie in the same and only plane. Finally, with the above ideas, 

[Hollasch,91] constructs the six basic 4D rotation matrices around the main planes in 4D 

space, namely X1X2, X1X3, X1X4, X2X3, X2X4 and X3X4 planes, based in the fact that only 

two coordinates change for a given rotation (these changing coordinates correspond to the 

rotation plane): 
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2.3.4 Rotations in the nD Space 

 

 We know that in 3D space the rotations are defined in terms of the axis around they 

take place. However, we know from section 2.3.3 that it is more appropriate to consider 

that 3D rotations take place in a plane embedded in the 3D space (the plane’s normal vector 

coincides with the rotation axis). Using these ideas, [Duffi n, 94] generalize the concept of 

rotation in a nD space ( n � 2) as the rotation of an axis Xa in direction to an axis Xb. The 

plane described by axis Xa and Xb is what [Hollasch, 91] defined as rotation plane. 

[Duffi n,94] presents the following general rotation matrix: 
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The matrix Rab ( )�  is an identity matrix except in the intersection of columns a and b and 

rows a and b. Because in a nD space there are C
n

2

�

�
�

�



�  main planes, this is precisely the 

number of main rotations for such space. 

 

 From these concepts, we must consider that a rotation can be referenced by using 

two notations: using the axis that describe the rotation plane or using the axis that describe 

the (n-2)D subspace that is fixed during the rotation. In this work we will refer to rotations 

using the second notation. In Table 2.14, we present the application of both notations on 

the rotations for 2D, 3D and 4D space. 

 

TABLE 2.14 
Defining the rotation plane for rotations in 2D, 3D and 4D space (own elaboration). 

nD 
Space 

Number of 
possible 

main 
rotations 

(n-2)D 
subspace fixed 
during rotation 

Main axis that 
describe the fixed 
subspace in each 

possible main rotation 

Main axis that 
describe the rotation 
plane in each possible 

main rotation 

2D C
2

2
1

�

�
�

�



� �  0D - Point - X1X2 

3D C
3

2
3

�

�
�

�



� �  1D - Edge (axis) 

X1 

X2 
X3 

X2X3 
X1X3 
X1X2 

4D C
4

2
6

�

�
�

�



� �  2D - Plane 

X1X2 
X2X3 
X1X3 
X1X4 
X2X4 
X3X4 

X3X4 
X1X4 
X2X4 
X2X3 
X1X3 
X1X2 
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