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Chapter 1 
Introduction 

 

1.1 Historical Overview 

 

In the ancient Greece, Euclid said that "a point has no dimension at all . A line has 

only one dimension: length. A plane has two dimensions: length and breadth. A solid has 

three dimensions: length, breadth, and height. And there it stops. Nothing has four 

dimensions". 

 

 Plato's  allegory  of  the  cave is presented In "The Republic"  (370 b.C.).  

[Gutiérrez, 95] resumes it as follows: in a dark cave there are some prisoners chained since 

they were children. They can't see the daylight, the objects nor the people from the exterior. 

They just see the shadows that are projected onto the bottom's cave. Outside the cave there 

are a road and a torch that originates these shadows. The prisoners consider the shadows as 

their only reality. One of the prisoners escapes and discovers the real world. He returns to 

the cave and tries to convince the others. They don't believe him. An important aspect of 

Plato's allegory, is that it introduces the notion of a two-dimensional world and the 

experience of a being that discovers the existence of a three-dimensional world which 

includes him and his partners [Rucker, 84].  

 

It is since the 18th century when the scientifi c and philosophic communities began to 

consider the idea of a geometric fourth dimension. In 1747, Immanuel Kant in his first 

published paper “Thoughts on the True Estimation of Living Forces” , questioned why our 
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space  was  three-dimensional [Pickover,99]. After more than one hundred years, in 1895 

H. G. Wells recaptured this question in his classic novel “The Time Machine” [Wells, 55]. 

 

The first important approach to the fourth dimension (4D) was made by August 

Möbius in 1827. He speculated that rotations could work as reflections if any body (or 

figure) is passed through a higher dimension (one higher than the body or figure). For 

example, a right hand silhouette (a 2D figure) can be turned into a left hand silhouette 

passing it through the 3D space [Robbin, 92]. Möbius proposed that a 4D space is needed 

to turn right-handed three-dimensional crystals into left-handed crystals. A pair of objects 

which are congruent but not superimposable, unless we rotate one of them 180 degrees, is 

called an enantiomorphic pair [Pickover, 99]. 

 

In England, Arthur Cayley and John J. Sylvester described an Euclidean geometry 

of four dimensions where hyperplanes are determined by noncoplanar quadruples of points. 

They were able to move into a higher dimension because they added a new axiom: "outside 

any given three-dimensional hyperplane, there are other points" [Banchoff , 96]. 

  

In 1854, George Bernhard Riemann broke the cult position that the Euclidean 

geometry had for two thousand years with the introduction of the theory of higher 

dimensions. In "On the hypotheses which lie at the foundation of geometry", Riemann 

exposed the novel properties of higher dimensional space and demonstrated that Euclid's 

geometry is based only in the perception [Kaku, 94]. 
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In 1855, Ludwig Schläffi established that regular polytopes’ boundary is composed 

by a finite number of solid cells (like polyhedra’s boundary is composed by a finite number 

of polygons) in diff erent hyperplanes and placed in the form that every cell 's face is shared 

with another cell [Coxeter, 84]. Schläffi determined all six regular 4D polytopes and their 

numerical and metrical properties [Robbin, 92]. Unfortunately, Schläffi 's work does not 

have any ill ustration. Chapter 2 presents the properties of the 4D hypercube and simplex 

(some of the 4D regular polytopes). 

 

 The first steps for the visualization of 4D polytopes were made in the 1880's. In 

1880, Willi am Stringham presented for the first time ill ustrations of many 4D polytopes  in 

the American Journal of Mathematics [Robbin, 92]. In the same years, Charles Howard 

Hinton, in the Oxford University, published "What is the fourth dimension?" where he 

presented three methods to visualize 4D polytopes: examining their shadows, their cross 

sections and their unravelings [Kaku, 94]. 

 

Finally in 1884, Edwin A. Abbot proposed a method to conceptualize the fourth 

dimensional space in his book "Flatland", where a 2D being (A. Square) tries to understand 

3D objects that appear to him by means of analogy (like we would try to understand 4D 

polytopes) [Rucker, 77]. The notion of a bidimensional universe was introduced popularly 

by Abbot. However, it was earlier presented by the psychologist Gustave Fechner in his 

“Space has four dimensions”  where he studied the interactions between human shadows 

generated by projection [Pickover, 99]. Anyway, the work that considered for the first time 

a 2D universe was Plato's allegory of the cave. 
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 The term “hyperspace” was created in 1934 by John W. Campbell i n his tale “T he 

Mightiest Machine” . Since that time the term is popularly used to reference spaces with 

more than three dimensions. Also the term “superspace” has been used as synonym of 

“hyperspace”. It was introduced by the physicist John A. Wheeler. The prefix “hyper” is 

accepted by the scientifi c community to describe those entities with more than three 

dimensions [Pickover, 99].  

 

1.2 Theoretical Physics and Hyperdimensional Geometry 

 

In the last two decades of the 20th century, Physics is one of the sciences that has 

used substantially the advances produced after the rupture of the dogma imposed by three 

dimensional Euclidean Geometry. During the last years of his lif e, Albert Einstein centered 

his efforts in building a theory that was called by him a “Theory of Everything” (today that 

effort still continues). This theory should explain all the forces in the nature, including light 

and gravity [Kaku, 94]. 

 

The first theory that related our universe with hyperspace was developed in 1919 by 

Theodr Kaluza, a mathematician from the University of Königsberg, Germany. Kaluza 

unifi ed the Einstein’s results about gravity with Maxwell’ s light theory by introducing a 

fift h dimension [Kaku, 94]. In this way, the universe was described with four geometric 

dimensions and one temporal dimension.  
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The main objection imposed by physicists, including Einstein, was the consideration 

of a fift h geometric dimension from which there was no experimental evidence [Kaku, 94]. 

In 1926, the mathematician Oskar Klein improved Kaluza’s theory by calculating the 

length of the fift h dimension in 10-33 centimeters (this length is today known as Plank’s 

length [Hawking, 01]). This very small l ength disabled any detection by the experimental 

way. The Kaluza-Klein Theory (as known today) was relegated by the hidden fift h 

dimension and the emergence of Quantum Mechanics [Kaku, 94]. 

 

In the 1920’s, Erwin Schrödinger and Paul Dirac defined Quantum Mechanics 

which presents a diff erent vision of the universe. While Einstein’s General Relativity is a 

theory in which the universe is composed by stars and galaxies whose interactions are 

defined by a Space-Time geometry; Quantum theory defines a microcosm whose laws 

govern the interactions between atoms and subatomic particles (protons, electrons, etc) 

[Hawking, 01].  

 

The history of physics in the second half of the 20th century can be resumed in the 

study of the four forces that govern the universe [Kaku, 94]: gravity, electromagnetism, the 

strong force (the force that keeps the subatomic particles joined to form atoms [Hawking, 

96]) and the weak force (responsible for the radioactive decay of elements as the uranium 

[Greene, 99]). Relativistic physics or Quantum physics considers each of these forces, 

which are incompatible. Therefore, the efforts for unifying them, at that time, gave 

unsatisfactory results [Greene, 99]. 
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During that time, the universe was not reconsidered as a hyperspace again, because 

the use of the higher dimensions could not be justifi ed. In fact, in the 19th century, Riemann 

(who broke with three dimensional Euclidean geometry) manifested that higher dimensions 

had not physical application [Kaku, 94]. However, as seen before, Kaluza provided an 

application: the unifi cation of the laws of physics [Kaku, 94]. Kaluza unifi ed two forces 

(gravity and electromagnetism) by adding a higher dimension to Einstein’s Space-Time 

geometry.  

 

Since the 1980’s, the Kaluza-Klein theory was reconsidered only by what [Kaku, 

94] has called the physics’ new premise: “The laws of nature become simpler and more 

elegant when expressed in higher dimensions”. 

 

In 1984, due to a paper published by physicists John Schwarz and Mike Green 

(Queen Mary College, London), it was considered that a theory denominated as String 

Theory was the only way to combine the gravitational force and Quantum Theory. The 

fundamental objects in this theory are one-dimensional strings, they have only length 

[Hawking, 96].   

 

The strings, in this theory, are moving inside a Space-Time geometry. Their 

movements correspond to vibrations (analogously to musical instruments with chords) 

which code diff erent particles. It is known that matter is composed by atoms which, in turn, 

are composed by protons, neutrons and electrons which are composed by fundamental 

particles as the quarks. According to this theory, these particles are very small vibrating 

strings [Greene, 99] (Figure 1.1). 
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FIGURE 1.1 

Strings as fundamental objects (taken from [Greene, 99]). 
 

The strings can be considered as segments (open strings) or closed loops (closed 

strings). The intensity of the vibrations produce diff erent wavelengths. According to the 

wavelength the string will have specifi c mass and forces. If the wavelength is short, then 

the mass of the particle will be greater. Since the strings occupy a line in space at every 

moment in time; inside a Space-Time geometry the strings compose a two-dimensional 

surface. Two strings can interact so that they can join and separate [Hawking,96]. 

 

String Theory is valid only if the Space-Time geometry where they move has 10 or 

26 dimensions. One of the functions that define the vibrations of the strings is called the 

Ramanujan Function, in honor to the mathematician Srinivasa Ramanujan, who determined 

it since the 19th century [Kaku, 94]. The function has 24 modes, one of each possible 

string’s vibration, which can be reduced to 8. The two additional dimensions were 

incorporated by physicists by considering relativist factors. 
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Due to the obtained results, it was concluded by the first time in physics’ history, 

that String Theory was the “Theory of Everything” or “Ultimate Theory” or “Final 

Theory” , just as Einstein was looking for [Greene, 99]. However, later on, it was found that 

there exists at least five valid String Theories (one with open strings and four with closed 

strings) [Hawking, 01]: 

�� Type I (Open) String Theory. 

�� Type IIA (Closed) String Theory. 

�� Type IIB (Closed) String Theory. 

�� Heterotic-O (Closed) String Theory. 

�� Heterotic-E (Closed) String Theory. 

 

Since 1994 physicists started to consider strings as a class of objects that can be 

extended to more than one dimension.  Paul Townsend (Cambridge) called these objects 

“p-branes”. A p-brane extends in p directions (dimensions). In this way, a particle can be 

considered a  0-brane while strings  are a special case, therefore  they are  denominated as 

1-branes. It has been found that p-branes provide unifi cations for the fundamental forces 

(gravity, electromagnetism, strong and weak interactions) in spaces with 10 or 11 

dimensions [Hawking, 01]. 

 

In spite of the diverse string and p-branes theories, it has been found that, between 

them, there exists a set of similarities that carry to the same physical results. These 

similarities have been called dualiti es between these theories. Furthermore, each theory 

offers advantages over the others in the calculus of diff erent situations. Due to those 
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theories have some relations and specializations, physicists have considered them as pieces 

of a fundamental theory called the M-Theory. Currently, there is no approximation to this 

theory [Hawking, 01]. 

 

The String and p-brane Theories have been useful in unifying the fundamental 

forces, however, there still i s the opposition referent to experimental evidence about higher 

dimensions. The answer that has been provided is the same given for Kaluza-Klein Theory: 

the length of higher dimensions is extremely small to be detected. For this answer it has 

been added a new factor: the anthropic principle [Hawking, 96]. 

 

The anthropic principle, in a resumed way, proposes that the universe’s physical 

constants are determined so that it is possible the development of lif e [Kaku, 94]. Its 

relation with the number of dimensions in the universe is given by the following examples: 

�� One-dimensional beings only would have contact with their lateral neighborhoods, this 

would disable their transit [Coxeter, 84]. 

�� A two-dimensional being could not have a digestive tract, because it would divide him 

in two separate parts [Kaku, 94] (see [Rucker, 84] for a solution to this problem). 

Furthermore, the existence of systems like the circulatory would be impossible 

[Hawking, 96]. 

�� In a four-dimensional space, the gravitational force between two bodies would decrease 

faster with distance than in the three-dimensional space. This has as a consequence that 

a planet rotating around a star could affect its movement with a small i nteraction with 
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another massive body. A planet could collapse with its star or move away from it 

([Hawking, 96] & [ Pickover, 99]).  

 

Due to the anthropic principle, it has been established that during the beginning of 

the universe, only three geometric and one temporal dimensions were preserved, the 

necessary for the existence of lif e forms as ours. Higher dimensions were minimized during 

the same process to the least possible length, in other words, to the Plank length (10-33 

centimeters) [Hawking, 96]. During the 1990’s the building of particle accelerators started 

with the objective of confirming the existence of higher dimensions. One of them, the SSC 

(Superconducting Super Colli der), in the United States, was cancelled in 1994, while others 

like the LHC (Large Hadron Colli der) is currently in construction at Geneva, Switzerland 

[Hawking, 01]. 

 

Since the emergence of p-branes, a new approach was proposed for modeling the 

universe. It is established that our space with three geometric dimensions and one temporal 

dimension is the boundary (a p-brane) of a five dimensional region. The events in this 5D 

region are codifi ed in the p-brane’s region (the space we perceive) composing its actual 

state. This would be possible thanks to the Holographic Principle. This principle establishes 

that all the information associated with all phenomena in a region can be stored in its 

boundary from which it is possible to recover the original information [Hawking, 01]. 

 

The procedure for creating holograms can be resumed as follows: the light produced 

by a laser is divided into two beams. The first beam is directed toward an object (3D) 

whose reflexes are directed toward an holographic plate (2D). The second beam is directed 
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toward the holographic plate so that it colli des with the first beam. The colli sion creates an 

interference that is stored by the plate (Figure 1.2). In the beginning, the image in the plate 

doesn’t have relation with the original object. However, when a new laser or light source 

insides on the plate, a three-dimensional image of the original object appears, which can be 

observed from any angle [Talbot, 92]. 

 

 
 

FIGURE 1.2 
Procedure for creating an hologram for storing a 3D object’s 

information into a 2D plate (taken from [Talbot, 92]). 
 

In this way, our universe can be seen as a great bubble where the events are taking 

place inside it. The reality we perceive, including us, is a set of patterns stored in the 

bubble’s surface (a great holographic “plate”) [Hawking, 01]. 
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1.3 Methods for Visualizing 4D Polytopes 

 

It is known that one of the most important contribution of Charles Howard Hinton 

was the three methods to visualize 4D polytopes in our 3D space: examining their shadows, 

their unravelli ngs and their cross sections. The method of the shadows consists in that if it  

is possible to make drawings of 3D solids when they are projected onto a plane, then it is 

possible to make drawings or 3D models of 4D polytopes when they are projected onto a 

hyperplane [Coxeter, 84]. Let us follow the analogy presented in "Flatland" [Abbot, 84].  If 

a 3D being wants to show a cube to a 2D being (a flatlander) then the first one must project 

the cube’s shadow onto the plane where the flatlander lives. For this case, the projected 

shape could be, for example, a square inside another square (Figure 1.3).   

 

 

FIGURE 1.3 
Projecting a cube on a plane (taken from [Kaku, 94]). 

 

If a 4D being wants to show us a hypercube, he must project the shadow onto the 

3D space where we live. The projected body could be a cube inside another cube [Kaku,94] 
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called central projection [Banchoff , 96] (Figure 1.4). We know that a projected cube onto a 

plane is just an approximation of the real one. Analogously, the hypercube projected onto 

our 3D space is also a mimic of the real one. 

 

 

FIGURE 1.4 
Hypercube's central projection onto the 3D space (taken from [Aguilera & Pérez, 02]). 

 

 The six faces on the boundary of a cube can be unraveled as a 2D cross (Figure 

1.5). The set of unraveled faces is called the unravelings of the cube. This is Hinton’s 

second method for visualizing 4D polytopes. 

 

 

 

FIGURE 1.5 
Unraveling the cube (own elaboration). 

 

In analogous way, the eight cubes on the boundary of a hypercube can be unraveled 

as a 3D cross [Kaku, 94]. This 3D cross was named tesseract by C. H. Hinton (Figure 1.6).  
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FIGURE 1.6 
The tesseract (taken from [Aguilera & Pérez, 02]). 

 

A flatlander will visualize the 2D cross, but he will not be able to assembly it back 

as a cube (even if the specifi c instructions are provided). This fact is true because of the 

needed face-rotations in the third dimension around an axis, which are physically 

impossible in the 2D space. However, it is possible for the flatlander to visualize the 

raveling process through the projection of the faces and their movements onto the 2D space 

where he lives. 

 

Analogously, we can visualize the tesseract but we won't be able to assembly it back 

as a hypercube. We know this because of the needed cube-rotations in the fourth dimension 

around a plane which are physically impossible in our 3D space. However, it is possible for 

us to visualize the raveling process through the projection of the volumes and their 

movements onto our 3D space. Chapter 3 will present the Aguilera & Pérez’s methods for 

unraveling the hypercube and the 4D simplex (analogous to the tetrahedron) and to 

visualize the process. 
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 The slicing was the method used for Abbott in “F latland”  to describe the 

communication  between  2D and 3D spaces  [Banchoff , 96]. In that case,  the 3D visitor, 

A. Sphere was perceived by A. Square (the flatlander) as a circle changing in size through 

the time (Table 1.1) because the first one was moving throught Flatland (a plane).  

 

TABLE 1.1 
Sphere's plane intersections with Flatland (own elaboration). 

3D view Flatland view 3D view Flatland view 
 

 
 

t = 1 

 

 

 
 

t = 2 

 

 

 
 

t = 3 

 

 

 
 

t = 4 

 

 

 
 

t = 5 

 

  

 

 In analogous way, if a 4D hypersphere visits our 3D space, we would see a point 

that increases its size in all directions to take the shape of a sphere (Figure 1.7). During 

these movements, the 4D hypersphere was moving though our 3D space and we visualize 

its 3D-slicings.  



 16 

t=1 t=2 t=3 t=4 t=5  

FIGURE 1.7 
A 4D hypersphere seen in our 3D space (own elaboration). 

 

 The most common application of the slicings of a body are the conic sections. 

Slicing a cone we produce the hyperbola, the parabola, the elli pse and the circle (Table 

1.2). A 2D slicing can be geometrically defined as the plane intersection with a body’s 

surface. For analogy, a 3D slicing is the hyperplane intersection with a polytope’s 

boundary. 

TABLE 1.2 
Slicing the cone and generating the conic sections (own elaboration). 

3D view Flatland view 
(Conic Section) 3D view Flatland View 

(Conic Section) 

 

Circle 

 
 

 

Parabola 

 
 

 

 
Elli pse 

 
 

 

Hyperbola 
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1.3.1 Polytope’s Visualization Related Works 

 

At the Bell Labs, in 1966, Michael Noll created the first computer images of 4D 

hypercubes. Important features of Noll 's programs were the use of stereo vision and 4D 

perspective projection ([Robbin, 92] and [Hollasch, 91]). The Noll 's method was the 

generation of the pictures via plotter and the transference onto film [Noll , 67].   

 

 Thomas Banchoff (Mathematics Department at Brown University) has written 

computer programs that allow interactive manipulation (for example, with a joystick) of 

higher dimensional polytopes. Banchoff 's technique of visualization is the projection of the 

polytopes' shadows onto 2D computer screens [Robbin, 92]. Banchoff and Charles Strauss 

are authors of the film "The Hypercube: Projections and Slicing", which was presented at 

the International Congress of Mathematicians in Helsinki in 1978. 

 

 In [Hollasch, 91] it is mentioned the work of Scott Carey and Victor Steiner. They 

have rendered 4D polytopes to produce 3D "images" (li ke the rendering of a 3D object 

produces a 2D image). Finally, the results of 4D-3D rendering are 3D voxel fi elds. 

 

 [Hollasch, 91] proposes a 4D ray-tracer that supports four-dimensional li ghting, 

reflections, refractions, and also solves the hidden surfaces and shadowing problems in 4D 

space. The proposed ray-tracing method employs true four-space viewing parameters and 

geometry. Finally, the produced 3D field of RGB values is rendered with some of the 

existing methods. 
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In [Zhou, 91] is described a method  for visualizing curves, surfaces and hyper-

surfaces embedded in the 4D space. Such method is mainly based in the 4D-3D-2D 

projection technique. It presents methodologies for applying quaternions in the definition of 

rotations, and describes algorithms for polygonization of surfaces in detail . Finally, it 

demonstrates some geometric properties and phenomena characteristic of 4D space. 

 

 [Banks, 92] presents techniques for interaction with 4D-surfaces projected in the 

computer screen. Banks describes the ways to recover lost information that the 4D-3D-2D 

projection causes by means of visualization cues like depth. Also, ten degrees of freedom in 

4D space are identifi ed (6 rotations and 4 translations) and the use of devices to control the 

interaction. 

 

 [Gunn, 93] describes a software implementation for visualizing 4D hyper-surfaces. 

Its application doesn’t consider only the 4D Euclidean Space, because it is possible the 

visualization in 4D hyperbolic and spherical hyperspaces. Furthermore, it is possible to 

visualize the hyper-surfaces from an intrinsic point of view (with the observer embedded in 

the hyper-surface) or from an extrinsic point of view (with the observer outside the hyper-

surface). 

 

In [Hanson, 94] is presented a summary of the works achieved during the decade 

1984-1994, without ignoring classical contributions (some of them are mentioned in section 

1.1). Furthermore, [Hanson, 94] presents the concept of Visualizable Geometry, which can 
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be understood as the set of systems, concepts and methodologies related to the visualization 

of hyperspaces under distinct geometries and its applications.  

 

In [D’Zmura, 00] and [D’Zmura, 01] is described the Hyper system, which was 

developed by researchers of the Department of Cognitive Sciences at the University of 

Calif ornia, Irvine. The system’s main objective is the creation of 4D virtual worlds and the 

users’  interaction through Virtual Reality devices. In [Seyranian, 01] is described an 

experiment where the users are randomly positioned in a 4D virtual world (which was 

generated by Hyper system). The users must find a target in the minor possible time. Each 

user repeated the experiment several times. By the obtained results, [Seyranian, 01] 

concludes that an individual is able to navigate effi ciently in environments with four 

dimensions. 

 

 [Aguilera & Pérez, 01], [Aguilera & Pérez, 02] and [Aguilera & Pérez, 02c] discuss 

the method for visualizing 4D polytopes through their unravelings and present 

methodologies (which are described in chapter 3) for unraveling the hypercube and 4D 

simplex. 

 

1.4 Dimensional Analogies 

 

 In the previous sections it has been mentioned with regularity the term “analogy” . 

This has its foundation in the Method of the “Dimensional Analogies” ([Sagan, 80] called 
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them “ Interdimensional Contemplations”). We know that it was popularly presented by 

Abbott in Flatland but it was previously considered since Plato’s time. 

 

When we are trying to visualize and understand the 4D space, the situation is similar 

for Flatland’ s inhabitants (flatlanders) trying to visualize 3D space. Due to this, it results 

very useful to consider the analogous situations with a reduced number of dimensions 

[Zhou, 91]. For example, try to answer the following question: What is a 4D being able to 

see in the 3D beings? In order to get the answer, first it must be referenced the interaction 

between a 3D being with a 2D being. A.Sphere is the 3D being that makes contact with 

A.Square in Flatland. From his 3D space, A.sphere can visualize the Flatland polygons’ 

boundary, but additionally, he is able to see their interior (and therefore, their internal 

organs, if they have them, Figure 1.8). But in Flatland it is also referred Lineland, a one-

dimensional universe. Lineland’ s inhabitants were segments whose interior was visualized 

by A.Square. By analogy, we can expect that a 4D being, interacting with our 3D universe, 

could visualize our “boundary” (the skin), but furthermore, he could visualize our internal 

organs (in other words, the 4D being’s vision could work as the systems of X rays, 

tomography or magnetic resonance [Pickover, 99], Figure 1.9). 

 
FIGURE 1.8 

A.Square seen by a three-dimensional being (its boundary and one of its internal organs: its 
“heart” , are visualized. Taken from [Rucker, 77]). 
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FIGURE 1.9 

Possible visualization by a 4D being of a human cranium 
(internal organs as the Central Nervous System could be visualized. Magnetic Resonance 

taken from [Olivera, 02]). 
 

Fundamentally, the method of the analogies considers the contemplation of an 

analogy between 1D and 2D spaces, as well as between 2D and 3D spaces, then (through 

some extrapolation) between 3D and 4D spaces; and so forth. In this way the expected 

results can be suggested (a hypothesis is established) [Coxeter, 63]. Once the hypothesis is 

demonstrated, it is possible to suggest a generalization of the characteristic that has been 

demonstrated in n-dimensional space. 

 

At this point, the relation between the method of the analogies and the scientific 

method results obvious: 

1. Analysis: Observation of the analogies between 1D and 2D spaces; and between 2D and 

3D spaces. 

2. Hypothesis: Proposal of an analogy between 3D and 4D spaces. 

3. Synthesis: Selection of a mechanism to demonstrate the analogy. 

4. Validation: The process of demonstration. 

5. Argumentation: The proposal of an n-dimensional generalization based in the analogies 

previously observed and the demonstration already achieved. 
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Along this document the continuous application of the Method of the Analogies 

could be contemplated (except when the opposite is indicated). 

 

1.5 The Concepts of Dimension 

 

 [Banchoff , 96] points out that the term “dimension” is commonly used for 

specifying characteristics which are feasible to be measured. For example, an object’s list 

of dimensions would include width, height, weight, color, brightness, temperature, etc. The 

elements periodic table’ li st of dimensions includes atomic number, atomic mass, oxidation 

degree, etc. 

 

The list of dimensions for a determined phenomenon can compose a space in which 

each point corresponds to a possible combination of the considered dimensions’ values. 

The following are some examples: 

�� In [Feiner, 90] is presented the n-Vision system for the visualization of n-dimensional 

spaces. Its applications are related to the visualization and control of multidimensional 

financial data. 

�� [Wegenkittl , 97] presents a visualization interactive tool for exploring and analyzing 

multidimensional dynamical systems. Such systems include chemical reactions and 

statistical models. 

�� [Lees, 99] describes Geotouch, a Geographical Information System (GIS) which 

includes the time as a fourth dimension with the objective of visualizing earthquake 

hypocenters, volcanic eruptions or other time sequences of events.  
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�� In  [Weeks, 02]  a  set  of  educative  tools  for  visualizing  and  understanding 2  and 

3-manifolds are referred, whose main objective is to analyze the possible topologies of 

our universe. 

 

Another perspective is offered by the Albert Einstein's Relativity Theory and the 

Space-Time Geometry as one of its main contributions. For the relativists, time is 

considered as the fourth dimension [Russell, 84] and it is fully linked with space. Einstein 

proposed that time and space are not independent because an event must be described in 

terms of the place and the time at which it occurs [Kaku, 94] (in other words, time and 

space compose the event’s list of dimensions). For example, for a meeting it is necessary to 

specify a place in 3D space (a restaurant, a park, etc.) and the time (12:30 p.m., tomorrow, 

next Sunday, etc.).  Consequently, space is an arbitrary 3D cross section of the 4D ST 

where 3D objects are moving forward in the direction of the remaining dimension, the time 

[Rucker, 77].  

 

In strict terms, the fourth dimension is spatial, represented by a line perpendicular 

to each of three other perpendicular lines and it leads out of the space defined by the other 

three and never intersects them [Robbin, 92]. [Coxeter,84] considers Euclidean 4D space as 

the space with four coordinates (x, y, z, w) instead of habitual two (x, y) or three (x, y, z). 

And it is established by him that two distinct points determine a straight line, three vertices 

of a triangle determine a plane and four vertices of a tetrahedron determine a hyperplane 

which has only a lineal equation that relates to the four coordinates. 
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1.6 Objectives 

 

1.6.1 Problem’s Definition  

 

When working with multidimensional data, it is necessary to lay the foundation of 

the theoretical basis referent to the spaces where these data are embedded. In this way, it 

can be guaranteed the validity of the visualization and analysis to perform [Herman, 98]. 

Starting from this premise, fundamental in the methodology we have followed, is that in 

[Pérez, 01] we have presented some main properties related to Orthogonal Polytopes in 4D 

Spaces. This research was directly focused to a space with four geometric dimensions. 

 

Currently, the main results obtained from our research in its first phase (which are 

resumed in chapters 2, 3 and 4) and those presented in this work will allow the extension of 

the Extreme Vertices Model (EVM), presented by Aguilera & Ayala in [Aguilera, 97], to 

the 4D space (EVM-4D). After this step, we will count with a representation model for 4D 

Orthogonal Polytopes, which will supply us a tool to perform queries and operations on 

these polytopes. Although we will define a Polytopes’ representation model in a purely 

geometric and four-dimensional fashion, it won’t limit our research’s coverage because it 

could be applied over geometries like the space-time. 
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1.6.2 General Objectives 

 

The general objective of our research is to propose and demonstrate how the 

numerical and geometrical properties for polygons (in 2D space) and for polyhedra (in 3D 

space) can be extended to define, in analogous way, the properties of 4D polytopes. Using 

these extensions, we will propose and demonstrate the generalizations that define the 

geometric and numerical properties of nD polytopes [Pérez, 01]. Moreover, it will be 

considered the use of the 4D polytope’s geometrical and topological properties for 

representing multidimensional data and events under geometries like the space-time. 

 

1.6.3 Specific Objectives 

 

The study topics to be considered in our research are included, but not restricted to: 

�� 4D geometric transformations. 

�� Analysis and study of 4D-3D-2D projections. 

�� Numerical and geometrical properties of 4D Orthogonal Polytopes: A 4D Orthogonal 

Polytope is a polytope whose edges, faces and volumes (its boundary) are oriented in 

four orthogonal directions to X, Y, Z and W axis of the 4D space [Pérez, 01] 

�� Boundary analysis for 4D Orthogonal Polytopes. 

�� Modeling of 4D Orthogonal Polytopes: Boundary Representations and Hyperspatial 

Partitioning Representations. 

�� Boolean operations for 4D Orthogonal Polytopes. 
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Without leaving the application of 4D Polytopes’ modeling and their Boolean 

operations in the analysis of multidimensional data and events not only embedded in a 

purely 4D Euclidean Geometry but by considering Space-Time Geometry (defined by 

[Hawking, 02] as that one where exists the equivalence, respect to 4D Euclidean Space, 

w=t where t is the time and the events, the points in 4D space, are defined by three 

geometric coordinates and one temporal coordinate). 

 

1.6.4 Organization 

 

Besides this chapter, the structure for this document is the following: 

 

�� Chapter 2: Geometry of Four-Dimensional Space. This chapter presents the concepts 

of polytope and pseudo-polytope with their geometrical and topological properties. 

Moreover, it presents the numerical and geometrical properties of some of the probably 

most  known  4D polytopes:  the hypercube,  the simplex, the cross polytope and the 

0/1-polytopes. Finally, some 4D geometric transformations are mentioned. 

 

�� Chapter 3: Techniques for Visualizing the Four-Dimensional Space. The 4D-3D 

projections are presented as an extension of those applied in the visualization of 3D 

objects. Methods for hyper-flattening the 4D hypercube and simplex’s boundaries in 

order to obtain their unravelings are also presented. Furthermore, four ways of 

intersection of a hypercube with 3D space are presented and it is mentioned a method 

for visualizing a 4D hypersphere. 
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�� Chapter 4: Four-Dimensional Orthogonal Polytopes. This chapter presents an 

experimental and exhaustive analysis about the 4D Orthogonal Polytopes’ boundary and 

their properties. Furthermore, the generalizations of these properties to be applied in the 

nD Orthogonal Polytopes are proposed. 

 

�� Chapter 5: Determining the Configurations for the nD-OPP’s (n � 4). Where it is 

described the “Test-Box” heuristic that gives a solution to the problem of determining 

the configurations that can represent the nD Orthogonal Pseudo-Polytopes. Moreover, 

there are presented some formulations that describe properties of the heuristic and these 

configurations. Finally, there are presented the main diff erences between the procedures 

for obtaining the 402 Hill ’s configurations and the 253 Aguilera & Pérez’s 

configurations for the 4D-OPP’s. 

 

�� Chapter 6: Some Schemes for the Modeling of n-Dimensional Polytopes. This 

chapter analyses two categories for the representation of nD Polytopes: n-dimensional 

Boundary Representations and the Hyperspatial Partitioning Representations. 

 

�� Chapter 7: Future Work. This chapter describes the steps to follow in order to propose 

the Extreme Vertices Model in the 4D and 5D spaces (EVM-4D & EVM-5D). There are 

proposed two applications, for the first experimental results related to the EVM-4D and 

the EVM-5D, under the contexts of 2D and 3D animations’ managing and GIS.  

 

�� Conclusions. Where the main contributions of this work are summarized. 
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