Chapter 1
I ntroduction

1.1 Historical Overview

In the ancient Greece Euclid sad that "a point hasno dmension at al. A line has
only ore dimension: length. A plane hastwo dmensions: length and lreadth. A solid has
three dimensions. length, kreadth, and height. And there it stops. Nothing has four

dimensions".

Plato's dlegory of the cae is preseited In "The Repuldic’ (370 bC.).
[Gutiérrez, 95 resumesit asfollows:. in adark cave there ae ome prisoners chained since
they were dhildren. They can't seethe daylight, the objeds nor the people from the exterior.
They just seethe adows that are projeded orto the bottom's cave. Outside the cave there
are aroad and a torch that originatesthese sadows. The prisoners consider the sadows as
their only redity. One of the prisoners escpes ad dsmvers the red world. He returns to
the care and triesto convince the others. They dont believe him. An important agped of
Plato's dlegory, is that it introduces the notion d a two-dimensional world and the
experience of a being that disavers the existence of a threedimensional world which

includeshim and h's partners [Rucker, 84.

It is sncethe 18" century when the séentific and pil osophic communiti esbegan to
consider the idea of a geometric fourth dmension. In 1747,Immanuel Kant in his first

pubdished paper “Thoughs on the True Estimation d Living Forces', quedioned why ou



space was threedimensional [Pickover,99. After more than ore hunded yeas, in 1895

H. G. Wellsrecatured thisquedionin his dassc novel “The Time Machine” [Wells, 55.

The first important approac to the fourth dmension (4D) was made by August
Mobius in 1827.He geaulated that rotations wuld work as refledions if any body (or
figure) is passé through a higher dimension (one higher than the body o figure). For
example, a right hand silhouette (a 2D figure) can be turned into a left hand silhouette
passng it throughthe 3D space[Robhkin, 93. M6bius propcsal that a 4D spaceis needed
to turn right-handed threedimensional crystals into left-handed crystals. A pair of objeds
which are mnguent but not superimpaosable, unesswe rotate one of them 180 cegrees is

cdled an enantiomorphic pair [Pickover, 99.

In England, Arthur Cayley and John J. Sylveder descibed an Euclidean geometry
of four dimensions where hyperplanes ae determined by norcoplanar quadruplesof paints.
They were ale to move into a higher dimension becaisethey added a new axiom: "outside

any gven threedimensional hyperplane, there ae other points' [Banchoff, 96.

In 1854, George Bernhard Riemann lroke the ailt position that the Euclidean
geometry had for two thousand yeas with the introduction d the theory of higher
dimensions. In "On the hypotheses which lie at the foundation of geometry”, Riemann
exposal the novel propertiesof higher dimensional space ad demonstrated that Euclid's

geometry isbasel orly in the perception [Kaku, 94.



In 1855,Ludwig Schl&ffi edablished that regular polytopes boundiry is composed
by afinite number of solid cdls (like payhedra’ s boundry is composed by afinite number
of paygonrs) in dff erent hyperplanes and daced in the form that every cdl's faceis sared
with another cdl [ Coxeter, 84]. Schlé&ffi determined all six regular 4D polytopes and their
numerica and metricd properties [Robhin, 9. Unfortunately, Schléaffi's work does not
have ay ill ustration. Chapter 2 presaits the properties of the 4D hypercube and simplex

(some of the 4D regular paytopes.

The first steps for the visuaizaion d 4D poytopeswere made in the 1880s. In
1880, Willi am Stringham presanted for the fir st time ill ustrations of many 4D palytopes in
the American Journal of Mathematics [Robhkin, 93. In the sane yeas, Charles Howard
Hinton, in the Oxford University, pulished "What is the fourth dmension?' where he
presaited three methods to visualize 4D paytopes examining their shadows, their cross

sedions and their unravelings [Kaku, 94.

Finaly in 1884,Edwin A. Abba propcsed a method to conceptuali ze the fourth
dimensional spacein hisbook"Flatland", where a2D being (A. Square) triesto understand
3D objeds that appea to hm by means of analogy (like we would try to understand 4D
paytopes [Rucker, 77]. The notion d a bidimensional universewasintroduced popuarly
by Abba. However, it was edier presented by the psychdogist Gustave Fedchner in his
“Space has four dimensions’ where he sudied the interadions between human shadows
generated by pojedion [Pickover, 99. Anyway, the work that considered for the first time

a 2D universewasPlato's dlegory of the cave.



The term “hyperspace”was ceded in 1934 byJohnW. Campbell in his tale “T he
Mightied Machine”. Since that time the term is popuarly used to reference paceswith
more than three dimensions. Also the term “superspace” has been used as ynonym of
“hyperspace”. It wasintroduced by the physicist John A. Wheder. The prefix “hyper” is
acceted by the scentific community to descibe those aitities with more than three

dimensions [Pickover, 99.

1.2 Theoretical Physics and Hyperdimensional Geometry

In the lag two decales of the 20" century, Physics is one of the sd¢encesthat has
usal substantially the advancesproduced after the rupture of the dogma imposed by three
dimensiona Euclidean Geometry. During the lag yeas of hislif e, Albert Einstein centered
his dfortsin bulding atheory that was c#ied by Hm a “Theory of Everything’ (today that
effort still continueg. This theory shoud explain all the forcesin the nature, including light

and gavity [Kaku, 94.

The fir st theory that related ou universewith hyperspacewasdeveloped in 1919 by
Theodr Kaluza, a mathematician from the University of Konigsberg, Germany. Kaluza
unified the Einstein’s reallts éou gravity with Maxwell’ s light theory by introducing a
fifth dmension [Kaku, 94. In this way, the universe was desgibed with four geometric

dimensions and ore temporal dimension.



The main oljedionimposed by physicists, including Einstein, wasthe mnsideration
of afift h geometric dimension from which there wasno experimental evidence [Kaku, 94.
In 1926, the mathematician Oskar Klein improved Kauzdas theory by cdculating the
length of the fifth dmension in 10% centimeters (this length is today known as Plank’s
length [Hawking, 01). This very small |ength disabled any detedion bythe experimental
way. The KaluzaKlein Theory (as known today) was relegated by the hidden fifth

dimension and the emergence of Quantum Mechanics[Kaku, 94.

In the 1920s, Erwin Schrodinger and Paul Dirac defined Quantum Mechanics
which presents adiff erent vision d the universe While Einstein’s General Relativity is a
theory in which the universeis composed by stars and galaxies whose interadions ae
defined by a SpaceTime geometry; Quantum theory defines amicrocosm whaose laws
govern the interadions between atoms and subatomic particles (protons, eledrons, etc)

[Hawking, 01.

The history of physicsin the seond Hlf of the 20" century can be resumed in the
study d the four forcesthat govern the universe[Kaku, 94: gravity, eledromagnetism, the
strong force (the force that keegps the subatomic particlesjoined to form atoms [Hawking,
96]) and the we force (regorsible for the radioadive decay of elements asthe uranium
[Greene, 99). Relativistic physics or Quantum physics @nsiders eat of theseforces
which are incompatible. Therefore, the dforts for unifying them, at that time, gave

unsaisfadory reailts [Greene, 99.



During that time, the universewasnat reconsidered as ahyperspace @ain, becaise
the useof the higher dimensions muld na be justifi ed. In faa, in the 19" century, Riemann
(who kroke with threedimensional Euclidean geometry) manifeded that higher dimensions
had na physicd applicaion [Kaku, 94. However, as ser before, Kaluza provided an
application: the unification d the laws of physics [Kaku, 94. Kaluza unified two forces
(gravity and eledromagnetism) by adding a higher dimension to Einstein's SpaceTime

geometry.

Since the 1980s, the Kaluza-Klein theory wasremnsidered oy by what [Kaku,
94] has cédled the physics new premise “The laws of nature become smpler and more

elegant when expressé in higher dimensions”.

In 1984, due to a paper puldished by physicists bhn Schwarz and Mike Green
(Queen Mary College, Londor), it was ©nsidered that a theory denominated as String
Theory was the only way to combine the gravitational force and Quantum Theory. The
fundamental objeds in this theory are one-dimensional strings, they have only length

[Hawking, 99.

The drings, in this theory, are moving inside a SpaceTime geometry. Their
movements arregpond to vibrations (analogowsly to musicd instruments with chords)
which code diff erent particles It is known that matter is composed by atoms which, in turn,
are omposal by potons, neutrons and eledrons which are composed by fundamental
particles asthe quarks. According to this theory, theseparticles ae very small vibrating

strings [Greene, 99 (Figure 1.1).
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FIGURE 1.1
Strings asfundamental objeds (taken from [Greene, 99).

The drings can be mnsidered as sgments (open strings) or closed loops (closed
strings). The intensity of the vibrations produce diff erent wavelengths. According to the
wavelength the gring will have gedfic mass ad forces If the wavelength is dhort, then
the massof the particle will be greaer. Since the grings occupy a line in space & every
moment in time; inside a SpaceTime geometry the drings cwmpaose atwo-dimensional

surface Two strings can interad so that they can join and separate [Hawking,9q.

String Theory is valid orly if the Space Time geometry where they move has10 a
26 dmensions. One of the functions that define the vibrations of the drings is cdled the
Ramanujan Function, in hona to the mathematician SrinivasaRamanujan, who cetermined
it since the 19" century [Kaku, 94. The function has 24 modes ore of ead possble
string's vibration, which can be reduced to 8. The two additional dimensions were

incorporated by physicists by considering relativist fadors.



Due to the obtained reallts, it was oncluded by the first time in physics history,
that String Theory was the “Theory of Everything’ or “Ultimate Theory” or “Final
Theory”, just asEinstein waslooking for [Greene, 99. However, later on, it wasfoundthat
there eists & leag five valid String Theories (one with open strings and four with closed

strings) [Hawking, 01:

Type | (Open) String Theory.

e TypellA (Closal) String Theory.

e TypellB (Closal) String Theory.

e Heterotic-O (Closed) String Theory.

e Heterotic-E (Closed) String Theory.

Since 1994 phyicists garted to consider strings as a kassof objeds that can be
extended to more than ore dimension. Paul Townsend (Cambridge) cdled theseobjeds
“p-branes”. A p-brane extendsin p dredions (dimensions). In this way, a particle can be
considered a O-brane while grings are a pedal casetherefore they are denominated as
1-branes It has been foundthat p-branes provide unifi caions for the fundamental forces
(gravity, eledromagnetism, strong and week interadions) in spaces with 10 o 11

dimensions [Hawking, 01.

In spite of the diverse $ring and pbranestheories it hasbeen foundthat, between
them, there eists a sé of similarities that cary to the sane physicad reallts. These
similarities have been cdled dulities between thesetheories Furthermore, ead theory

offers alvantages over the others in the cdculus of diff erent situations. Due to those



theorieshave ome relations and speciali zations, physicists have mnsidered them aspieces
of a fundamental theory cdled the M-Theory. Currently, there is no approximation to this

theory [Hawking, 01.

The String and pbrane Theories have been usdul in unfying the fundamental
forces however, there dill i s the oppasition referent to experimental evidence @ou higher
dimensions. The axswer that hasbeen provided is the same given for KaluzaKlein Theory:
the length of higher dimensions is extremely small to be deteded. For this aswer it has

been added a new fador: the anthropic principle [Hawking, 94.

The anthropic principle, in a resumed way, proposesthat the universés physicd
constants ae determined so that it is passble the development of life [Kaku, 94. Its
relation with the number of dimensions in the universeis given bythe foll owing examples
e One-dimensiona beings only would have contad with their lateral neighbahoods, this

would dséble their transit [ Coxeter, 84].

e A two-dimensional being could nd have adigedive trad, becauseit would dvide him
in two separate parts [Kaku, 94 (see[Rucker, 84 for a lution to this problem).
Furthermore, the existence of systems like the drculatory would be impossble
[Hawking, 94.

e Inafour-dimensional space the gravitationa force between two bodeswould deaease
fager with dstancethan in the threedimensional space This has as a@ansequence that

a planet rotating arounda gdar could affed its movement with a snall i nteradion with



another massve body. A planet could collapse with its gar or move avay from it

([Hawking, 99 & [ Pickover, 99).

Due to the anthropic principle, it hasbeen edablished that during the beginning d
the universeg only three geometric and ore temporal dimensions were preseved, the
necesary for the existenceof lif e forms asours. Higher dimensions were minimized duing
the same processto the leas possble length, in other words, to the Plank length (103
centimeters) [Hawking, 94. During the 1990s the building d particle accéerators darted
with the objedive of confirming the eistence of higher dimensions. One of them, the SSC
(Superconducting Super Colli der), in the United States was cacdled in 1994 whil e others
like the LHC (Large Hadron Colli der) is aurrently in construction at Geneva, Switzerland

[Hawking, 0].

Since the emergence of p-branes a new approadh was proposed for modeling the
universe It is esablished that our spacewith threegeometric dimensions and ore temporal
dimension is the boundiry (a p-brane) of afive dimensional region. The eventsin this 5D
region are aodified in the p-brane’s region (the gacewe percave) composing its acdual
state. Thiswould be passble thanks to the Holographic Principle. This principle esablishes
that al the information associated with al phenomena in a region can be gored in its

boundary from which it is possble to recover the original information [Hawking, 07.

The procedure for creaing hdograms can be resumed asfoll ows: the light produced
by a lase is divided into two beams. The first beam is direded toward an ojed (3D)

whoserefl exes ae direded toward an hdographic plate (2D). The seond kean is direded

10



toward the holographic plate  that it colli deswith the fir st beam. The ollision credes a
interferencethat is dored by the plate (Figure 1.2). In the beginning, the image in the plate
doesn't have relation with the original objed. However, when a new lase or light source

insideson the plate, a three-dimensional image of the original objed appeas, which can be

obsaved from any angle [Talbat, 97.
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FIGURE 1.2

Procedure for creding an hdogram for storinga 3D objed’s
informationinto a 2D plate (taken from [Tabat, 92).

In thisway, ou universe ca be sea as agred bublde where the events are taking
placeinside it. The redity we percave, including us, is a sé of patterns gored in the

buble' s surface(agrea haographic “plate”) [Hawking, 01.
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1.3 Methodsfor Visualizing 4D Polytopes

It is known that one of the most important contribution d Charles Howard Hinton
wasthe threemethods to visualize 4D paytopesin ou 3D space examining their shadows,
their unravellings and their cross setions. The method d the dhadows consistsin that if it
is posgble to make drawings of 3D solids when they are projeded orto a plane, then it is
posshle to make drawings or 3D models of 4D paytopeswhen they are projeded orto a
hyperplane [Coxeter, 84]. Let usfollow the analogy presented in "Flatland" [Abba, 84. If
a 3D being wants to show a aube to a 2D being (a fl atlander) then the fir st one must projed
the abe's dhadow onto the plane where the flatlander lives For this casethe projeded

shape could be, for example, a gjuare inside anather square (Figure 1.3).

T ——y
""' { 3 \'.
/| | T
E [ | A
_f.‘l\\ » ‘ —‘l Er”/
Q| "".*’fj\
FIGURE 1.3

Projeding a aube on a plane (taken from [Kaku, 94).

If a4D being wants to show us ahypercube, he must projed the $radow onto the

3D spacewhere we live. The projeded bodycould be a eibe inside anather cube [Kaku,94
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cdled centra projedion[Banchoff, 96 (Figure 1.4). We know that a projeded cube onto a
plane is just an approximation d the red one. Analogowsly, the hypercube projeded orto

our 3D spaceis dso amimic of thered one.

FIGURE 1.4
Hypercube's cantral projedion orto the 3D space(taken from [Aguilera & Pérez 07).

The sx faceson the boundry of a aibe can be unraveled as a2D cross (Figure
1.5). The se of unraveled facesis cdled the unravelings of the abe. This is Hinton's

seondmethodfor visualizing 4D palytopes

':/:> =

FIGURE 1.5
Unraveling the aube (own elaboration).

In analogows way, the @ght cubeson the boundary of a hypercube can be unraveled

as a3D cross[Kaku, 94. This 3D crosswasnamed tesseract by C. H. Hinton (Figure 1.6).
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FIGURE 1.6
Thetessead (taken from [Aguilera & Pérez 07).

A flatlander will visualizethe 2D cross bu he will nat be ale to assenbly it badk
as a abe (even if the gedfic instructions ae provided). This fad is true becaise of the
needed facerotations in the third dmension around an axis, which are physicdly
impossble in the 2D space However, it is possble for the flatlander to visualize the
raveling processthroughthe projedion d the faces ad their movements onto the 2D space

where helives

Analogously, we can visualizethe tessead but we wont be &le to assenbly it badk
as ahypercube. We know this becauseof the neaded cube-rotations in the fourth dmension
arounda plane which are physicaly impossblein ou 3D space However, it is possble for
us to visualize the raveling processthrough the projedion d the volumes and their
movements onto ou 3D space Chapter 3 will preseant the Aguilera & PéreZ s methods for
unraveling the hypercube and the 4D simplex (analogows to the tetrahedron) and to

visualizethe process
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The dicing was the method wsed for Abbat in “Flatland’ to descibe the
communicaion letween 2D and D spaces [Banchoff, 96. In that case the 3D visitor,
A. Sphere wasperceived by A. Square (the flatlander) as a @cle changing in size through

the time (T able 1.1) becausethe fir st one wasmoving through Flatland (a plane).

TABLE 1.1
Sphere's plane intersedions with Flatland (own elaboration).
3D view Flatland view 3D view Flatland view
t=1 . t=2
t=3 £ t=4

In analogows way, if a 4D hypersphere visits our 3D space we would see apoint
that increasesdts szein al diredions to take the dape of a phere (Figure 1.7). During
thesemovements, the 4D hypersphere was moving though ow 3D spaceand we visualize

its 3D-dlicings.
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t=1 t=2 t=3 t=4 t=5
FIGURE 1.7
A 4D hypersphere sea in ou 3D space(own elaboration).
The most common application d the dicings of a body are the wnic setions.
Slicing a @mne we produwce the hyperbda, the parabdla, the dlipse ad the drcle (Table
1.2). A 2D dlicing can be geometricdly defined as the plane intersedion with a body's

surface For analogy, a 3D dlicing is the hyperplane intersed¢ion with a polytope's

boundry.
TABLE 1.2
Slicing the cne and generating the @nic sedions (own elaboration).
3D view Flatland view 3D view Flatland View
(Conic Section) (Conic Section)
Circle Parabola
Hyperbola

A
an
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1.3.1Polytope’s Visualization Related Works

At the Bell Labs, in 1966,Michad Noll creded the first computer images of 4D
hypercubes Important feaures of Noll's programs were the use of stereo vision and 4D
perspedive projedion ([Robhin, 93 and [Hollasd, 91)). The Noll's method was the

generation d the picturesvia plotter and the transference onto film [ Noll, 67].

Thomas Banchoff (Mathematics Department at Brown University) has written
computer programs that allow interadive manipulation (for example, with a joystick) of
higher dimensional paytopes Banchoff's technique of visualizaion is the projedion d the
paytopes shadows onto 2D computer saeens [Robhin, 93. Banchoff and Charles Strauss
are authors of the film "The Hypercube: Projections and Sicing", which was presented at

the International Congressof Mathematiciansin Helsinki in 1978.

In [Hollasd, 97 it is mentioned the work of Scott Carey and Victor Steiner. They
have rendered 4D pdytopesto produce 3D "images' (like the rendering d a 3D objed

produces a2D image). Finally, the reaults of 4D-3D rendering are 3D voxel fields.

[Hollasdh, 91 proposes a4D ray-trace that suppats four-dimensiona lighting,
refledions, refradions, and also solvesthe hidden surfaces ad shadowing poblemsin 4D
space The propcsal ray-tradng method employs true four-spaceviewing parameters and
geometry. Finally, the produced 3D field of RGB vauesis rendered with some of the

existing methods.
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In [Zhou, 9] is descibed a method for visualizing curves surfaces ad hyper-
surfaces ebedded in the 4D space Such method is mainly basel in the 4D-3D-2D
projediontedinique. It presants methoddogiesfor applying quaternionsin the definition o
rotations, and descibes adgorithms for poygonzaion o surfacesin detail. Finaly, it

demonstrates ®me geometric properties and prenomena charaderistic of 4D space

[Banks, 92 presaits techniques for interadion with 4D-surfacesprojeded in the
computer saean. Banks descibesthe ways to recver lost information that the 4D-3D-2D
projedion causesby means of visuali zation cueslike depth. Also, ten degreesof freedom in
4D space ae identifi ed (6 rotations and 4translations) and the useof devicesto control the

interadion.

[Gunn, 93 descibes a sftware implementation for visualizing 4D hyper-surfaces
Its gplication daesr't consider only the 4D Euclidean Space becaiseit is posshle the
visualization in 4D hyperbdic and sphericd hyperspaces Furthermore, it is possble to
visuali ze the hyper-surfacesfrom an intrinsic paint of view (with the obsever embedded in
the hyper-surface or from an extrinsic point of view (with the obsaver outside the hyper-

surface.

In [Hanson, 94 is presaited a suammary of the works adieved duing the decale

19841994 ,withou ignaring classca contributions (some of them are mentioned in sed¢ion

1.1). Furthermore, [Hanson, 94 preseits the aoncept of Visualizable Geometry, which can
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be understood asthe sé of systems, concepts and methoddogiesrelated to the visualization

of hyperspacesunder distinct geometries and its goplications.

In [D’Zmura, 00 and [D’Zmura, 01] is descibed the Hyper system, which was
developed by reseachers of the Department of Cognitive Sciences & the University of
Cdlif ornia, Irvine. The g/stem’s main oljedive isthe aedion o 4D virtua worlds and the
usas interadion through Virtual Redity devices In [Seyranian, 01] is descibed an
experiment where the usas ae randamly positioned in a 4D virtual world (which was
generated by Hyper system). The usas must find a target in the minor possble time. Each
use repeded the experiment several times By the obtained reallts, [Seyranian, 01
concludes that an individual is &le to navigate dficiently in environments with four

dimensions.

[Aguilera & Pérez 01], [Aguilera & Pérez 02 and [Aguilera & Pérez 02c] disauss
the method for visualizing 4D polytopes through their unravelings and peseit
methoddogies (which are descibed in chapter 3) for unraveling the hypercube and D
simplex.

1.4 Dimensional Analogies

In the previous setions it has been mentioned with regularity the term “analogy’.

This hasits foundation in the Method d the “Dimensional Analogies” ([Sagan, 8Q cdled
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them “Interdimensional Contemplations”). We know that it was popuarly preseited by

Abbat in Flatland but it waspreviously considered since Plato’stime.

When we aetryingto visualize and unarstand the 4D space the stuationis Smilar
for Flatland' s inhabitants (flatlanders) trying to visualize 3D space Due to this, it reailts
very usdul to consider the analogows stuations with a reduced number of dimensions
[Zhou, 9]. For example, try to answer the following quedion: What is a4D being able to
seein the 3D beings?In arder to get the answer, first it must be referenced the interadion
between a 3D being with a 2D being. A.Sphere is the 3D being that makes ©ntad with
A.Sguare in Flatland. From his 3D space A.sphere can visualize the Flatland pdygors
boundry, bu additionaly, he is &le to seetheir interior (and therefore, their interna
organs, if they have them, Figure 1.8). But in Flatland it is dso referred Lineland, a one-
dimensional universe Lineland’s inhabitants were s@ments whoseinterior was visuali zed
by A.Square. By analogy, we can exped that a 4D being, interading with ou 3D universe
could visualize our “boundry” (the «in), bu furthermore, he wuld visualize our internal
organs (in ather words, the 4D being's vision coud work as the g/stems of X rays,

tomography a magnetic resonance [Pickover, 99, Figure 1.9).

"
.

FIGURE 1.8
A.Sguare see by athreedimensiona being (its boundry and ore of itsinternal organs. its
“heat”, are visualized. Taken from [Rucker, 77)).
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FIGURE 1.9

Possible visualization by a4D being of a human cranium
(internal organs as the Central Nervous System could be visualized. Magnetic Resonance
taken from [Olivera, 02]).

Fundamentally, the method of the analogies considers the contemplation of an
analogy between 1D and 2D spaces, as well as between 2D and 3D spaces, then (through
some extrapolation) between 3D and 4D spaces; and so forth. In this way the expected
results can be suggested (a hypothesis is established) [Coxeter, 63]. Once the hypothesisis

demonstrated, it is possible to suggest a generalization of the characteristic that has been

demonstrated in n-dimensional space.

At this point, the relation between the method of the analogies and the scientific
method results obvious:
1. Analysis: Observation of the analogies between 1D and 2D spaces; and between 2D and
3D spaces.
2. Hypothesis: Proposal of an analogy between 3D and 4D spaces.
3. Synthesis: Selection of a mechanism to demonstrate the analogy.
4. Validation: The process of demonstration.
5. Argumentation: The proposal of an n-dimensional generalization based in the analogies

previously observed and the demonstration already achieved.
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Along this document the @ntinuows gplicaion d the Mehod d the Analogies

could be contemplated (except when the oppdsite isindicated).

1.5 The Concepts of Dimension

[Banchoff, 96 points out that the term “dimension” is cmmonly usel for
speafying charaderistics which are feasble to be measired. For example, an ojed’s list
of dimensions would include width, height, weight, color, brightness temperature, etc. The
elements periodic table’ li st of dimensions includes @omic number, atomic mass oxidation

degree etc.

The list of dimensions for a determined phenomenon can compose a pacein which
eat pdnt correponds to a posshle mmbination d the cnsidered dmensions’ values
The following are sMe examples
e In [Feiner, 9] is presated the n-Vision system for the visualization o n-dimensional

gpaces Its gplicaions ae related to the visualizaion and control of multidimensional
financial data.

e [Wegenkittl, 97] presents avisualizdion interadive tod for exploring and analyzing
multidimensional dynamicd systems. Such systems include chemicd readions and
statisticd models.

e [Lees 99 descibes Geotouch, a Geographicd Information System (GIS) which
includes the time as afourth dmension with the objedive of visualizing eathqueke

hypocenters, volcanic euptions or other time s@uencesof events.
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e In [Weeks, 02] a set of educative tools for visualizing and understanding 2 and
3-manifolds are referred, whose main objective is to analyze the possible topologies of

our universe.

Another perspective is offered by the Albert Einstein's Relativity Theory and the
Space-Time Geometry as one of its main contributions. For the relativists, time is
considered as the fourth dimension [Russell, 84] and it is fully linked with space. Einstein
proposed that time and space are not independent because an event must be described in
terms of the place and the time at which it occurs [Kaku, 94] (in other words, time and
space compose the event’s list of dimensions). For example, for a meeting it is necessary to
specify a place in 3D space (a restaurant, a park, etc.) and the time (12:30 p.m., tomorrow,
next Sunday, etc.). Consequently, space is an arbitrary 3D cross section of the 4D ST
where 3D objects are moving forward in the direction of the remaining dimension, the time

[Rucker, 77].

In strict terms, the fourth dimension is spatial, represented by aline perpendicular
to each of three other perpendicular lines and it leads out of the space defined by the other
three and never intersects them [Robbin, 92]. [ Coxeter,84] considers Euclidean 4D space as
the space with four coordinates (X, y, z, w) instead of habitual two (x, y) or three (X, y, 2).
And it is established by him that two distinct points determine a straight line, three vertices
of a triangle determine a plane and four vertices of a tetrahedron determine a hyperplane

which has only alineal equation that relates to the four coordinates.
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1.6 Objectives

1.6.1 Problem’s Definition

When working with multidimensional data, it is necessey to lay the foundation d
the theoreticd bags referent to the gpaceswhere thesedata ae embedded. In this way, it
can be guarantedal the validity of the visualizaion and analysis to perform [Herman, 99.
Starting from this premise fundamental in the methoddogy we have followed, is that in
[Pérez, 01] we have presented some main propertiesrelated to Orthogoral Polytopesin 4D

Spaces Thisreseach wasdiredly focuseal to a acewith four geometric dimensions.

Currently, the main reaults obtained from our reseach in its first phase(which are
resumed in chapters 2, 3and 4 and thosepresented in thiswork will allow the extension o
the Extreme Vertices Model (EVM), preseited by Aguilera & Ayaain [Aguilera, 97, to
the 4D space(EVM-4D). After this gep, we will count with a representation model for 4D
Orthogoral Polytopes which will supdy us atod to perform queries ad operations on
thesepadytopes Althoughwe will define a Polytopes represatation model in a purely
geometric and four-dimensional fashion, it won't limit our reseach’s mverage because it

could be gplied over geometrieslike the pacetime.
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1.6.2 General Objectives

The general objedive of our reseach is to propocse ad demonstrate how the
numerica and geometrica propertiesfor paygors (in 2D space and for payhedra (in 3D
space can be extended to define, in analogous way, the propertiesof 4D paolytopes Using
these a&tensions, we will propocse ad cemonstrate the generdizations that define the
geometric and numericd properties of nD polytopes [Pérez, 01]. Moreover, it will be
considered the use of the 4D poytope’'s geometricd and topdogicd properties for

representing multidimensional data and events under geometrieslike the pacetime.

1.6.3 Specific Objectives

The gudytopicsto be ansidered in ou reseach are included, but not redricted to:

e 4D geometric transformations.

e Anaysis and study d 4D-3D-2D projedions.

e Numericd and geometricd properties of 4D Orthogoral Polytopes A 4D Orthogora
Polytope is apdytope whose elges faces ad vdumes (its boundiry) are oriented in
four orthogoral diredionsto X, Y, Z and W axis of the 4D space[Pérez 01]

e Boundary analysisfor 4D Orthogoral Polytopes

e Modeliing d 4D Orthogoral Polytopes.: Boundary Representations and Hyperspatia
Partitioning Represantations.

e Bodean operationsfor 4D Orthogoral Polytopes
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Withou leaving the gplication d 4D Polytopes modeling and their Bodean
operations in the analysis of multidimensional data and events naot only embedded in a
purely 4D Euclidean Geometry but by considering SpaceTime Geometry (defined by
[Hawking, 03 asthat one where exists the ejuivalence reged to 4D Euclidean Space
w=t where t is the time and the events, the points in 4D space are defined by three

geometric coordinates and ore temporal coordinate).

1.6.4 Organization

Besdesthis chapter, the dructure for this document is the foll owing:

e Chapter 2: Geometry of Four-Dimensional Space. This chapter presents the concepts
of pdytope and pseudo-pdytope with their geometricad and topdogicd properties
Moreover, it preseits the numericd and geometricd propertiesof some of the probably
most known 4D podytopes the hypercube, the smplex, the aoss padytope and the

0/1-padytopes Finaly, some 4D geometric transformations ae mentioned.

e Chapter 3: Techniques for Visualizing the Four-Dimensional Space. The 4D-3D
projedions ae presaited as an extenson d those gplied in the visualizaion d 3D
objeds. Methods for hyper-flattening the 4D hypercube and simplex’s boundiries in
order to oltain their unravelings are dso presented. Furthermore, four ways of
intersedion d a hypercube with 3D space ae preseaited and it is mentioned a method

for visualizing a4D hypersphere.
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e Chapter 4. Four-Dimensional Orthogonal Polytopes. This dapter preseits an
experimental and exhaustive analysis @ou the 4D Orthogoral Polytopes boundry and
their properties Furthermore, the generalizations of thesepropertiesto be gplied in the

nD Orthogoral Polytopes ae propcsed.

e Chapter 5: Determining the Configurations for the nD-OPP’s (n > 4). Where it is
descibed the “Ted-Box” heuristic that gives a slution to the problem of determining
the configurations that can represent the nD Orthogaal Pseudo-Polytopes Moreover,
there ae presaited some formulations that descaibe propertiesof the heuristic and these
configurations. Finally, there ae preseaited the main dff erencesbetween the procedures
for obtaining the 402 Hill's mnfigurations and the 253 Agulera & PéreZs

configurations for the 4D-OPPs.

e Chapter 6. Some Schemes for the Modeling of n-Dimensional Polytopes. This
chapter analysestwo categoriesfor the representation d nD Polytopes n-dimensional

Boundary Representations and the Hyperspatial Partitioning Representations.

e Chapter 7: Future Work. This chapter descgibesthe gepsto follow in order to propcse
the Extreme Vertices Model in the 4D and D spaces(EVM-4D & EVM-5D). There ae
propcsal two applicatiions, for the fir st experimental reaults related to the EVM-4D and

the EVM-5D, uncer the contexts of 2D and 3 animations managing and GIS.

e Conclusions. Where the main contributions of thiswork are simmarized.
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