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Abstract 
 

This article presents methods for unraveling the hypercube 
and the 4D simplex and obtaining the unravelings that 
corresponds to the hyper-flattening of their boundaries. These 
regular polytopes can be raveled back using the methods in an 
inverse way. The transformations to apply include rotations 
around a plane (characteristic of the 4D space). All these 
processes can be viewed using a computer animation system. 
 

 

1. Introduction 
 

Recent interest has been growing in studying 
multidimensional polytopes (4D and beyond) for representing 
multidimensional phenomena in the Euclidean n-dimensional 
space. Some of these phenomena’s features rely on the 
polytope’s geometric and topologic relations. So, we have 
developed some algorithms for classifying n-D polytopes’ 
elements as manifold or non-manifold [2]. However, [3] 
motivates us to think about two important questions: Is it 
possible to visualize a polytope to know how it looks like? And 
if we can’ t see it, how can we be sure about the proper 
understanding of its relations and properties? The answer is that 
the task of visualizing polytopes in the fourth and higher 
dimensions belongs to the computer graphics field [3]. 
Visualizing these new dimensions lead us to learn and to 
understand the events, relationships and properties for these 
phenomena. 

[3], [5], [8], [10] and [12] start their introductions to the 4D 
space study presenting three methods for visualizing the 
hypercube: through its shadows (projections), its cross sections 
with 3D space, and its unravelings. 

 
Figure 1. Projecting a cube on a plane (central projection). 

 

If it is possible to make drawings of 3D solids when they are 
projected onto a plane, then it is possible to make drawings or 
3D models of 4D polytopes when they are projected onto a 
hyperplane [5]. The shadows method is based in this principle. 

Let us follow the analogy presented in "Flatland" [1]. If a 3D 
being wants to show a cube to a 2D being (a flatlander) then the 
first one must project the cube's shadow onto the plane where the 
flatlander lives. For this case, the projected shape could be, for 
example, a square inside another square (Figure 1). 

 
Figure 2. Hypercube's central projection on to the 3D space. 

 

If a 4D being wants to show us a hypercube, he must project 
the shadow onto the 3D space where we live. The projected body 
could be a cube inside another cube [8] called central projection 
(Figure 2). We know that a projected cube onto a plane is just an 
approximation of the real one. Analogously, the hypercube 
projected onto our 3D space is also a mimic of the real one. 
Another useful projection is due to Claude Bragdon (see [11] for 
details about this projection).  See Figure 3. 
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Figure 3. Claude Bragdon 's hypercube projection. 

 

A cube can be unraveled as a 2D cross. The six faces on the 
cube's boundary will compose the 2D cross (Figure 4). The set 
of unraveled faces is called the unravelings of the cube.  
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Figure 4. Unraveling the cube. 

 

In analogous way, a hypercube also can be unraveled as a 
3D cross. The 3D cross is composed by the eight cubes that 
forms the hypercube's boundary [8]. This 3D cross was named 
tesseract by C. H. Hinton (Figure 5).  

 

 
Figure 5. The unraveled hypercube (the tesseract). 

 

A flatlander will visualize the 2D cross, but he will not be 
able to assembly it back as a cube (even if the specific 
instructions are provided). This fact is true because of the needed 
face-rotations in the third dimension around an axis which are 
physically impossible in the 2D space. However, it is possible 
for the flatlander to visualize the raveling process through the 
projection of the faces and their movements onto the 2D space 
where he lives. 

Analogously, we can visualize the tesseract but we won't be 
able to assembly it back as a hypercube. We know this because it 
is necessary the translation of the cubes (the hypercube's 
boundary) in the fourth dimension and rotate them around a 
plane (this transformations are physically impossible in our 3D 
space). 

Before going any further, we would like to underline that the 
cube’s boundary faces can be grouped into three pairs of parallel 
faces, where their supporting planes define two 2D-spaces 
parallel to each other. Each pair can be obtained by ignoring all 
those edges parallel to each main axis (X, Y and Z), see Figure 6 

 

 

 
Figure 6. Viewing the cube’s bound ary faces. 

 

It is interesting to analyze the hypercube using its analogy 
with the cube and the visualization methods above described. [6] 
has determined that a hypercube is composed of sixteen vertices, 
twenty-four faces and eight bounding cubes (also called cells or 
volumes). Similarly, and as shown in Figure 7, all these volumes 
can be grouped into four pairs of parallel cubes, furthermore, 
their supporting hyper-planes define two 3D-spaces parallel to 
each other [9]. Moreover, [4] states it is instructive for the reader 
to find all eight bounding cubes in the Bragdon’s projection.   

[5] points that each face is shared by two cubes not in the 
same three-dimensional space, because they form a right angle 
through a rotation around the shared face's supporting plane. 
These properties are visible through Bragdon's projection 
(Figure 3). The Bragdon's projection as well as the central 
projection will be used through the remaining of this work. 
 

 

 
Figure 7. Viewing the hypercube’s bound ary volumes. 

 

2. Problem 
 

[3] and [8] describe with detail a representation model for 
the hypercube through their unravelings. They also mention the 
physical incapacity of a 3D being to ravel the hypercube back, 
because the required transformations are not possible in our 3D 
space (Figure 8).  

[3] and [8] also describe that if we witness the raveling 
process, seven of eight cubes that compose the tesseract will 
suddenly disappear, because they have moved in the direction of 
the fourth dimension. However, they don't provide a 
methodology that indicates the transformations and their 
parameters to execute the raveling process. In spite of our 
physical incapacity, we can visualize a projection onto our 3D 
space of the cubes on the hypercube's boundary through the 
unraveling and raveling processes. 
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Figure 8. The hypercube's unraveling p rocess . 

 

This article presents a method for unraveling the hypercube 
and getting the 3D-cross (tesseract), and unraveling the 4D 
simplex and getting the stellated tetrahedron that corresponds to 
the hyper-flattening of their boundary. These polytopes can be 
raveled back using the same method in an inverse way. The 
transformations to apply include rotations around a plane (See 
[7] for details about the topic). All these processes can be viewed 
using a computer animation system. 
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Table 1. Unraveling the cube (the red face is the satelli te face and the blue one is the central face). 

1  2  3  4  5  6  
 

3. Unraveling the 4D Hypercube 
 
3.1. Cube’s Unraveling Methodology 
 

Although this process is absolutely trivial, it is included here 
to underline some key points that will be very useful when 
extending it to the 4D case. 

The unraveling process for a cube can be resumed in the 
following steps: 
1. Identify a face that is "naturally embedded" into the plane 

where all the cube's faces will be positioned. This face will 
be called "central face". Because the central face is 
"naturally embedded" in the selected final plane (for 
example, the XY plane), it will not require any 
transformation. 

2. Identify those faces that share an edge with the central face. 
There are four of such faces and they will be called 
"adjacent faces". 

3. After the identification of the central and adjacent faces 
there will be a face whose supporting plane is parallel to 
central face's supporting face. This face will be called 
"satellit e face" because its movements will be around an 
edge that is shared with any arbitrary selected adjacent face 
(and the selected adjacent face will rotate around an edge 
that is shared with the central face). 

4. The adjacent faces will rotate around those edges that share 
with the central face.  

5. When the central, adjacent and satellit e faces are identified, 
it must be determined the rotating angles and their 
directions. All four adjacent faces will rotate right angles, 
however two opposite adjacent faces will have opposite 
rotating directions; otherwise, one of them will end in the 
same position as the central face. 

Table 1 presents some snapshots from the cube's unraveling 
sequence. In snapshots 1 and 2, the applied rotations are 0° and 
�30° (the rotation’s sign depends of the adjacent face). In 
snapshot 3, the applied rotation is �53°; the satellit e face looks 
like a straight line --an effect due to the selected 3D-2D 
projection. In snapshot 4 the applied rotation is �90°; the 
adjacent faces have finished their movements. In snapshots 5 to 
6, the satellit e face moves independently and the applied 
rotations are +60° and +90°. 
 
3.2. Hypercube’s unraveling methodology 
 

The process will be easier if we take the following 
considerations: 
�� Select the hypercube's position in the 4D space. 
�� Select the hyperplane (a 3D subspace embedded in the 

hyperspace) where the volumes will be directed to. 

�� Establish the angles which guarantee that all volumes will 
be totally embedded in the selected hyperplane.  

�� All the volumes through their movement into the selected 
hyperplane must maintain a face adjacent to another 
volume. 

 

Table 2. Hypercube's coordinates. 
Vertex X Y Z W 

0 0 0 0 0 
1 1 0 0 0 
2 0 1 0 0 
3 1 1 0 0 
4 0 0 1 0 
5 1 0 1 0 
6 0 1 1 0 
7 1 1 1 0 
8 0 0 0 1 
9 1 0 0 1 
10 0 1 0 1 
11 1 1 0 1 
12 0 0 1 1 
13 1 0 1 1 
14 0 1 1 1 
15 1 1 1 1 

 

The hypercube's position in the 4D space is essential, 
because it will define the rotating planes used by the volumes to 
be positioned onto a hyperplane. For simplicity, one vertex of 
the hypercube will coincide with the origin, six of its faces will 
coincide each one with some of XY, YZ, ZX, XW, YW and ZW 
planes and all the coordinates will be positive (see [3] for the 
methodology to get the hypercube's coordinates).  The 
coordinates to use are presented in Table 2 (each vertex is 
arbitrary numbered). 

We know now why the hypercube's position in the 4D space 
is important, since it will define the rotating planes to use. The 
situation is the same for the selected hyperplane, because it is 
where all the volumes will be finally positioned. Observing the 
hypercube's coordinates we can see that eight of them present 
their fourth coordinate value (W) equal to zero. This fact 
represents that one of the hypercube's volumes (formed by 
vertexes 0-1-2-3-4-5-6-7) has W=0 as its supporting hyperplane. 
Selecting the hyperplane W=0 is useful because one of the 
volumes is "naturally embedded" in the 3D space and it won't 
require any transformations. 

Now, it is also useful to identify the hypercube's volumes 
through their vertices and to label them for future references. 
Until now we have one identified volume, it is formed by 
vertexes 0-1-2-3-4-5-6-7, and it will be called volume A. See 
Table 3. 
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Table 3. The hypercube's volumes 
(the numbers ind icate the vertices that compose them). 

X

Y
Z

W

 
Volume A 

(0-1-2-3-4-5-6-7) 

X

Y Z

W

 
Volume B 

(0-1-2-3-8-9-10-11) 

X

Y Z

W

 
Volume C 

(0-2-4-6-8-10-12-14) 

X

Y Z

W

 
Volume D 

(0-1-4-5-8-9-12-13) 

X

Y Z

W

 
Volume E 

(8-9-10-11-12-13-14-15) 

X

Y Z

W

 
Volume F 

(4-5-6-7-12-13-14-15) 

X

Y Z

W

 
Volume G 

(1-3-5-7-9-11-13-15) 

X

Y Z

W

 
Volume H 

(2-3-6-7-10-11-14-15) 
 

We have already described volume A as "naturally 
embedded" in the 3D space, because it won't require any 
transformations. Volume A will occupy the central position in 
the 3D cross and it will called the "central volume". 

From the remaining volumes, six of them will have face 
adjacency with the central volume.  Due to this characteristic 
they can easily be rotated toward our space because their rotating 
plane is clearly identified.  Each of these volumes will rotate 
around the supporting plane of its shared face with central 
volume.  They will be called "adjacent volumes".  Adjacent 
volumes are B, C, D, F, G and H.  The remaining volume E will 
be called "satellit e volume" and it will be discussed later on. 

All of the adjacent volumes will rotate right angles.  In this 
way we guarantee that their W coordinate will be equal to zero. 
As in the 3D case, it is also important to consider their rotating 
directions, because the volumes, after the rotations, could 
otherwise coincide with the central volume. The direction and 
rotating planes for each adjacent volume are presented in Table 4 
(the central volume is also included in each image as a reference 
for the initial and final position of the volume being analyzed).  

At this point, we have seven of the eight hypercube's 
volumes placed in their final positions (volumes A, B, C, D, F, G 
and H). Volume E will perform a rather more complex set of 

transformations. There are two reasons that justify this 
conclusion: 
�� The supporting hyperplane for volume E is parallel to the 

supporting hyperplane for the central volume. 
Consequently, there are no adjacencies between volume E 
and central volume (this is the reason for not calli ng 
"adjacent volume" to volume E). 

�� In the tesseract, we still have an empty position.  This 
position corresponds to the most distant volume from the 
central volume (the inferior position, Figure 5). This 
position will be occupied by volume E. This is the reason 
for calli ng "satellit e volume" to volume E. 

 

Table 4. Applied transformations to the adjacent volumes. 
Adjacent volume (previous to 

rotation), rotation plane and angle 
Position in the 3D space and in 

the tesseract after rotation 

X

Y
Z

W

 
B, XY, +90° 

X

Y Z

 
Front (-Z) 

X

Y Z

W

 
C, YZ, -90° 

X

Y Z

 
Left (-X) 

X

Y Z

W

 
D, ZX, +90° 

X

Y Z

 
Down (-Y) 

X

Y Z

W

 
F, XY, -90° 

X

Y Z

 
Back (+Z) 

X

Y Z

W

 
G, YZ, -90° 

X

Y Z

 
Right (+X) 

X

Y Z

W

 
H, ZX, -90° 

X

Y Z

 
Up (+Y) 
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Table 5. Associated transformations to satellite volume. 
Current position Transformations 

X

Y Z

W

 

Rotation of volumes D and 
satellit e around the plane ZX 

(+90°). 

X

Y ZW

 

Volume D is in its final 
position. Rotation of satellit e 
volume of +90° around the 
shared face with volume D 

(parallel plane to ZX). 

X

Y

-Y

Z

-W

 

Satellit e volume in its final 
position (inferior position in 

the 3D cross on Y axis). 

 

At the beginning of this document its is mentioned the need 
for maintaining a face adjacency between all the volumes while 
they rotate towards the selected hyperplane. Volumes B, C, D, F, 
G and H share a face with central volume (remember that central 
volume is static during the whole unraveling process). In order 
to determine the needed transformations for the satellit e volume, 
we  must  first  select the volume which will share a  face with it. 

Any volume, except the central one, can be selected for this.  In 
this work, volume D will be selected to share a face with satellit e 
volume through the hyper-flattening process. 

The direction and the rotation plane for volume D was 
determined before (ZX plane +90°).  These transformations will 
take it to its final position. During the beginning of the 
unraveling process, the same transformations will be applied to 
satellit e volume.  In this way, we ensure that volumes E and 
satellit e will share a face. 

When volume D has finished its movement, it will be placed 
in its final position in the tesseract.  At this moment, the satellit e 
volume's supporting hyperplane will be perpendicular to the 
selected hyperplane and the shared face will be parallel to ZX 
plane.  The last movement to apply to the satellit e volume will 
be a +90° rotation around the supporting plane of the shared face 
with volume D. 

The set of movements to be executed for the satellit e volume 
are resumed in the Table 5 (Central volume and volume D are 
shown too). 

 
3.3. Visualizing The Hypercube’s Unraveling Process 
 

Table 6 presents some snapshots from the hypercube's 
unraveling sequence. In snapshots 1 to 6, the applied rotations 
are �0°, �15°, �30°, �45°, �60° and �75° (the rotation’s sign 
depends on the adjacent volume). In snapshot 7, the applied 
rotation is �82°; the satellit e volume looks like a plane --an 
effect due to the selected 4D-3D projection. In snapshot 8, the 
applied rotation is �90°; the adjacent volumes finish their 
movements. In snapshots 9 to 14, the satellit e volume moves 
independently and the applied rotations are +15°, +30°, +45°, 
+60°, +75° and +90°. 
 
 

Table 6. Unraveling the hypercube (satellite volume is shown in blue and central volume in red, see text for details). 

1  2  3  4  5  

6  7  8  9  10  

11  12  13  14  
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4. Unraveling the 4D Simplex 
 

Using a method similar to that of unraveling a cube, we 
presented how to unravel a 4D hypercube. We have not found 
any references that mention any methods or results (like the 
tesseract as the result of the hypercube's unraveling) about the 
unraveling process for other 4D regular polytopes such as the 4D 
simplex which corresponds to the 4D equivalent of the 
tetrahedron (Figure 9). As the hypercube's unraveling process, 
we will visualize a projection onto our 3D space of the volumes 
(tetrahedrons) on the 4D simplex's boundary through its 
unraveling and raveling processes. 

 
Figure 9. The 4D simplex 

 

4.1. The Tetrahedron Unraveling Methodology 
 

Although the tetrahedron’s (3D simplex) unraveling process 
is trivial, we will consider here some key points that will be 
extended later in the 4D simplex unraveling: 
1.  Identify a face that is "naturally embedded" into the plane 

where all the tetrahedron's faces will be positioned. This face 
will be called "central face". Because the central face is 
"naturally embedded" in the selected plane, it will not 
require any transformation. 

2.  Each of the remaining faces shares an edge with the central 
face. These faces will be called "adjacent faces". 

3.  The adjacent faces will rotate around those edges that share 
with the central face. 

4.  When the central and adjacent faces are identified, it must be 
determined the rotating angles and their directions. The 
rotating angle is the supplement of the tetrahedron's dihedral 
angle. Finally we obtain a stellated triangle. 

 

Table 7. Unraveling the 3D simplex (see text for details). 
 

1  2  3  

4  5   
 

Table 7 presents some snapshots from the 3D simplex's 
unraveling sequence. In snapshots 1 and 2, the applied rotations 
are �0 and �27.35° (the rotation’s sign depends of the adjacent 
face). In snapshot 3 the applied rotation is �54.7°; one adjacent 
face looks like a straight line --an effect due to the selected 3D-
2D projection. In snapshots 4 and 5, the applied rotations are 
�76.58° and �109.4°. 
 

4.2. The 4D Simplex's Unraveling Methodology 
 

Because the 4D simplex boundary is composed by five 
tetrahedrons [5], we can expect, by analogy, that the unravelings 
of the 4D simplex will be a tetrahedron surrounded by four other 
tetrahedrons and sharing a face with each one (the unravelings  
of the tetrahedron are a triangle surrounded by other three 

triangles and sharing an edge with each one). We will refer to 
the unravelings of the 4D simplex as a stellated tetrahedron (as 
the unravelings of the hypercube are referred as the tesseract). 

We will consider and adapt the same recommendations 
proposed in section 3.2 to unraveling the simplex: 
�� Select the simplex's position in the 4D space. 
�� Select the hyperplane (a 3D subspace embedded in the 

hyperspace) where the volumes will be directed to. 
�� Establish the angles which guarantee that all volumes will 

be totally embedded in the selected hyperplane. 
�� All the volumes through their movement into the selected 

hyperplane must maintain a face adjacent to another 
volume. 

 

Table 8. The 4D simplex coordinates. 
Vertex X Y Z W 

0 0 0 0 0 
1 1 0 0 0 

2 2
1  

2
3  0 0 

3 2
1  

6
3  

3
2  0 

4 2
1  

6
3  

34
2  

8
5  

 

We consider that the simplex will have a position with the 
following characteristics: 
�� One vertex of the simplex will be the origin. 
�� An edge will coincide with X axis. 
�� A face will coincide with XY plane. 
�� All the coordinates will be positive. 

The coordinates to use are presented in Table 8 (see [3] for a 
methodology to get the 4D simplex's coordinates). 
 Observing the 4D simplex's coordinates we can see that 
four of them present their fourth coordinate value (W) equal to 
zero. This fact represents that one of the simplex's volumes 
(formed by vertexes 0-1-2-3) has W=0 as its supporting 
hyperplane. Selecting the hyperplane W=0 is useful because one 
of the volumes is "naturally embedded" in the 3D space and it 
won't require any transformations. 
  

Table 9. The 4D simplex's bound ary volumes. 
Volume's 

position in the 
4D simplex 

Volume and 
Label 

 Volume's 
position in the 

4D simplex 

Volume and 
Label 

1
2

0

3

4

 

 
Volume A 

0-1-2-3 

 1
2

0

3

4

 

 
Volume D 

0-2-3-4 

1
2

0

3

4

 

 

 
 

Volume B 
0-1-2-4 

 1
2

0

3

4

 
 Volume E 

1-2-3-4 

1
2

0

3

4

 

 
Volume C 

0-1-3-4 
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 Now, it is also useful to identify the simplex's volumes 
through their vertices and to label them for future references. 
Until now we have one identified volume, it is formed by 
vertexes 0-1-2-3, and it will be called volume A. See Table 9. 

We have already described volume A as "naturally 
embedded" in the 3D space, because it won't require any 
transformations. Volume A will occupy the central position in 
the stellated tetrahedron and it will called the "central volume". 
 

Table 10. Applied transformations to the adjacent volumes 
(rotation around XY plane is the same for all volumes). 

Adjacent volume 
previous to 

rotation 

Transformations 
to apply 

Position in the stellated 
tetrahedron after the 

transformations 
 

 
 

Volume B 
XY 104° 29' 

 
 

 
 

Volume C 
XW 109° 30’  
XY 104° 29' 

XW -109° 30’  
 

 

 
 

Volume D 
ZW -60° 

XW 70° 30’  
XY -104° 29' 
XW -70° 30’  

ZW 60°  

 

 
 

Volume E 
T(-1,0,0,0) 

ZW 60° 
XW 70° 30’  
XY -104° 29' 
XW -70° 30’  

ZW -60° 
T(1,0,0,0) 

 

 

All of the remaining volumes will have face adjacency with 
the central volume. Due to this characteristic they can "easily" 
be rotated toward our space because their rotating plane is 
clearly identified. Each of these volumes will rotate around the 
supporting plane of its shared face with central volume. They 
will be called "adjacent volumes".  

Although the rotating planes are clearly identified, the main 
difference between the hypercube and simplex's unraveling is 
that the rotating planes don't correspond to 4D space main planes 
(XY, YZ, ZX, XW, YW and ZW) in the simplex's unraveling. 
Due to this situation, the volume's rotations will be a 
composition of rotations around the 4D space main planes. The 
objective taken for us was to position a volume's face in the XY 
plane, and then rotate it 104° 29'. This angle corresponds to the 
supplement of the simplex's dihedral angle that is 75° 31' [4]. In 
this way we guarantee that their W coordinate will be equal to 
zero. The direction and rotating planes for each adjacent volume 
are presented in Table 10 (the central volume is also included in 
each image as a reference for the initial and final position of the 
volume being analyzed). 

Now, all the transformations to unravel the simplex have 
been determined. To ravel it back, the same process must be 
applied in an inverse way but only the angles’ signs for rotations 
around XY plane must be changed, because the remaining 
rotations only position the volumes with a face on XY plane. 
 

 

4.3. Visualizing The 4D Simplex’s Unraveling Process 
 

Table 11 presents some snapshots from the 4D simplex's 
unraveling sequence. In snapshots 1 to 8, the applied rotations 
around XY plane are �0, �1.043°, �2.086°, �4.172°, �6.258°, 
�7.301°, �8.344° and �9.387° (the rotation’s sign depends of the 
adjacent volume). In snapshot 9, the applied rotation around XY 
plane is �10.43°; the adjacent volumes look like planes 
(coinciding with the central volume's faces) --an effect due to the 
4D-3D projection. In snapshots 10 to 18, the applied rotations 
around XY plane are �20.43, �30.43, �40.43, �50.43, �60.43, 
�70.43, �80.43, �90.43 and �104.3. 

At the present time, the results of this research are used with 
eff iciency as didactic material in the Universidad de las 
Américas - Puebla, México. 
 

Table 11. Unraveling the 4D simplex (see text for details). 
1 

 

2 

 

3 

 

4 

 

5 

 

6 

 
7 

 

8 

 

9 

 

10 

 

11 

 

12 

 
13 

 

14

 

15

 

16 

 

17

 

18
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5. Future Work 
 

5.1. The n-Dimensional Hyper-Tesseract 
n 

Observing the unravelings for the square (a 2D cube), the 
cube and the 4D hypercube and the fact a nD parallelotopes-
family share analogous properties [4] we can generalize the n-
dimensional hyper-tesseract (n�1) as the result of the (n+1)-
dimensional parallelotope’s unraveling with the following 
properties: 
�� The (n+1)-dimensional hypercube will have 2(n+1) n-

dimensional cells on its boundary [3]. 
�� A central cell will be static during the unraveling/raveling 

process. 
�� 2(n+1)-2 cells are adjacent to central cell . All of them will 

share a (n-1)-dimensional cell with central cell . 
�� A satellit e cell won’ t be adjacent to central cell because their 

supporting hyperplanes are parallel.  It will be adjacent to any 
of the adjacent cells (it will share a (n-1)-dimensional cell 
with the selected adjacent cell ). 

�� All the adjacent cells and satellit e cell during the 
unraveling/raveling process will rotate �90° around the 
supporting hyperplane of the (n-1)-dimensional shared cells. 

For example, the 4D hyper-tesseract is the result of the 5D 
hypercube’s unraveling. The 4D hyper-tesseract will be 
composed by 10 hypervolumes, where one of them will be the 
central hypervolume (static), eight of them are adjacent to 
central hypervolume (they share a volume) and the last one will 
be the satellit e hypervolume (it shares a volume with any of the 
adjacent hypervolumes). See Figure 10. The adjacent 
hypervolumes and the satellit e hypervolume will rotate around a 
volume or a hyperplane during the unraveling/raveling process. 

 
Figure 10. The poss ible adjacency relations between the 

hyper-tesseract's central hypervolume and adjacent 
hypervolumes. 

 

5.2. The Stellated n-Dimensional Simplex 
 

Analyzing the unravelings for the triangle (a 2D simplex), 
the tetrahedron (a 3D simplex) and the 4D simplex and the fact a 
nD simplexes-family share analogous properties [4], we can 
generalize the stellated n-dimensional simplex (n�1) as the 
result of the (n+1)-dimensional simplex’s unraveling with the 
following properties: 
�� The (n+1)-dimensional simplex will have (n+2) n-dimensional 

cells on its boundary. 

�� A central cell will be static during the unraveling/raveling 
process. 

�� (n+1) cells are adjacent to central cell . All of them will share a 
(n-1)-dimensional cell with central cell . 

�� All the adjacent cells during the unraveling/raveling process 
will rotate the supplement of the simplex's dihedral angle 
around the supporting hyperplane of the (n-1)-dimensional 
shared cells. 

 

6. Conclusions 
 

In this research we found methods to unravel the hypercube 
and the 4D simplex. Also, we have proposed a generalization to 
describe the properties of the n-dimensional hyper-tesseract, the 
result of the (n+1)-dimensional parallelotope’s unraveling and 
the stellated n-dimensional simplex, the result of the (n+1)-
dimensional simplex’s unraveling. For the 5D space the rotations 
will be around a volume, for the 6D space they will be around a 
hypervolume and so forth. This is the direction to follow in our 
research to get the needed parameters to unravel the 5D 
hypercube and simplex and to obtain the 4D hyper-tesseract and 
the stellated 4D simplex. Also, another direction to follow will 
be related to rotations  around arbitrary planes in the 4D space 
(analogously to rotations around an arbitrary axis in the 3D 
space). Finding the procedures to rotate around arbitrary planes, 
the hypercube and simplex’s position may not be relevant. 
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ABSTRACT 
This article presents our experimental results for classifying edges and faces as manifold or non-manifold elements in 4D Orthogo-
nal Pseudo-Polytopes (4D-OPP's). For faces in 4D-OPP's we propose a condition to classify them as manifold or non-manifold. For 
the edges' analysis in 4D-OPP's we have developed two approaches: 1) The analogy between incident (manifold and non-manifold) 
edges to a vertex in 3D Orthogonal Pseudo-Polyhedra (3D-OPP's) with  incident  (manifold  and non-manifold) faces to a edge in 
4D-OPP's; and 2) The extension of the concept of "cones of faces" (which is applied for classifying a vertex in 3D-OPP's as mani-
fold or non-manifold) to "hypercones of volumes" for classifying an edge as manifold or non-manifold in 4D-OPP's. Both approa-
ches have provided the same results, which present that there are eight types of edges in 4D-OPP's. Finally, the generalizations for 
classifying the n-3 and the n-2 dimensional boundary elements for n-dimensional Orthogonal Pseudo-Polytopes as manifold or non-
manifold elements is also presented. 
Keywords: Computational geometry, Geometric interrogations and reasoning, Geometric and topological representations. 
 

1. INTRODUCTION 
Recent interest has been growing in studying multidimensional 
polytopes (4D and beyond) for representing phenomena in n-
dimensional spaces. Some examples include the works descri-
bed in [Fei90], [Weg97] and [Lee99]. These previous works 
show how some of these phenomena's features rely on the 
polytopes' geometric and topologic relations. However, due to 
the need of visualizing and analyzing these phenomena (i.e. 
multidimensional data), it is essential first to analyze these 
polytopes and their boundaries that compose them [Her98]. So, 
this article covers that first step, in our research, with the 
boundary's analysis for classifying edges and faces as manifold 
or non-manifold elements in 4D Orthogonal Pseudo-Polytopes. 
2. THE 4D ORTHOGONAL POLYTOPES 
[Cox63] defines an Euclidean polytope �n as a finite region  of  
n-dimensional space enclosed by a finite number of (n-1)- 
dimensional hyperplanes. The finiteness of the region implies  
that  the  number  Nn-1  of  bounding hyperplanes satisfies the 
inequality Nn-1>n. The part of the polytope that lies on one of 
these hyperplanes is called a cell . Each cell of a �n is an (n-1)-
dimensional polytope, �n-1. The cells of a �n-1 are �n-2's, and so 
on; we  thus  obtain  a descending sequence of elements �n-3, 
�n-4,..., �1 (an edge), �0 (a vertex).  
Orthogonal Polyhedra (3D-OP) are defined as polyhedra with all 
their edges (�1’ s) and faces (�2’ s) oriented in three orthogonal 
directions ([Jua88] & [Pre85]). Orthogonal Pseudo-Polyhedra 
(3D-OPP) wil l refer to regular and orthogonal polyhedra with 
non-manifold boundary [Agu98]. 
Similarly, 4D Or thogonal Polytopes (4D-OP) are defined as 
4D polytopes with all their edges (�1’ s), faces (�2’ s) and volu-
mes (�3’ s) oriented in four orthogonal directions and 4D Or tho-
gonal Pseudo-Polytopes (4D-OPP) will refer to 4D regular and 
orthogonal polytopes with non-manifold boundary. Because the 
4D-OPP's definition is an extension from the 3D-OPP's, is easy 
to generalize the concept to define n-dimensional Or thogonal 
Polytopes (nD-OP) as n-dimensional  polytopes with all their 
�n-1’ s, �n-2’ s,..., �1’ s oriented in n orthogonal directions. Fina-
lly, n-dimensional  Or thogonal  Pseudo-Polytopes  (nD-OPP) 
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are defined as n-dimensional regular and orthogonal polytopes 
with non-manifold boundary. 
 

3. THE �n-2 ANALYSIS FOR 2D, 3D AND 4D-OPP'S 
 

The � 0 Analysis for 2D-OPP's 
A set of quasi-disjoint rectangles determines a 2D-OPP whose 
vertices must coincide with some of the rectangles' vertices 
[Agu98]. Each of these rectangles' vertices can be considered as 
the origin of a 2D local coordinate system, and they may belong 
to up to four rectangles, one for each local quadrant. The two 
possible adjacency relations between the four possible rectan-
gles can be of edge or vertex. There are 24 = 16 possible combi-
nations which, by applying symmetries and rotations, may be 
grouped into six equivalence classes, also called configurations 
[Sri81]. 
 

 

 
b 

 
c 

 
d 

 
e 

 
f 

Table 1. The 2D configurations with all their  
rectangles incident to the or igin. 

 

Because we are interested in the vertex analysis, we will consi-
der only those configurations where all their rectangles are inci-
dent to the origin. According to the configurations’ nomen-
clature presented in [Agu98], the studied configurations are b, c, 
d, e and f (see Table 1). There are only two types of vertices in 
the 2D-OPP’s: the manifold ver tex with two incident edges 
(configurations b and e), and the non-manifold ver tex with 
four incident edges (configuration d) [Agu98]. The remaining 
configurations represent no vertex because configuration c has 

only two incident and collinear edges, and in configuration f 
there are no incident edges. 
 

The �1 Analysis for 3D-OPP's 
A set of quasi-disjoint boxes determines a 3D-OPP whose 
vertices must coincide with some of the boxes' vertices [Agu98]. 
Each of these boxes' vertices can be considered as the origin of a 
3D local coordinate system, and they may belong to up to eight 
boxes, one for each local octant. There are 28 = 256 possible 
combinations which, by applying symmetries and rotations, may 
be grouped into 22 equivalence classes [Lor87], also called 
configurations [Sri81]. Each configuration has its complemen-
tary configuration which is the class that contains the comple-
mentary combinations of all the combinations in the given class 
[Agu98]. Grouping complementary configurations leads to the 
14 major cases [Van94]. The configurations with 5, 6, 7 and 8 
surrounding boxes are complementary, and thus analogous, to 



 
2 

combinations with 3, 2, 1 and 0 surrounding boxes, respectively 
[Agu98]. Finally, each configuration, with four surrounding 
boxes is self-complementary. 
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d 
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i 

Table 2. The 3D configurations where all their boxes are 
incident to a same edge (the arr ows show the analyzed edge). 

 

Because we are interested in the edge analysis, we wil l consider 
only those configurations where all their boxes are incident to a 
same edge. According to the configurations’ associated nomen-
clature presented in [Agu98], the studied configurations are b, c, 
d, f and i (see Table 2). [Agu98] concluded that there are only 
two types of edges in the 3D-OPP’s: 
��The manifold edge with two incident faces. This type of ed-

ges is found in configurations b and f. The edge’s two incident 
faces in configuration b belong to one cube’s boundary and 
they are perpendicular to each other. The edge’s two incident 
faces in configuration f belong to two different cubes with 
edge adjacency and they result perpendicular to each other.  

��The non-manifold edge with four incident faces. This type 
of edges is found in configuration d, where two of its faces 
belongs to a cube and the remaining belong to a second cube 
with edge adjacency. 

��The remaining configurations represent no edge because in 
configuration c there are only two incident and coplanar faces, 
and in configuration i there are no incident faces.  

 

The �2 Analysis For 4D-OPP's 
A set of quasi-disjoint hyper-boxes (i.e., hypercubes, which in 
this paper will be represented using Claude Bragdon’s 
projection [Ruc84]) determines a 4D-OPP whose vertices must 
coincide with some of the hyper-boxes’  vertices. We will 
consider the hyper-boxes’  vertices as the origin of a 4D local 
coordinate system, and they may belong to up to 16 hyper-
boxes, one for each local hyper-octant. The 4D-OPP’s vertices 
are determined according to the presence of absence of each of 
these 16 surrounding hyper-boxes. The four possible adjacency 
relations between the 16 possible hyper-boxes can be of volume, 
face, edge or vertex. There are 216=65,536 possible combi-
nations of vertices in 4D-OPP’s which can be grouped, applying 
symmetries and rotations, into 253 equivalence classes, also ca-
lled configurations [Pér01]. Each configuration has its comple-
mentary configuration which is the class that contains the com-
plementary combinations of all the combinations in the given 
class. Grouping complementary configurations leads to the 145 
major cases [Pér01]. The combinations with 9, 10, 11, 12, 13, 14, 
15 and 16 surrounding hyper-boxes are complementary, and thus 
analogous, to combinations with 7, 6, 5, 4, 3, 2, 1 and 0 surroun-
ding hyper-boxes, respectively. Finally, each configuration, with 
eight surrounding hyper-boxes is self-complementary [Pér01]. 
We wil l consider only those configurations whose hyper-boxes 
are incident to a same face. According to the configurations’ 
associated nomenclature presented in [Pér01], the studied 
configurations are 2, 3, 4, 7 and 13 (Table 3). In [Pér01] is con-
cluded that there are only two types of faces in the 4D-OPP’s:  
��The manifold faces with two incident volumes. The face’s 

two incident volumes in configuration 2 belong to the 
boundary of only one hypercube and they are perpendicular to 
each other. While in configuration 7, The face’s two incident 
volumes belong to two different hypercubes with face 
adjacency and they result perpendicular to each other.  

��The non-manifold faces with four incident volumes. This 
type of faces is found in configuration 4, where two of its 
incident volumes belongs to a hypercube and the remaining 
two belong to a second hypercube with face adjacency. 

��The remaining configurations represent no face because in 
configuration 3 there are only two incident and co-
hyperplanar volumes, and in configuration 13 there are no 
incident volumes (analogous to 3D configurations c and i in 
Table 2). 
Adjacencies between hyper-boxes Configuration 
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Table 3. Configurations 2, 3, 4, 7 and 13 for 4D-OPP's 
 

Classifying the �n-2’ s in nD-OPP’s 
Finally, the generalized conditions to classify a �n-2 as manifold 
or non-manifold in a nD-OPP are: 
�� If two perpendicular �n-1‘ s are incident to a �n-2 then it must 

be classified as manifold. 
�� If four �n-1‘ s are incident to a �n-2 then it must be classified as 

non-manifold. 
 

4. THE �n-3 ANALYSIS FOR 3D AND 4D-OPP’S 
The �0 Analysis for 3D-OPP’s 
There are eight types of vertices (also two non valid vertices are 
identified) for 3D-OPP's [Agu98]. These vertices can be classi-
fied depending on the number of two-manifold and non-
manifold edges incident to them and they are referred as V3, V4, 
V4N1, V4N2, V5N, V6, V6N1 and V6N2 [Agu98] (Table 4). In 
this nomenclature "V" means vertex, the first digit shows the 
number of incident edges, the "N" is present if at least one non-
manifold edge is incident to the vertex and the second digit is in-
cluded to distinguish between two different types that otherwise 
could receive the same name. 
Each vertex has the following properties [Agu98]: 
��V3: all three incident edges are two-manifold and perpen-

dicular to each other. 
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��V4: all four incident edges are two-manifold, they lie on a 
plane, and can be grouped in two couples of coll inear edges. 

��V4N1: three of its four incident edges are perpendicular to 
each other and also two-manifold ones, while the fourth is 
non-manifold and collinear to one of the other three. 

��V4N2: two of its four incident edges are two-manifold and 
collinear, while each of its other two is non-manifold and 
perpendicular to the other three. 

��V5N: four of its five incident edges are two-manifold and lie 
in a plane, while the fifth is non-manifold and perpendicular to 
the rest of them. 

��V6: all six incident edges are two-manifold. 
��V6N1: three of its six incident edges are perpendicular to each 

other and also two-manifold ones, while each of its remaining 
three edges is non-manifold and collinear to one of the first 
three. 

��V6N2: all of its six incident edges are non-manifold. 
��Non valid vertex 1: its two manifold edges are coll inear. 
��Non valid vertex 2: its two non-manifold edges are collinear. 
 

V3 

 

V4 

 

V4N1 

 

V4N2 

 

V5N 

 
V6 

 

V6N1 

 

V6N2 

 

 

Non valid 
vertex 1 

 

 

Non valid 
vertex 2 

 

Table 4. Vertices present in 3D-OPP's (dotted lines indicate non-
manifold edges and continuous lines indicate manifold edges). 

 

The �1 Analysis for 4D-OPP's 
Vertices can be defined in terms of the manifold or non-
manifold edges that are incident to these vertices in 3D-OPP's 

[Agu98]. The same process will be extended to describe edges 
in terms of the manifold or non-manifold faces that are incident 
to those edges in 4D-OPP's. In this way, we have identified eight 
types of edges and two non valid edges. We will also extend the 
nomenclature used by [Agu98] to describe them. Such edges 
will be referred as E3, E4, E4N1, E4N2, E5N, E6, E6N1 and 
E6N2 (Table 5). The only difference with the nomenclature used 
to describe the vertices is that "E" means edge instead of "V" 
that means vertex. Each edge has the following properties: 
��E3: all three incident faces are two-manifold and perpendi-

cular to each other.  
��E4: all four incident faces are manifold and lie on a hyperpla-

ne, and they can be grouped in two couples of coplanar faces. 
��E4N1: three of its four incident faces are perpendicular to 

each other and also two-manifold ones, while the fourth is 
non-manifold and coplanar to one of the other three. 

��E4N2: two of its four incident faces are two-manifold and 
coplanar, while each of its other two is non-manifold and 
perpendicular to the other three. 

��E5N: four of its five incident faces are two-manifold and lie in 
a hyperplane, while the fifth is non-manifold and perpendicu-
lar to the rest of them.  

��E6: all six incident faces are two-manifold.  
��E6N1: three of its six incident manifold faces are perpen-

dicular to each other, while each of its remaining three faces is 
non-manifold and coplanar to one of the first three.  

��E6N2: all of its six incident faces are non-manifold. 
��Non valid edge 1: its two manifold faces are coplanar.  
��Non valid edge 2: its two non-manifold faces are coplanar. 
It results interesting that the number, classifications and posi-
tions of the incident faces to an edge in 4D-OPP's are analogous 
to the way that a set of edges are incident to a vertex in 3D-
OPP's. 

E3 

 
 

E4 

 

E4N1 

 

E4N2 

 

E5N 

 

E6 

 

E6N1 

 

E6N2 

 

Non valid 
edge 1 

 

Non valid 
edge 2 

 

Table 5. Edges present in 4D-OPP's (dotted lines indicate non-
manifold faces and continuous lines indicate manifold faces). 

 

Classifying the �0’ s in Polyhedra Through its Cones of 
Faces 
A polyhedron is a bounded subset of the 3D Euclidean Space 
enclosed by a finite set of plane polygons such that every edge 
of a polygon is shared by exactly one other polygon (adjacent 
polygons) [Pre85]. A pseudo-polyhedron is a bounded subset 
of the 3D Euclidean Space enclosed by a finite collection of 
planar faces such that every edge has at least two adjacent faces, 
and if any two faces meet, they meet at a common edge [Tan91]. 
Edges and vertices, as boundary elements for polyhedra, may be 
either two-manifold (or just manifold) or non-manifold 
elements. In the case of edges, they are (non) manifold elements 
when every points of it is also a (non) manifold point, except 
that either or both of its ending vertices might be a point of the 
opposite type [Agu98]. A manifold edge is adjacent to exactly 
two faces, and a manifold vertex is the apex (i.e., the common 
vertex) of only one cone of faces. Conversely, a non-manifold 
edge is adjacent to more than two faces, and a non-manifold 
vertex is the apex (i.e., the common vertex) of more than one 
cone of faces [Ros91]. 
 

3D vertex Classification 
V3 Manifold 
V4 Manifold 

V4N1 Non-manifold 
V4N2 Non-manifold 
V5N Non-manifold 
V6 Non-manifold or manifold 

according to its geometric 
context. 

V6N1 Non-manifold 
V6N2 Non-manifold 

Table 6. 3D-OPP's vertices classification. 
 

Using the concept of cones of faces it is easy to construct an 
algorithm to determine the classification of a vertex as manifold 
or non-manifold in any polyhedron or pseudo-polyhedron. 
Using this algorithm over the possible vertices in 3D-OPP's we 
have the results presented in Table 6 which coincide with those 
presented by [Agu98]. 
 

Classifying the �1’ s in 4D Polytopes Through its Hyper-
Cones of Volumes 
Due to the analogy between 3D-OPP's vertices described in 
terms of their incident manifold or non-manifold edges, and 4D-
OPP's edges described in terms of their incident manifold or 
non-manifold faces, the next logical step is to extend the concept 
of cones of faces presented in the previous section to classify 4D 
polytopes' edges as manifold or non-manifold.  
Faces, edges and vertices, as boundary elements for 4D 
polytopes, may be either manifold or non-manifold elements. 
[Cox63] and [Han93] have stated that a manifold face is adja-
cent to exactly two volumes, and now we suggest that a mani-
fold edge is the common edge (apex) of only one hyper-cone of 
volumes. Conversely, we have suggested that a non-manifold 
face is adjacent to more than two volumes, and now we suggest 
that a non-manifold edge is the common edge (apex) of more 
than one hyper-cone of volumes. 
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Using the concept of hyper-cones of volumes, it is easy to ex-
tend the algorithm for obtaining the vertex classification for 3D-
OPP’s used for previous section, to allow us classifying an edge, 
as manifold or non-manifold, in any 4D polytope or 4D pseudo-
polytope. The algorithm is defined with the following steps: 
1 Get the set of �3’ s that are incident to edge A (a �1). 
2 From the set of �3’ s select one of them. 
3 The selected �3 has two �2’ s that are incident to A, get 

one of them and label it as START and ANOTHER. 
4 Repeat 
4.1 If the number of �3’ s to ANOTHER is more than one, 

then A is a non-manifold �1. End. 
4.2 The ANOTHER �2 is common to another �3, find it. 
4.3 The �3 has another �2 that is common to A, find it 

and label it as ANOTHER. 
4.4 Until START = ANOTHER (it has been found a hyper-

cone of volumes). 
5 If there are more �3’ s to analyze then A is non-manifold 

(there are more hyper-cones of volumes). End. 
6 Otherwise, A is manifold (A is the common edge of only 

one hyper-cone of volumes). End. 
5. RESULT S 
Using the algorithm presented in the previous section over the 
possible edges in 4D-OPP's we have that the edges' classi-
fications are analogous to the 3D-OPP's vertices' classifications. 
Table 7 shows the edges' classifications given by the extended 
algorithm and their analogous 3D results. 

4D 
edge 

Classification 
through hyper-cones 

of volumes 

3D 
vertex 

Classification through 
cones of faces 

E3 Manifold V3 Manifold 
E4 Manifold V4 Manifold 
E4N1 Non-manifold V4N1 Non-manifold 
E4N2 Non-manifold V4N2 Non-manifold 
E5N Non-manifold V5N Non-manifold 
E6 Non-manifold or 

manifold according to 
its geometric context. 

V6 Non-manifold or 
manifold according to 
its geometric context. 

E6N1 Non-manifold V6N1 Non-manifold 
E6N2 Non-manifold V6N2 Non-manifold 

Table 7. 4D-OPP's edges classifications and their analogy 
with 3D-OPP's vertices. 

 

Classifying the �n-3 in nD Polytopes Through its nD 
Hyper-Cones of �n-1’ s 
Due to the analogy found between 3D vertices and 4D edges 
with the extension of the concept of cones of faces, is feasible to 
generalize the last presented algorithm to classify the �n-3 as 
manifold or non-manifold in nD polytopes through their nD 
hyper-cones of �n-1’ s. The proposed general algorithm is the 
following: 
1 Get the set of �n-1's that are incident to �n-3 A. 
2 From the set of �n-1's select one of them. 
3 The selected �n-1 has two �n-2's that are incident to �n-3 A, 

get one of them and label it as START and ANOTHER. 
4 Repeat 
4.1 If the number of incident �n-1's to ANOTHER is more 

than one, then A is a non-manifold �n-3. 
4.2 The ANOTHER �n-2 is common to another �n-1, find it. 
4.3 The �n-1 has another �n-2 that is common to A, find it 

and label it as ANOTHER. 
4.4 Until START = ANOTHER (it has been found a nD hyper-

cone of �n-1's). 
5 If there are more �n-1's to analyze then �n-3 A is non-

manifold (there are more nD hyper-cones of �n-1's). 
6 Otherwise, �n-3 A is manifold (A is the common �n-3 of 

only one nD hyper-cone of �n-1's). 
 

The Eight Types of �n-3’ s in nD Orthogonal Pseudo-
Polytopes 
Due to the analogy between vertices in 3D-OPP's and edges in 
4D-OPP's (Table 7), we can extend their properties to propose 
the eight types of �n-3's in nD-OPP’s. Such �n-3's will be refe-
rred as �n-33, �n-34, �n-34N1, �n-34N2, �n-35N, �n-36, �n-36N1 
and �n-36N2. In this nomenclature ‘�n-3’ indicates the (n-3)-
dimensional element (i.e. vertices in 3D-OPP's and edges in 4D-
OPP's), the first  digit  shows  the  number of incident �n-2 (i.e. 
edges in 3D-OPP's and faces in 4D-OPP's), the ‘N’ is present if 
at least one non-manifold �n-2 is incident to the �n-3 and the 
second digit is included to distinguish between two different 
types that otherwise could receive the same name. 
 

6. FUTURE WORK 
The results of this article are being used in studying the 
extension for the Extreme Vertices Model (EVM) [Agu98] to 
the four dimensional space (EVM-4D). The EVM-4D wil l be a 
representation model for 4D-OPP’s that wil l allow queries and 
operations over them. However, the fact related to a model 
purely geometric (four geometric dimensions) is not restrictive 
for our research, because it wil l be used under geometries as the 
4D spacetime. The first main application for the EVM-4D wil l 
cover the visualization and analysis for multidimensional data 
under the context of a Geographical Information System (GIS).  
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Abstract 
This article presents the “Test-Box” heuristic that gives a 
solution to the problem of determining the configurations 
that can represent the n-Dimensional Orthogonal Pseudo-
Polytopes. This heuristic presents better performance that 
the procedure through exhaustive searching. It has as a 
fundament the extrusion of (n-1)-dimensional configurations 
to obtain n-dimensional configurations. 
 

1. Introdu ction 
 

Recent interest has been growing in studying 
multidimensional polytopes (4D and beyond) for 
representing multidimensional phenomena in the Euclidean 
n-dimensional space. Some of these phenomena’s features 
rely on the polytopes’ geometric and topologic relations 
[Aguilera,03]. However, due to the need of visualizing and 
analyzing these phenomena (i.e. multidimensional data), it 
is essential first to analyze these polytopes and their 
boundaries that compose them [Herman,98]. Therefore, this 
article covers the analysis for obtaining the configurations 
that can represent the n-Dimensional Orthogonal Pseudo-
Polytopes. Moreover, it is presented a heuristic that gives a 
solution for determining those configurations in 5D space 
and beyond. 
 

2. The n-Dimensional Orthogon al Pseudo -Polytopes 
 

[Coxeter,63] defines an Euclidean polytope �n as a finite 
region of n-dimensional space enclosed by a finite number 
of (n-1)-dimensional hyperplanes. The finiteness of the 
region implies that the  number  Nn-1 of bounding 
hyperplanes satisfies the inequality Nn-1>n. The part of the 
polytope that lies on one of these hyperplanes is called a 
cell. Each cell of a �n is an (n-1)-dimensional polytope, �n-1. 
The cells of a �n-1 are �n-2’s, and so on; we thus obtain a 
descending sequence of elements �n-3, �n-4,…, �1 (an 
edge), �0 (a vertex).  

We know that a �3 (a 3D Euclidean polytope) is a 
polyhedron. The polyhedron’s cells are �2. A �2 (a 2D 
Euclidean polytope) is a polygon. The polygon’s cells are 
�1. A �1 (a 1D Euclidean polytope) is a segment. Finally, 
the segment’s cells are �0, a set of vertices. The cells of a 
�4 (a 4D Euclidean polytope) are �3 (polyhedra, also called 
volumes in the context of �4).   

Orthogonal Polyhedra (3D-OP) are defined as 
polyhedra with all their edges and faces oriented in three 
orthogonal directions ([Preparata,85] & [Juan-Arinyo,88]). 
Orthogonal Pseudo-Polyhedra (3D-OPP) will refer to regular 
and orthogonal polyhedra with non-manifold boundary 
[Aguilera,98].   

Similarly, 4D Orthogon al Polytopes (4D-OP) are 
defined as 4D polytopes with all their edges, faces and 
volumes oriented in four orthogonal directions and 4D 
Orthogon al Pseudo -Polytopes (4D-OPP) will refer to 4D 
regular and orthogonal polytopes with non-manifold boun-
dary [Aguilera,02]. Because the 4D-OPP’s definition is an 
extension from the 3D-OPP’s,  is  easy  to generalize the  
concept  to  define  n-dimensional  Orthogon al  

Polytopes  (nD-OP)  as  n-dimensional polytopes with all 
their �n-1, �n-2,…, �1 oriented in n orthogonal directions. 
Finally, n-dimensional Orthogon al Pseudo -Polytopes 
(nD-OPP) are defined as n-dimensional regular and or-
thogonal polytopes with non-manifold boundary 
[Aguilera,02]. 
 

3. Configurations for 1D, 2D, 3D and 4D-OPP’s. 
 

3.1. Configurations for Segments in 1D Space 
 

Although it is a trivial case, we will present the three 
possible configurations in 1D space (table 1). They will be 
usefulness when proposing the “Test-Box” heuristic. 
 

 
 

a 

 
 

b 

 
 

c 
Table 1. The posible configurations (a-c) in 1D space. 

 

We have the configuration a with 0 surrounding 
segments, which is complementary to configuration c with 
two surrounding segments. Configuration b with just one 
segment is autocomplementary [Aguilera,98]. 
 

3.2 Configurations for 2D-OPP’s. 
 

A set of quasi-disjoint rectangles determines a 2D-OPP 
whose vertices must coincide with some of the rectangles' 
vertices [Aguilera,98]. Each of these rectangles' vertices can 
be considered as the origin of a 2D local coordinate system, 
and they may belong to up to four rectangles, one for each 
local quadrant. The two possible adjacency relations 
between the four possible rectangles can be of edge or 
vertex. There are 24 = 16 possible combinations which, by 
applying rotational symmetries, may be grouped into six 
equivalence classes, also called configurations [Srihari,81] 
(table 2). Moreover, each possible combination has its 
complementary combination, and each configuration has its 
complementary configuration which is the class that 
contains the complementary combinations of all the 
combinations in the given class [Aguilera,98]. 
 

 

a
 

 

 

b  

 

c

1

2

 
 

d

1

2

 

 

e

1

23

 

 

f

1

24

3

 
Table 2. Possible configurations (a to f) for 2D-OPP's. 

 

These 16 possible combinations are distributed in the 
following way [Aguilera,98]: 
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And using combinatorial analysis, there are: 
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C  1 combination with zero surrounding rectangles 

(configuration a). 
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4
C  4 combinations with one surrounding rectangle 

(configuration b). 
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4
C  6 combinations with two surrounding rectangles 

(configurations c and d). 

���
�

�
��
	




3

4
C  4 combinations with three surrounding 

rectangles (configuration e). 
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4

4
C  1 combination with four surrounding rectangles 

(configuration f). 

Configurations a and f, as well as configurations b and 
e, are complementary to each other. Configurations c and d 
are self-complementary [Aguilera,98]. 
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Table 3. Possible configurations (a to v) for 3D-OPP's. 

 

3.3. Configurations for 3D-OPP’s. 
 

A set of quasi-disjoint boxes determines a 3D-OPP whose 
vertices must coincide with some of the boxes' vertices 
[Aguilera,98]. Similarly to the 2D case, each of these boxes' 
vertices can be considered as the origin of a 3D local 
coordinate system, and they may belong to up to eight 
boxes, one for each local octant. The three possible 
adjacency relations between the eight possible boxes can 
be of face, edge or vertex. There are 28 = 256 possible 
combinations which, by applying rotational symmetries, may 
be grouped into 22 equivalence classes [Lorensen,87], also 
called configurations [Srihari,81] (table 3). As in the 2D 
case, each possible combination has its complementary 
combination, and each configuration has its complementary 
configuration which is the class that contains the 
complementary combinations of all the combinations in the 
given class [Aguilera,98]. Grouping complementary 
configurations leads to the 14 major cases [Van Gelder,94].  

Similarly to the 2D case, these 256 possible 
combinations are distributed in the following way 
[Aguilera,98]: 
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And using combinatorial analysis, there are: 
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C  1 combination with zero surrounding boxes 

(configuration a). 
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C  8 combinations with one surrounding box 

(configuration b). 
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C  28 combinations with two surrounding boxes 

(configurations c, d and e). 
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8
C  56 combinations with three surrounding boxes 

(configurations f, g and h). 
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8
C  70 combinations with four surrounding boxes 

(configurations i, j, k, l, m and n). 

The remaining combinations with 5, 6, 7 and 8 
surrounding boxes are complementary, and thus analogous, 
to combinations with 3, 2, 1 and 0 surrounding boxes, 
respectively [Aguilera,98]. Finally, each configuration, with 
four surrounding boxes is self-complementary. 
 

3.4 Configurations for 4D-OPP’s. 
 

By analogy, it can be assumed that a set of quasi-disjoint 
hyper-boxes (i.e., hypercubes, which in this paper will be 
represented using Claude Bragdon’s projection [Rucker,77]) 
determines a 4D-OPP whose vertices must coincide with 
some of the hyper-boxes’ vertices. We will consider the 
hyper-boxes’ vertices as the origin of a 4D local coordinate 
system, and they may belong to up to 16 hyper-boxes, one 
for each local hyper-octant. The 4D-OPP’s vertices are 
determined according to the presence of absence of each of 
these 16 surrounding hyper-boxes. The four possible 
adjacency relations, extending by analogy, between the 16 
possible hyper-boxes can be of volume, face, edge or 
vertex. There are 216 = 65,536 possible combinations which 
can be grouped, applying rotational symmetries, into 253 
equivalence classes called configurations [Pérez,01]. Each 
possible combination has its complementary combination, 



 
3 

and each configuration (i.e. each class) has its 
complementary configuration which is the class that 
contains the complementary combinations of all the 
combinations in the given class. Grouping complementary 
configurations leads us to the 145 major cases [Pérez,01]. 

The 65,536 possible combinations are distributed in the 
following way [Pérez,01]: 
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And using combinatorial analysis, there are: 
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16
C  1 combination with zero surrounding hyper-

boxes (configuration 1). 
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C  16 combinations with one surrounding hyper-

box (configuration 2, shown in table 4). 
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120 combinations with two surrounding hyper-
boxes: configurations 3 (volume adjacency), 4 
(face adjacency), 5 (edge adjacency) and 6 
(vertex adjacency), shown in table 4. 
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16
C  560 combinations with three surrounding hyper-

boxes (configurations 7 to 12, only 7 and 8 
shown in table 4). 
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C  1,820 combinations with four surrounding 

hyper-boxes (configurations 13 to 28, only 13 
shown in table 4). 
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C  4,368 combination with five surrounding hyper-

boxes (configurations 29 to 48). 
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C  8,008 combinations with six surrounding hyper-

boxes (configurations 49 to 78). 
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C  11,440 combinations with seven surrounding 

hyper-boxes (configurations 79 to 108). 
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16
C  12,870 combinations with eight surrounding 

hyper-boxes (configurations 109 to 145). 

The remaining combinations with 9, 10, 11, 12, 13, 14, 
15 and 16 surrounding hyper-boxes are complementary, 
and thus analogous, to combinations with 7, 6, 5, 4, 3, 2, 1 
and 0 surrounding hyper-boxes, respectively. Finally, each 
configuration, with eight surrounding hyper-boxes is self-
complementary [Pérez,01]. 
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Table 4. Configurations 2-8 and 13 for the 4D-OPP’s (each hypercube is show using Bragdon’s projection). 
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4. The Problem of Determining the Configurations for 
nD-OPP’s (n > 4) 

 

For the Euclidean n-Dimensional space we have 2n possible 
hyper-octants (4 quadrants for 2D space, 8 octants for 3D 
space, and 16 hyper-octants for 4D space). This number of 
hyper-octants has repercurssion over the possible number 
of combinations of vertices described through the presence 
of absence of hyper-boxes each one in every hyper-octant. 
In general, we have that the total number of combinations in 
nD space is [Hill,98]: 

)2(2
n

 
It was before discussed that in 4D space we have 216 = 

65,536 combinations. [Pérez,01] determined that there are 
253 configurations for 4D-OPP’s through exhaustive 
searching. However, if we want to determine the 
configurations for 5D-OPP’s through exhaustive searching, 
we would have to consider that there are 32 hyper-octants 
in 5D space, and for instance to analyze 232 = 4,294,967,296 
combinations [Hill,98]. 

Moreover, if the number of configurations is associated 
with the total number of combinations, it is evident that the 
first one is very less than the second one. For example, in 
3D space we have 22 configurations for 256 possible 
combinations, this can be translated as that only the 8% of 
the combinations can perform the role of representatives 
(equivalence classes) of the others. See table 5 for the 
application of this comparison over the configurations in 1D, 
2D and 4D spaces. 
 

nD 
Space Combinations Configurations 

Percentage 
(Configurations Vs. 

Combinations) 
1D 4 3 75 % 
2D 16 6 37.5 % 
3D 256 22 8 % 
4D 65,536 253 0.3 % 
5D 4,294,967,296 ? << 0.3 % 

Table 5. Comparing the number of configurations with the number of 
combinations for the nD-OPP’s. 

 

These situations lead us to conclude that the complexity 
imposed by the exhaustive searching makes difficult to 
determine the configurations for OPP’s in spaces of 5 
dimensions and beyond [Hill,98]. In the following sections 
we will present a heuristic for obtaining the configurations in 
a more direct way. The heuristic has as first step to obtain a 
subset of the nD configurations’ final set through the 
extrusion of (n-1)D configurations. This process will be 
described in the following section. 
 

5. Extruding Configurations 
 

The extrusion of a configuration (n-1)D to an nD space 
implies that each one of its boxes will be traslated in a 
direction that is perpendicular to the (n-1)D space in which 
are embedded. The traslation of each box will describe then 
a hyper-box (this process is analogous to obtaining the 
hypercube through the method proposed by Bragdon 
[Rucker,77]). It is important to consider that an nD 
configuration obtained through the extrusion of a (n-1)D 
configuration is not unique, because there are two possible 
traslation directions for each box. For example, in table 6 it 
is presented the extrusion of the 2D configuration e for 
obtaining 3D configurations f, g and h. 

Through extruding configurations it is possible to obtain 
some configurations from nD space by using the 
configurations from (n-1)D space and so on. By this way, we 
obtain then a recursive process whose basic case are the 
configurations for 1D-OPP’s (see table 1). 

 f   

 

g  

 

 

h  

 

 

Table 6. Extrusion of 2D configuration e and the obtained 3D 
configurations (the arrows indicate the extrusion direction for each 

rectangle). 
 

6. Obtaning the Configurations Through a “ Test-Box”  
 

The “Test-Box” heuristic starts with the following principle: to 
have access to (n-1)D configurations for obtaining the nD 
configurations. Each (n-1)D configuration is extruded just 
one time and in just one direction, this means that, the 
boxes that compose the (n-1)D configuration are extruded 
towards the same perpendicular direction from space in 
which are embedded. Once this process  is  applied,  the  
(n-1)D configuration is not required again. For example, five 
configurations for 2D-OPP’s are extruded just one time and 
towards the same direction for obtaining five configurations 
for 3D-OPP’s (table 7). 
 

2D 
Configuration 

Extrusion: 3D 
Configuration 

2D 
Configuration 

Extrusion: 3D 
Configuration 

b  
 

b  
c  

 

c  

d  

 

d  e  

 

f  

f  

 

i  

  

Table 7. Extruding 2D configuration in the same direction and 
obtaining their 3D analogous. 

 

Once the configurations from (n-1)D space have been 
extruded, we have now the same number of nD 
configurations (denominated analogous configurations 
[Aguilera,02]). The next step is the use of each nD 
configuration for obtaning the remaining configurations. We 
will use a “Test-Box” (a rectangle, a cube, a hypercube, 
etc.). For each configuration, we will add it a “Test-Box” in 
one of its empty hyper-octants. This adding will produce a 
new combination which must be analized with the set of the 
configurations (before combinations) yet processed. If the 
combination is not in the set of configurations, then we have 
a new configuration. This process is repeated until all the 
configuration’s empty hyper-octants have been evaluated 
with a “Test-Box”. In Table 8 are shown the 3D 
combinations obtained from the configuration f and by 
applying a “Test-Box” in all its empty octants. 

We have now the elements to propose an algorithm 
applying extrusions and a “Test-Box”. The algorithm is 
resumed with the following main procedures: 
1. For a number n of dimensions we obtain the (n-1)D 

configurations. If n = 1 then we have the basic case 
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which return the configurations from table 1 (1D 
configurations). 

2. The (n-1)D configurations are extruded in nD 
configurations. 

3. It is added a “Test-Box” to each nD configuration in 
their empty hyper-octants, this operation will produce 
new combinations. 

4. Each new produced combination will be evaluated with 
the set of identified configurations. If it is a new 
configuration then it will be added to the set of 
identified configurations and considered to be 
evaluated with a “Test-Box”, because it could produce 
new configurations. 

We present now the proposed algorithm: 

 

 

i  k  j  

l  j   
Table 8. Obtaining new configurations through 3D configuration f 

and a “Test-Box” (shown as wireframe model). 
 

Input: The number of dimensions > 0 for the configurations to obtain. 
Output: The set of configurations for the specified space. 
getConfigurationsForSpaceUsingTestBox(dimensions) 
{ 
 if(dimensions == 1) 
  // Basic Case: just return the three configurations for 1D space. 
  return getConfigurationsFor1DSpace( ); 
 else 
 { 
  /* Recursive call: the configurations from (n-1)D space are obtained and they are added 
     to the set ‘previousConfigurations’. */ 
  previousConfigurations = getConfigurationsForSpaceUsingTestBox(dimensions - 1); 
  For each configuration c in the set previousConfigurations 
  { 
   /* Configuration ‘c’ is (n-1)D. The configuration ‘newC’ (n-dimensional) is the  
      result of extruding configuration ‘c’. */ 
   newC = extrudeConfiguration(c); 
   /* The configuration ‘newC’ is added to the set ‘configurations’ (the configurations from 
      current nD space). */ 
   configurations.add(newC); 
  } 
  /* Starts the cicle for generating new combinations from the configurations contained in the  
     set ‘configurations’ using a “Test-Box” (rectangle, cube, hypercube,etc.) whose  
     position (hyper-octant to occupy) is indicated by variable ‘testBoxPosition’. */ 
  hyperOctants = 2dimensions; 
  testBoxPosition = 0; 
  For each configuration c in the set configurations 
  { 
   testBoxPosition = 0; 
   /* Starts the cicle for generating new combinations from configuration ‘c’ using a “Test-Box”. */  
   while(testBoxPosition < hyperOctants) 
   { 
    /* It is obtained the combination ‘newC’ from configuration ‘c’ and the “Test-Box” 
       added in the hyper-octant specified by ‘testBoxPosition’. */ 
    newC = getNewConfiguration(c, testBoxPosition); 
    /* It is verified if combination ‘newC’ was before obtained. If not, then it is added 
       to set ‘configurations’ and for instance a new configuration has been found. */ 
    if(configurations.isContained(newC) == false) 
     configurations.add(newC); 
    testBoxPosition++; 
   } 
  } 
                   // All the posible configurations have been found. The set ‘configurations’ is returned as output,. 
                 return configurations; 
 } 
} 
 

For determining the number of nD combinations 
analyzed to obtain the nD configurations through the “Test-
Box” heuristic it is necessary to analyze the output’s size, 
i.e., the number of configurations. Due to we will know the 
number of configurations until the algorithm finishes, we 
have then an output-sensitive complexity analysis 

[deBerg,97]. Be CTB (Configurations-by-Test-Box) the 
number of configurations obtained by the algorithm and 2n 
the number of hyper-octants for the nD space. Then the 
number of combinations to analyze is at most: 

nCTB 2�  



 
6 

This is an upper bound because we are considering that 
for each configuration (with 1, 2, 3, etc. hyper-boxes) there 
are 2n empty hyper-octants (this is possible only for 
configurations with 0 hyper-boxes). We must consider, in 
fact, that configurations with 1 box have 2n-1 empty hyper-
octants, configurations with 2 boxes have 2n-2 empty hyper-
octants and so on. Be CTBi the number of those 
configurations with i boxes, then we have that the exact 
number of combinations to analyze is: 

�
�

��
n

i

n
i iCTB

2

0

)2(  

 

7. Results 
 

The presented algorithm has confirmed the expected 
configurations for 2D, 3D [Aguilera,98] and 4D [Pérez,01] 
spaces. Specifically, the greatest number of combinations to 
analyze  for  obtaining  the  configurations in 4D space is 
253 * 24 = 4,048. Although this is an upper bound, it is better 
than the obtained through exhaustive searching by 
[Pérez,01] (216 = 65,536). Through the “Test-Box” heuristic 
we have found 20,983 configurations for the 5D-OPP’s (see 
table 9 for the configuration’s distribution). 

5D hyper-boxes (i) CTBi 5D hyper-boxes (i) CTBi 
0 1 32 1 
1 1 31 1 
2 5 30 5 
3 10 29 10 
4 38 28 38 
5 66 27 66 
6 164 26 164 
7 236 25 236 
8 454 24 454 
9 570 23 570 

10 887 22 887 
11 989 21 989 
12 1,388 20 1,388 
13 1,406 19 1,406 
14 1,754 18 1,754 
15 1,607 17 1,607 
16 1,831   

Table 9. Configuration’s distribution for 5D-OPP’s. 
 

The precise number of analyzed 5D combinations is: 

728,335

011125310438

566616472368454957010887
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2198922887235702445425236
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This result represents a great improvement compared 

with the number of combinations to analyze through 
exhaustive searching (232 = 4,294,967,296). 

For obtaining the configurations for the 6D-OPP’s we 
would have  to analyze, through exhaustive searching, a 
total of 264 = 18,446,744,073,709,551,616 combinations. 
Through the “Test-Box” heuristic, we found 15,440,344 
configurations, which implies that the number of 6D 
combinations analyzed is (upper-bound): 

6988,182,012344,440,15 6 ��  

8. Conclusions 
It is esential to determine the configurations for the nD-
OPP’s, because they represent a finite subset which can be 
used to determine geometric and topologic properties for 
these nD-OPP’s. For example, [Aguilera,03] uses only the 
configurations for determine the properties for 4D-OPP’s. 
Through the “Test-Box” heuristic, we have now a method 
faster and more direct to obtain configurations for nD-OPP’s 
in spaces of 5 dimensions and beyond. 
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ABSTRACT 
This   article    presents    our    experimental    study    about   the  
1-dimensional boundary elements (edges) for 4D Orthogonal 
Pseudo-Polytopes (4D-OPP’s). We propose a  new characterization 
for these elements which classify them as Extreme or Non-Extreme. 
We show how this characterization is the result of a 3D analysis 
over the possible configurations for the 4D-OPP’s. 
 

1. The 4D Orthogon al Polytopes and Th eir Properties 
 

1.1. Definition 
 

[Coxeter,63] defines an Euclidean polytope �n as a finite region  of  
n-dimensional    space    enclosed    by    a    finite    number   of   
(n-1)-dimensional hyperplanes. The finiteness of the region implies 
that the number Nn-1 of bounding hyperplanes satisfies the inequality 
Nn-1>n. The part of the polytope that lies on one of these 
hyperplanes is called a cell. Each cell of a �n is an (n-1)-
dimensional polytope, �n-1. The cells of a �n-1 are �n-2's, and so on; 
we thus obtain a  descending sequence of elements �n-3, �n-4,..., �1 
(an edge), �0 (a vertex).  

Orthogonal Polyhedra (3D-OP) are defined as polyhedra with all 
their edges (�1‘s) and faces (�2'’s) oriented in three orthogonal 
directions ([Juan-Arinyo,88] & [Preparata,85]). Orthogonal Pseudo-
Polyhedra (3D-OPP) will refer to regular and orthogonal polyhedra 
with non-manifold boundary [Aguilera,98].  

Similarly, 4D Orthogon al Polytopes (4D-OP) are defined as 
4D polytopes with all their edges (�1’s), faces (�2’s) and volumes 
(�3‘s) oriented in four orthogonal directions and 4D Orthogon al 
Pseudo -Polytopes (4D-OPP) will refer to 4D regular and 
orthogonal polytopes with non-manifold boundary [Aguilera,02]. 
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4 combinations with 3 
surrounding rectangles. 
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1 combination with 4 
surrounding rectangles. 
Configuration: 

e

1
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 f

1
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3

 
Table 1. Combinatorial Analysis for Configurations in the 2D-OPP’s. 

 

1.2. Configurations and Vertex Analysis for 2D-OPP’s 
 

A set of quasi-disjoint rectangles determines a 2D-OPP (2D 
Orthogonal Pseudo-Polygon) whose vertices must coincide with 
some of the rectangles' vertices [Aguilera,98]. Each of these 
rectangles' vertices can be considered as the origin of a 2D local 
coordinate system, and they may belong to up to four rectangles, 

one for each local quadrant. The two possible adjacency relations 
between the four possible rectangles can be of edge or vertex. 
There are 24 = 16 possible combinations which, by applying symme-
tries and rotations, may be grouped into six equivalence classes, 
also called configurations [Srihari,81]. The distribution of the 16 
combinations can be determined using combinatorial analysis 
[Aguilera,98], which is presented in table 1. 

According to table 1, configurations a and f, as well as 
configurations b and e, are complementary to each other. 
Configurations c and d are self-complementary [Aguilera,98]. 

Considering only those configurations where all their rectangles 
are incident to a vertex (configurations b, c, d, e and f, see table 1) it 
is concluded that  there  are  only  two  types  of vertices in the 2D-
OPP’s: the manifold vertex wi th two incident edges 
(configurations b and e), and the non -manifold vertex wi th four 
incident edges (configuration d) [Aguilera,98]. The remaining 
configurations represent no vertex because in configuration c there 
are only two incident and collinear edges, and in configuration f 
there are no incident edges. 
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one surrounding box. 
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 28 combinations with two surrounding boxes. 
Configurations: 
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 56 combinations with three surrounding boxes. 
Configurations: 

f
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 70 combinations with four surrounding boxes. 
Configurations: 

i
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1 3 
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 j  k  

l  m  n  
Table 2. Combinatorial Analysis for Configurations in the 3D-OPP’s. 



 

1.3. Configurations and Edge Analysis for 3D-OPP’s 
 

A set of quasi-disjoint boxes determines a 3D-OPP whose vertices 
must coincide with some of the boxes' vertices [Aguilera,98]. Each 
of these boxes' vertices can be considered as the origin of a 3D 
local coordinate system, and they may belong to up to eight boxes, 
one for each local octant. There are 28 = 256 possible combinations 
which, by applying symmetries and rotations, may be grouped into 
22 equivalence classes [Loresen,87], also called configurations 
[Srihari,81]. Each configuration has its complementary configuration 
which is the class that contains the complementary combinations of 
all the combinations in the given class [Aguilera,98]. Grouping 
complementary configurations leads to the 14 major cases [Van 
Gelder,94]. The distribution of the 256 combinations can be 
determined using combinatorial analysis [Aguilera,98], which is 
presented in table 2. 

The combinations with 5, 6, 7 and 8 surrounding boxes are 
complementary, and thus analogous, to combinations with 3, 2, 1 
and 0 surrounding boxes (table 2), respectively [Aguilera,98]. 
Finally, each configuration, with four surrounding boxes is self-
complementary. 

Considering only those configurations where all their cubes are 
incident to a same edge (b, c, d, f and i; table 2), it is concluded that 
there are only two types of edges in the 3D-OPP’s [Aguilera,98]: 
��The manifold edge wi th two incident faces. This type of edges 

is found in configurations b and f. The edge’s two incident faces 
in configuration b belong to one cube’s boundary and they are 
perpendicular to each other. The edge’s two incident faces in 
configuration f belong to two different cubes with edge adjacency 
and they result perpendicular to each other.  

��The non -manifold edge wi th four incident faces . This type of 
edges is found in configuration d, where two of its faces belongs 
to a cube and the remaining belong to a second cube with edge 
adjacency. 

��The remaining configurations represent no edge because in 
configuration c there are only two incident and coplanar faces, 
and in configuration i there are no incident faces.  

 

1.4. Configurations and Face Analysis for 4D-OPP’s 
 

A set of quasi-disjoint hyper-boxes (i.e., hypercubes, which in this 
paper will be represented using Claude Bragdon’s projection 
[Rucker,77]) determines a 4D-OPP whose vertices must coincide 
with some of the hyper-boxes’ vertices. We will consider the hyper-
boxes’ vertices as the origin of a 4D local coordinate system, and 
they may belong to up to 16 hyper-boxes, one for each local hyper-
octant. The 4D-OPP’s vertices are determined according to the 
presence of absence of each of these 16 surrounding hyper-boxes. 
The four possible adjacency relations between the 16 possible 
hyper-boxes can be of volume, face, edge or vertex. There are 216 = 
65,536 possible combinations of vertices in 4D-OPP’s which can be 
grouped, applying symmetries and rotations, into 253 equivalence 
classes, also called configurations [Pérez,01]. Each configuration 
has its complementary configuration which is the class that contains 
the complementary combinations of all the combinations in the 
given class. Grouping complementary configurations leads to the 
145 major cases [Pérez,01].  

The distribution of the 65,536 combinations can be determined 
using combinatorial analysis [Pérez,01]:  
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 16 combinations with one surrounding hyper-box: 
configuration 2, shown in table 3. 
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 120 combinations with two surrounding hyper-boxes: 
configurations 3, 4 (table 3), 5 and 6. 
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 560 combinations with three surrounding hyper-boxes: 
configurations 7 (table 3) to 12. 
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 1,820 combinations with four surrounding hyper-boxes: 
configurations 13 (table 3) to 28. 
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 4,368 combinations with five surrounding hyper-boxes: 
configurations 29 to 48. 
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 8,008 combinations with six surrounding hyper-boxes: 
configurations 49 to 78. 
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 11,440 combinations with seven surrounding hyper-
boxes: configurations 79 to 108. 
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8

16
C

 12,870 combinations with eight surrounding hyper-
boxes: configurations 109 to 145. 

The remaining combinations with 9, 10, 11, 12, 13, 14, 15 and 
16 surrounding hyper-boxes are complementary, and thus 
analogous, to combinations with 7, 6, 5, 4, 3, 2, 1 and 0 surrounding 
hyper-boxes, respectively. Finally, each configuration, with eight 
surrounding hyper-boxes is self-complementary [Pérez,01]. 
 

Adjacencies between 
hyper-boxes  Configuration 
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1
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4  

 
13 

Table 3: Configurations 2, 3, 4, 7 and 13 for 4D-OPP's (each 
hypercube is shown using Bragdon’s projection). 

 

Considering only those configurations where all their hyper-
boxes are incident to just one face (configurations 2, 3, 4, 7 and 13, 
see table 3), it results that there are only two types of faces in the 
4D-OPP’s (for a more detailed analysis see [Aguilera,02]):  
��The manifold faces wi th two incident volumes. The face’s two 

incident volumes in configuration 2 belong to the boundary of only 



 

one hypercube and they are perpendicular to each other. While in 
configuration 7, The face’s two incident volumes belong to two 
different hypercubes with face adjacency and they result 
perpendicular to each other.  

��The non -manifold faces wi th four incident volumes. This type 
of faces is found in configuration 4, where two of its incident 
volumes belongs to a hypercube and the remaining two belong to 
a second hypercube with face adjacency. 

��The remaining configurations represent no face because in 
configuration 3 there are only two incident and co-hyperplanar 
volumes, and in configuration 13 there are no incident volumes 
(analogous to 3D configurations c and i in table 2). 

 

1.5. The Eight Types of Vertices in the 3D-OPP’s 
 

The vertices in the 3D-OPP’s can be classified depending on the 
number of two-manifold and non-manifold edges incident to them. 
They are referred as V3, V4, V4N1, V4N2, V5N, V6, V6N1 and 
V6N2 (there are also two non valid vertices) [Aguilera,98]. In this 
nomenclature "V" means vertex, the first digit shows the number of 
incident edges, the "N" is present if at least one non-manifold edge 
is incident to the vertex and the second digit is included to 
distinguish between two different types that otherwise could receive 
the same name (See [Aguilera,98] for detailed properties of these 
eight vertices). See table 4. 
 

V3 

 

V4 

 

V4N1 

 

V4N2 

 

V5N 

 

V6 

 

V6N1 

 

V6N2 

 
Non valid 
vertex 1 

 
 

Non valid 
vertex 2 

 

  

Table 4. Vertices present in 3D-OPP's (dotted lines indicate non-
manifold edges and continuos lines indicate manifold edges). 

 

1.6. The Eight Types of Edges in the 4D-OPP’s 
 

Analogously to the vertices in the 3D-OPP’s, the edges in 4D-OPP’s 
can be described in terms of the manifold or non-manifold faces that 
are incident to them. In this way, [Pérez,01] has identified eight 
types of edges and two non valid edges; and extended the 
nomenclature used by [Aguilera,98] to describe them. Such edges 
are referred as E3, E4, E4N1, E4N2, E5N, E6, E6N1 and E6N2 
(See Table 5). The only difference with the nomenclature used by 
[Aguilera,98] is that "E" means edge instead of "V" that means 
vertex (See [Pérez,01] for detailed properties of these eight edges). 
 

E3 

 

E4 

 

E4N1 

 

E4N2 

 

E5N 

 

E6 

 

E6N1 

 

E6N2 

 
Non valid  
edge 1 

 

 

Non valid 
edge 2 

 

 
 

  

Table 5. Edges present in 4D-OPP's (dotted lines indicate non-
manifold faces and continuos lines indicate manifold faces) 

2. The Extreme Vertices in the 3D-OPP’s 
 

2.1. Properties 
 

[Aguilera,98] defines a brink or extended-edge as the maximal 
uninterrupted segment, built out of a sequence of collinear and 
contiguous two-manifold edges of a 3D-OPP with the following 
properties: 
��Non-manifold edges do not belong to brinks. 
��Every two-manifold edge belongs to a brink, whereas every brink 

consists of m edges (m � 1), and contains m+1 vertices. 
��Two of the vertices of type V3, V4N1 or V6N1 (section 1.5) are at 

either extreme of the brink (Extreme Vertices ). These vertices 
have in common that they are the only ones that have exactly 
three incident two-manifold and perpendicular edges, regardless 
of the number of incident non-manifold edges, therefore those 
vertices mark the end of brinks in all three orthogonal directions. 

��The m-1 vertices of type V4, V4N2, V5N or V6 are the only 
common point of two collinear edges of a same brink (interior 
vertices). 

��Due to all six incident edges of a V6N2 vertex are non-manifold 
edges, none of them belongs to a brink, thus this vertex does not 
belong to any brink. 
(This work not consider brinks in 1D-OPP’s and 2D-OPP’s, 
however see [Aguilera,98] for details). See Figure 1.a for an 
example of a wireframe model of a 3D-OPP. Also in Figure 1.b  
are shown the OPP’s brinks parallel to X axis. The continous lines 
indicate manifold edges and the dotted one a non-manifold edge 
(it do not belong to a brink). The points at both extremes of the 
brinks are Extreme Vertices. 

XXX

 

a    b 
Figure 1. a) A wireframe model of a 3D-OPP. b) Their brinks parallel 

to X axis (See text for details). 
 

Based in the previous properties for brinks, [Aguilera,98] 
presents the following properties for the Extreme Vertices in the 
3D-OPP’s: 
��Every Extreme Vertex of a 3D-OPP has exactly 3 incident  

manifold edges perpendicular to each other. This number is even 
for every non-extreme vertex. 

��Every Extreme Vertex has an odd number of incident faces, and 
every non-extreme vertex has an even number of incident faces. 

��Any Extreme Vertex of a 3D-OPP when is locally described by a 
set of surrounding boxes, is surrounded by an odd number of 
such boxes. An even number of surrounding boxes either defines 
a non-extreme vertex, or does not define any vertex at all. 

 

2.2. The 2D Analysis for Vertices in 3D-OPP's 
 

In section 1.3 were presented the configurations, identified by 
[Aguilera,98], which determine a 3D-OPP through a set of quasi-
disjoint boxes. Each of these boxes’ vertices can be considered as 
the origin of a 3D local coordinate system. In such 3D local 
coordinate system can be identified three main planes: XY, YZ and 
XZ. If the faces that are coplanar to such main planes are grouped, 
ignoring those faces that are shared by two cubes (face adjacency), 
they compose three 2D configurations (one for each main plane). 
For these 2D configurations the vertex can be classified as manifold 
or non-manifold (section 1.2). See Table 6 for examples for 3D 
configurations b to k. 

Applying this analysis over the 22 configurations for the 3D-
OPP’s [Pérez, 01], it results that for those configurations whose 
vertex is extreme (V3, V4N1 or V6N1) and their number of boxes is 
odd, the three vertex analysis for their 2D configurations classify the 
2D vertex as manifold (in Table 6, configurations b and f, for 
example). From this pattern, we can infer if a vertex is extreme or 
non-extreme. 



 

  

3D configuration 2D configuration 
on XY Plane 

2D configuration 
on YZ Plane 

2D configuration 
on XZ Plane 

Analysis for 
2D vertex 

b 
 

x

y

z  

b 

x

y

-x

-y  
 

b 
y

z
-y

-z

 

b 
 
 

x

z
-x

-z

 
 

XY: Manifold 
 
YZ: Manifold 
 
XZ: Manifold 

c 
 

x

y

z  

c 

x

y

-x

-y  
 

a 
y

z
-y

-z

 

c 
 
 

x

z
-x

-z

 
 

XY: Non vertex 
 
YZ: Non vertex 
 
XZ: Non vertex 

f 
 

x

y

z  

e 

x

y

-x

-y  

b 
y

z
-y

-z

 
 

b 
 
 

x

z
-x

-z

 
 

XY: Manifold 
 
YZ: Manifold 
 
XZ: Manifold 

j 

x

y

z

 
 

c 
 

x

y

-x

-y  

d 
 

y

z
-y

-z

 

c 
 
 

x

z
-x

-z

 
 

XY: Non vertex 
 
YZ: Non manifold 
 
XZ: Non vertex 

k 

x

y

z

 
 

f 

x

y

-x

-y  

c 
y

z
-y

-z

 

c 
 
 

x

z
-x

-z

 
 

XY: Non vertex 
 
YZ: Non vertex 
 
XZ: Non vertex 

Table 6. Vertex analysis for 2D configurations on the main planes in 3D configurations b to k. 
 

2.3. The 3D Analysis for Edges in 4D-OPP's 
 

The vertex analysis for 2D configurations embedded in the main 
planes of a 3D configuration (previous section) classify the 2D 
vertex as manifold or non-manifold, and through these three 2D 
analysis we can infer if the 3D vertex is extreme or non-extreme. 
For consequence, in analogous way, we can assume that the edges 
analysis for 3D configurations embedded in the main hyperplanes of 
a 4D configuration will classify to 3D edges as manifold or non-
manifold, and through these 3D analysis we can infer, due to the 
analogy with 3D vertex, if the 4D edges are “ Extreme” or “ Non-
Extreme” . 

In section 1.4 were presented the 253 configurations which 
determine a 4D-OPP through a set of quasi-disjoint hyper-boxes 

(hypercubes). Each of these hyper-boxes’ vertices can be 
considered as the origin of a 4D local coordinate system. In such 4D 
local coordinate system can be identified four main hyperplanes: 
XYZ, XYW, XZW and YZW. If the volumes that are co-hyperplanar 
to such main hyperplanes are grouped, ignoring those volumes that 
are shared by two hypercubes (volume adjacency), they will 
compose four 3D configurations (one for each main hyperplane). 
Table 7 presents the four 3D configurations that are present in 4D 
configurations 3 to 6. 

For the 3D configurations that are embedded in the main 
hyperplanes in 4D space, it is possible to analyze their edges and 
classify them as manifold or non-manifold (section 1.3). In Table 8 
are shown the edges analysis for the 3D configurations that are 
present in 4D configurations 3 to 6. 



 

 
4D 

configuration 
3D configuration on 

XYZ hyperplane 
3D configuration on 

XYW hyperplane 
3D configuration 

on XZW hyperplane 
3D configuration on 

YZW hyperplane 
3 

x

y

z
w

 

b 

x

y

z

 
 

b 

x

y

w

 
 

a 
 
 

x

z
w

 

b 
y

z
w

 

4 

x

y

z
w

 

d 

x

y

z

 

d 

x

y

w

 
 

b 
 

x

z
w

 

b 
y

z
w

 

5 

x

y z
w

 

e 

x

y z

 

d 

x

y

w

 

d 

x

z
w

 

d 
y z

w

 
6 

x

y z
w

 

e 

x

y z

 
 

e 

x

y

w

 

e 

x

z

w

 

e 
y

zw

 

Table 7. Determining the 3D configurations on the main hyperplanes in 4D configurations 3 to 6. 
 

 3D Edges Analysis 
4D 

Configuration 
Configuration 

on XYZ hyperplane 
Configuration 

on XYW hyperplane 
Configuration 

on XZW hyperplane 
Configuration 

on YZW hyperplane 

3 

X: Non edge 
-X: Non edge 
Y: Manifold 
-Y: Manifold 
Z: Non edge 
-Z: Non edge 

X: Non edge 
-X: Non edge 
Y: Manifold 
-Y: Manifold 
W: Non edge 
-W: Non edge 

X: Non edge 
-X: Non edge 
Z: Non edge 
-Z: Non edge 
W: Non edge 
-W: Non edge 

Y: Manifold 
-Y: Manifold 
Z: Non edge 
-Z: Non edge 
W: Non edge 
-W: Non edge 

4 

X: Manifold 
-X: Manifold 
Y: Manifold 
-Y: Manifold 
Z: Non edge 
-Z: Manifold 

X: Manifold 
-X: Manifold 
Y: Manifold 
-Y: Manifold 

W: Non manifold 
-W: Non edge 

X: Manifold 
-X: Manifold 
Z: Non edge 
-Z: Non edge 
W: Non edge 
-W: Non edge 

Y: Manifold 
-Y: Manifold 
Z: Non edge 
-Z: Non edge 
W: Non edge 
-W: Non edge 

5 

X: Manifold 
-X: Manifold 
Y: Manifold 
-Y: Manifold 
Z: Manifold 
-Z: Manifold 

X: Manifold 
-X: Manifold 
Y: Manifold 
-Y: Manifold 
W: Non edge 

-W: Non manifold 

X: Manifold 
-X: Manifold 
Z: Manifold 
-Z: Manifold 
W: Non edge 

-W: Non manifold 

Y: Manifold 
-Y: Manifold 
Z: Manifold 
-Z: Manifold 
W: Non edge 

-W: Non manifold 

6 

X: Manifold 
-X: Manifold 
Y: Manifold 
-Y: Manifold 
Z: Manifold 
-Z: Manifold 

X: Manifold 
-X: Manifold 
Y: Manifold 
-Y: Manifold 
W: Manifold 
-W: Manifold 

X: Manifold 
-X: Manifold 
Z: Manifold 
-Z: Manifold 
W: Manifold 
-W: Manifold 

Y: Manifold 
-Y: Manifold 
Z: Manifold 
-Z: Manifold 
W: Manifold 
-W: Manifold 

Table 8. Edges analysis for 3D configurations on the main hyperplanes in 4D configurations 3 to 6.



 

 
3. Results 
 

Through a computer program [Pérez,01], the edges analysis for 
the 3D configurations embedded in the main hyperplanes of a 4D 
configuration, was applied over the 253 configurations for the 4D-
OPP’s and the obtained results are: 
��A edge in a 4D-OPP can be classified by three 3D analysis (a 4D 

edge can only be present in three of the four main hyperplanes) 
as: 

��3 times as manifold and 0 times as non-manifold, or 
��0 times as manifold and once as non-manifold, or 
��0 times as manifold and 3 times as non-manifold, or 
��0 times as manifold and 0 times as non-manifold. 

��The above patterns can be found in any 4D configuration 
because it can have from 0 to 8 incident edges to the origin. 

��Following the analogy with the vertex analysis for 2D 
configurations embedded in the main planes of a 3D configuration 
(section 2.2), we can propose that if a edge in a 4D-OPP has 
been classified in the 3D analysis three times as manifold, then it 
can be considered as an Extreme edge, and any other result will 
classify it as a Non-Extreme Edge. 

��The manifold or non-manifold classification for a edge in a 4D-
OPP is independent of its classification as extreme or non-
extreme. Is the same situation for a vertex in a 3D-OPP, where its 
classification as extreme or non-extreme is independent of its 
classification as manifold or non-manifold (For the topic of the 
characterization of vertices and edges in 3D-OPP’s and 4D-
OPP’s respectively, as manifold or non-manifold see 
[Aguilera,03]). 

��If we analyze the incident manifold or non-manifold faces that are 
incident to an extreme or non-extreme edge in 4D-OPP's, we can 
observe that the analogy with the description of extreme or non-
extreme vertices in terms of the incident manifold or non-manifold 
edges that are incident to those vertices is preserved, as shown 
in Table 9. 

 

4D 
edge 

Classification 
(Extreme or 

Non-Extreme) 

3D 
vertex 

Classification 
(Extreme or 

Non-Extreme) 
E3 Extreme V3 Extreme 
E4 Non extreme V4 Non extreme 
E4N1 Extreme V4N1 Extreme 
E4N2 Non extreme V4N2 Non extreme 
E5N Non extreme V5N Non extreme 
E6 Non extreme V6 Non extreme 
E6N1 Extreme V6N1 Extreme 
E6N2 Non extreme V6N2 Non extreme 

Table 9. The 4D-OPP's edges classifications and their analogy with 
3D-OPP's vertices. 

 

Conclusions and Future Work 
 

The characterization of edges, as Extreme or Non-Extreme, 
together with the classification of faces and edges as manifold or 
non-manifold (both discussed in [Aguilera,02] and [Aguilera,03]), 
provide a solid theorical base for extending the Extreme Vertices 
Model (EVM), presented in [Aguilera,97] and [Aguilera, 98], to the 
fourth dimensional space (EVM-4D). The EVM-4D will be a 
representation model for 4D Orthogonal Polytopes that will allow 
queries and operations over them. However, the fact related to a 
model purely geometric (four geometric dimensions) is not 
restrictive for our research, because it will be applied under 
geometries as the 4D spacetime. The first main application for the 
EVM-4D covers the visualization and analysis for multidimensional 
data and events under the context of a Geographical Information 
System (GIS). 
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1 In this article we have omitted some background information because it is contained in [Pérez,03a] and [Pérez,03b]. Both 

references also have been submitted to this CONIELECOMP Conference. In the following sections will be indicated which 
of the references should be consulted to obtain the proper background information. 

Abstract 
This article presents our experimental results for 
classifying edges as manifold or non-manifold 
elements in 4D Orthogonal Pseudo-Polytopes (4D-
OPP's). For this edges' analysis in 4D-OPP's we have 
developed two approaches: 1) The analogy between 
incident (manifold and non-manifold) edges to a 
vertex in 3D Orthogonal Pseudo-Polyhedra (3D-
OPP's) with  incident  (manifold  and non-manifold) 
faces to a edge in 4D-OPP's; and 2) The extension of 
the concept of "cones of faces" (which is applied for 
classifying a vertex in 3D-OPP's as manifold or non-
manifold) to "hypercones of volumes" for classifying 
an edge as manifold or non-manifold in 4D-OPP's. 
Both approaches have provided the same results, 
which present that there are eight types of edges in 
4D-OPP's. Finally, the generalizations for classifying 
the n-3 dimensional boundary elements for n-
dimensional Orthogonal Pseudo-Polytopes as mani-
fold or non-manifold elements is also presented. 
 

1. Introduction 
Recent interest has been growing in studying 
multidimensional polytopes (4D and beyond) for 
representing phenomena in n-dimensional spaces. 
Some examples include: 
��In [Feiner,90] is presented the n-Vision system for 

the visualization of n-dimensional spaces. Its 
applications are related to the visualization and 
control of multidimensional financial data. 

��[Wegenkittl,97] presents a visualization interactive 
tool for exploring and analyzing multidimensional 
dinamical systems. Such systems include chemical 
reactions and statistical models. 

��[Lees,99] describes Geotouch, a Geographical 
Information System (GIS) which includes the time 
as a fourth dimension with the objective of visua-
lizing earthquake hypocenters, volcanic eruptions or 
other time sequences of events. 

��In [Weeks,02] a set of tools for visualizing and 
understanding 2 and 3-manifolds are referred, 
whose main objective is to analyze the possible 
topologies of our universe. 

Those examples show how some of these 
phenomena's features rely on the polytopes' 
geometric and topologic relations. However, due to 
the need of visualizing and analyzing these 

phenomena (i.e. multidimensional data), it is essential 
first to analyze these polytopes and their boundaries 
that compose them [Herman,98]. So, this article 
covers that first step, in our research, with the 
boundary's analysis for classifying edges as manifold 
or non-manifold elements in 4D Orthogonal Pseudo-
Polytopes. 
 

2. The 4D Orthogonal Polytopes 
 

2.1 Definition 
[Coxeter,63] defines an Euclidean polytope �n as a fi-
nite region  of  n-dimensional space enclosed by a 
finite number of (n-1)-dimensional hyperplanes. The 
finiteness of the region implies that the number Nn-1 of 
bounding hyperplanes satisfies the inequality Nn-1>n. 
The part of the polytope that lies on one of these 
hyperplanes  is called a cell. Each cell of a �n is an 
(n-1)-dimensional polytope, �n-1. The cells of a �n-1 
are �n-2's, and so on; we thus obtain a descending 
sequence of elements �n-3, �n-4,..., �1 (an edge), �0 
(a vertex).  

We know that a �3 (a 3D Euclidean polytope) is 
a polyhedron. The polyhedron’s cells are �2. A �2 (a 
2D Euclidean polytope) is a polygon. The polygon’s 
cells are �1. A �1 (a 1D Euclidean polytope) is a 
segment. Finally, the segment’s cells are �0, a set of 
vertices. The cells of a �4 (a 4D Euclidean polytope) 
are �3 (polyhedra, also called volumes in the context 
of �4).   

Orthogonal Polyhedra (3D-OP) are defined as 
polyhedra with all their edges and faces oriented in 
three orthogonal directions ([Joan-Arinyo,88] & [Pre-
parata,85]). Orthogonal Pseudo-Polyhedra (3D-OPP) 
will refer to regular and orthogonal polyhedra with 
non-manifold boundary [Aguilera,98]. Similarly, 4D 
Orthogonal Polytopes (4D-OP) are defined as 4D 
polytopes with all their edges, faces and volumes 
oriented in four orthogonal directions and 4D 
Orthogonal Pseudo-Polytopes (4D-OPP) will refer 
to 4D regular and orthogonal polytopes with non-
manifold boundary. Because the 4D-OPP's definition 
is an extension from the 3D-OPP's, is easy to 
generalize the  concept  to  define  n-dimensional 
Orthogonal Polytopes (nD-OP) as  n-dimensional 
polytopes with all their �n-1, �n-2,..., �1 oriented in n 
orthogonal directions. Finally, n-dimensional Ortho-



gon al Pseudo -Polytopes (nD-OPP) are defined as 
n-dimensional regular and orthogonal polytopes with 
non-manifold boundary. 
 

3. The �n-3 Analys is for 3D and 4D-OPP’s 
3.1 The �0 Analys is for 3D-OPP’s 
There are eight types of vertices (also two non valid 
vertices are identified) for 3D-OPP's [Aguilera,98]. 
These vertices can be classified depending on the 
number of two-manifold and non-manifold edges2 in-
cident to them and they are referred as V3, V4, V4N1, 
V4N2, V5N, V6, V6N1 and V6N2 [Aguilera,98] (Table 
1). In this nomenclature "V" means vertex, the first 
digit shows the number of incident edges, the "N" is 
present if at least one non-manifold edge is incident 
to the vertex and the second digit is included to 
distinguish between two different types that otherwise 
could receive the same name. 
 

V3 

 

V4 

 

V4N1 

 

V4N2 

 

V5N 

 

V6 

 
V6N1 

 

V6N2 

 

Non valid vertex 1 
 

 
 

Non valid vertex 2 
 

Table 1. Vertices present in 3D-OPP's (dotted lines 
indicate non-manifold edges and continuous lines 

indicate manifold edges). 
 

Each vertex has the following properties [Aguilera,98]: 
��V3: all three incident edges are two-manifold and 

perpendicular to each other. It is present in 3D 
configurations3 b, f, o and u. 

��V4: all four incident edges are two-manifold, they lie 
on a plane, and can be grouped in two couples of 
collinear edges. It is present in configuration j. 

��V4N1: three of its four incident edges are 
perpendicular to each other and also two-manifold 
ones, while the fourth is non-manifold and collinear 

                                                           
2 The characterization as manifold or non-manifold for edges 

in 3D-OPP’s and faces in 4D-OPP’s is resumed in 
[Pérez,03a]. 

3 The nD-OPP’s can be represented and/or decomposed by 
a set of configurations or equivalence classes. See 
[Pérez,03b] for an introduction to this topic. 

to one of the other three. It is present in 
configurations g and p. 

��V4N2: two of its four incident edges are two-
manifold and collinear, while each of its other two is 
non-manifold and perpendicular to the other three. It 
is present in configuration k. 

��V5N: four of its five incident edges are two-manifold 
and lie in a plane, while the fifth is non-manifold and 
perpendicular to the rest of them. It is present in 
configurations d and s. 

��V6: all six incident edges are two-manifold. It is 
present in configurations e, l and t. 

��V6N1: three of its six incident edges are 
perpendicular to each other and also two-manifold 
ones, while each of its remaining three edges is 
non-manifold and collinear to one of the first three. It 
is present in configurations h and q. 

��V6N2: all of its six incident edges are non-manifold. 
It is present in configuration n. 

��Non valid vertex 1: its two manifold edges are 
collinear. It is present in configurations c and r. 

��Non valid vertex 2: its two non-manifold edges are 
collinear. It is present in configuration m. 

 

3.2 The �1 Analys is for 4D-OPP’s 
 

Vertices can be defined in terms of the manifold or 
non-manifold edges that are incident to these vertices 
in 3D-OPP's [Aguilera,98]. The same process will be 
extended to describe edges in terms of the manifold 
or non-manifold faces2 that are incident to those 
edges in 4D-OPP's. In this way, we have identified 
eight types of edges and two non valid edges. We will 
also extend the nomenclature used by [Aguilera,98] to 
describe them. Such edges will be referred as E3, E4, 
E4N1, E4N2, E5N, E6, E6N1 and E6N2 (Table 2). 
The only difference with the nomenclature used to 
describe the vertices is that "E" means edge instead 
of "V" that means vertex.  

Each edge has the following properties: 
��E3: all three incident faces are two-manifold and 

perpendicular to each other.  
��E4: all four incident faces are manifold and lie on a 

hyperplane, and they can be grouped in two 
couples of coplanar faces. 

��E4N1: three of its four incident faces are 
perpendicular to each other and also two-manifold 
ones, while the fourth is non-manifold and coplanar 
to one of the other three. 

��E4N2: two of its four incident faces are two-manifold 
and coplanar, while each of its other two is non-
manifold and perpendicular to the other three. 

��E5N: four of its five incident faces are two-manifold 
and lie in a hyperplane, while the fifth is non-
manifold and perpendicular to the rest of them.  

��E6: all six incident faces are two-manifold.  
��E6N1: three of its six incident faces are 

perpendicular to each other and also manifold ones, 
while each of its remaining three faces is non-
manifold and coplanar to one of the first three.  



��E6N2: all of its six incident faces are non-manifold. 
��Non valid edge 1: its two manifold faces are 

coplanar.  
��Non valid edge 2: its two non-manifold faces are 

coplanar. 
It results interesting that the number, classi-

fications and positions of the incident faces to an 
edge in 4D-OPP's are analogous to the way that a set 
of edges are incident to a vertex in 3D-OPP's. 

 
E3 

 
 

E4 

 

E4N1 

 

E4N2 

 

E5N 

 

E6 

 
E6N1 

 

E6N2 

 

 
Non valid edge 1 

 
 

Non valid edge 2 

 

Table 2. Edges present in 4D-OPP's (dotted lines 
indicate non-manifold faces and continuous lines indicate 

manifold faces). 
 

3.3 Classifying the �0 in Polyhedra Through its 
Cones of Faces 

 
A polyhedron is a bounded subset of the 3D 
Euclidean Space enclosed by a finite set of plane 
polygons such that every edge of a polygon is shared 
by exactly one other polygon (adjacent polygons) 
[Preparata,85]. A pseudo-polyhedron is a bounded 
subset of the 3D Euclidean Space enclosed by a finite 
collection of planar faces such that every edge has at 
least two adjacent faces, and if any two faces meet, 
they meet at a common edge [Tang,91]. 
 

Edges and vertices, as boundary elements for 
polyhedra, may be either two-manifold (or just 
manifold) or non-manifold elements. In the case of 
edges, they are (non) manifold elements when every 
points of it is also a (non) manifold point, except that 
either or both of its ending vertices might be a point of 
the opposite type [Aguilera,98]. A manifold edge is 
adjacent to exactly two faces, and a manifold vertex is 
the apex (i.e., the common vertex) of only one cone 
of faces. Conversely, a non-manifold edge is adja-
cent to more than two faces, and a non-manifold 

vertex is the apex (i.e., the common vertex) of more 
than one cone of faces [Rossignac,91]. 
 

3D 
vertex Configuration(s) Classification 

V3 b, f, o, u Manifold 
V4 j Manifold 
V4N1 g, p Non-manifold 
V4N2 k Non-manifold 
V5N d, s Non-manifold 
V6 e, l, t Non-manifold in 

configurations e and t.  
Manifold for configuration l. 

V6N1 h, q Non-manifold 
V6N2 n Non-manifold 

Table 3. 3D-OPP's vertices classification. 
 

Using the concept of cones of faces it is easy to 
construct an algorithm to determine the classification 
of a vertex as manifold or non-manifold in any 
polyhedron or pseudo-polyhedron. Using this algo-
rithm over the possible vertices in 3D-OPP's we have 
the results presented in Table 3 which coincide with 
those presented by [Aguilera,98]. 
 

3.4 Classifying the �1 in 4D Polytopes Through its 
Hyper-Cones of Volumes 

 
Due to the analogy between 3D-OPP's vertices 
described in terms of their incident manifold or non-
manifold edges, and 4D-OPP's edges described in 
terms of their incident manifold or non-manifold faces, 
the next logical step is to extend the concept of cones 
of faces presented in section 3.3 to classify 4D poly-
topes' edges as manifold or non-manifold.  

 

Faces, edges and vertices, as boundary ele-
ments for 4D polytopes, may be either manifold or 
non-manifold elements. [Coxeter,63] has stated that a 
manifold face is adjacent to exactly two volumes, and 
now we suggest that a manifold edge is the common 
edge (apex) of only one hyper-cone of volumes. 
Conversely, it has been suggested that a non-
manifold face is adjacent to more than two volumes 
[Aguilera,02], and now we suggest that a non-
manifold edge is the common edge (apex) of more 
than one hyper-cone of volumes. 

 

Using the concept of hyper-cones of volumes, it 
is easy to extend the algorithm for obtaining the 
vertex classification for 3D-OPP’s used for section 
3.3, to allow us classifying an edge, as manifold or 
non-manifold, in any 4D polytope or 4D pseudo-
polytope. The algorithm will be defined with the 
following steps (1 to 6): 
 

1 Get the set of �3’s that are incident to edge A 
(a �1). 

2 From the set of �3’s select one of them. 
3 The selected �3 has two �2’s that are incident 

to A, get one of them and label it as START 
and ANOTHER. 



4 Repeat 
4.1 If the number of �3’s to ANOTHER is more 

than one, then A is a non-manifold �1. 
End. 

4.2 The ANOTHER �2 is common to another 
�3, find it. 

4.3 The �3 has another �2 that is common to 
A, find it and label it as ANOTHER. 

4.4 Until START = ANOTHER (it has been found a 
hyper-cone of volumes). 

5 If there are more �3’s to analyze then A is non-
manifold (there are more hyper-cones of 
volumes). End. 

6 Otherwise, A is manifold (A is the common 
edge of only one hyper-cone of volumes). End. 

 

See the next code for an implementation of the 
algorithm in a high level language, Java [Gosling,00]. 
For this code, an edge "e" is evaluated to classify it as 
manifold or non-manifold. If the edge is manifold (and 
for instance, the apex of only one hyper-cone of 
faces), then the method returns true, otherwise, the 
edge is non-manifold (it is the apex of more than one 
hyper-cone of faces) and it returns false. 
 

boolean isManifoldEdge(Polytope p, Edge e) 
{ 

Volume volumes[ ]=getVolumesIncidentToEdge(p,e);  
Volume v = selectAndRemoveVolume(volumes); 
Face f1 = getIncidentFaceToEdge(v, e);  
Face start = f1; 
Face another = f1; 
do{ //do-while begins 

if(getNumberOfIncidentVolumesToFace 
(volumes,another) > 1)  

return false; 
v=removeVolumeIncidentToFace(volumes,another);  
another=getIncidentFaceToEdge(v,another,e);  

} while(another != start); //do-while ends 
if(volumes.length > 0) return false; 
return true; 

} 
 

4D 
edge 

Class ification 
through h yper-

cones of volumes 

3D 
vertex 

Class ification 
through  

cones of faces 
E3 Manifold V3 Manifold 
E4 Manifold V4 Manifold 
E4N1 Non-manifold V4N1 Non-manifold 
E4N2 Non-manifold V4N2 Non-manifold 
E5N Non-manifold V5N Non-manifold 
E6 Non-manifold when 

2 or 6 hypervolumes 
are incident to it. 
Manifold when 4 
hypervolumes are 
incident to it. 

V6 Non-manifold 
for  
configurations 
e and t. 
Manifold for 
configuration l. 

E6N1 Non-manifold V6N1 Non-manifold 
E6N2 Non-manifold V6N2 Non-manifold 

Table 4. 4D-OPP’s edges classifications and their 
analogy with 3D-OPP's vertices. 

 

4. Results 
 

Using the algorithm presented in section 3.4 over the 
possible edges in 4D-OPP’s we have that the edges' 
classifications are analogous to the 3D-OPP’s ver-
tices’ classifications. Table 4 shows the edges’ classi-
fications given by the extended algorithm and their 
analogous 3D results. 

 

4.1 Class ifying the �n-3 in nD Polytopes Through 
its nD Hyper-Cones of �n-1’s 

 

Due to the analogy found between 3D vertices and 
4D edges with the extension of the concept of cones 
of faces, is feasible to generalize the algorithm 
presented in section 3.4 to classify the �n-3 as 
manifold or non-manifold in nD polytopes through 
their nD hyper-cones of �n-1’s. The proposed general 
algorithm is the following: 
 
1 Get the set of �n-1’s that are incident to �n-3 A. 
2 From the set of �n-1’s select one of them. 
3 The selected �n-1 has two �n-2’s that are 

incident to �n-3 A, get one of them and label it 
as START and ANOTHER. 

4 Repeat 
4.1 If the number of incident �n-1’s to 

ANOTHER is more than one, then A is a 
non-manifold �n-3. End. 

4.2 The ANOTHER �n-2 is common to another 
�n-1, find it. 

4.3 The �n-1 has another �n-2 that is common 
to A, find it and label it as ANOTHER. 

4.4 Until START = ANOTHER (it has been found a 
nD hyper-cone of �n-1’s). 

5 If there are more �n-1’s to analyze then �n-3 A is 
non-manifold (there are more nD hyper-cones 
of �n-1’s). End. 

6 Otherwise, �n-3 A is manifold (A is the common 
�n-3 of only one nD hyper-cone of �n-1’s). End. 

 
4.2 The Eight Types of �n-3’s in nD Orthogon al 

Pseudo -Polytopes 
 

Due to the analogy between vertices in 3D-OPP’s and 
edges in 4D-OPP’s (see Table 4), we can extend their 
properties to propose the eight types of �n-3’s in nD 
Orthogonal Pseudo-Polytopes. Such �n-3’s will be  
referred as �n-33, �n-34, �n-34N1, �n-34N2, �n-35N, 
�n-36, �n-36N1 and �n-36N2. In this nomenclature (just 
as the used in sections 3.1 and 3.2) "�n-3" indicates 
the (n-3)-dimensional element (i.e. vertices in 3D-
OPP’s and edges in 4D-OPP’s), the first  digit  shows  
the  number  of incident �n-2 (i.e. edges  in  3D-OPP’s  
and  faces  in 4D-OPP’s), the "N" is present if at least 
one non-manifold �n-2 is incident to the �n-3 and the 
second digit is included to distinguish between two 
different types that otherwise could receive the same 
name. 



For each �n-3 we can expect the following 
properties: 
���n-33: all three incident �n-2's are manifold and 

perpendicular to each other.  
���n-34: all four incident �n-2's are manifold, they lie 

on a hyperplane, and can be grouped in two 
couples of co-hyperplanar �n-2's. 

���n-34N1: three of its four incident �n-2's are 
perpendicular to each other and also manifold ones, 
while the fourth is non-manifold and co-hyperplanar 
to one of the other three. 

���n-34N2: two of its four incident �n-2's are manifold 
and co-hyperplanar, while each of its other two is 
non-manifold and perpendicular to the other three. 

���n-35N: four of its five incident �n-2's are manifold 
and lie in a hyperplane, while the fifth is non-
manifold and perpendicular to the rest of them.  

���n-36: all six incident �n-2's are manifold.  
���n-36N1: three of its six incident �n-2's are 

perpendicular to each other and also manifold ones, 
while each of its remaining three �n-2's is non-
manifold and co-hyperplanar to one of the first 
three.  

���n-36N2: all of its six incident �n-2's are non-
manifold. 

 
5. Future Work 
The results of this article are being used in studying 
the extension for the Extreme Vertices Model (EVM) 
[Aguilera,98] to the fourth dimensional space (EVM-
4D). The EVM-4D will be a representation model for 
4D Orthogonal Polytopes that will allow queries and 
operations over them. However, the fact related to a 
model purely geometric (four geometric dimensions) 
is not restrictive for our research, because it will be 
used under geometries as the 4D spacetime. The first 
main application for the EVM-4D covers the 
visualization and analysis for multidimensional data 
under the context of a Geographical Information 
System (GIS).  
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Abstract 
 
Este artículo presenta un método para desenvolver al hipercubo y formar la cruz 
tridimensional (teseracto) que corresponde al hiperaplanamiento de su frontera. El envolver 
el hipercubo implicará aplicar el método a la inversa. También se presenta un método para 
visualizar dichos procesos. Las transformaciones a aplicar incluyen rotaciones alrededor de 
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1 Todas las referencias consultadas utili zan el verbo inglés "unravel" para indicar la acción de hacer coincidir los volúmenes (o las caras) 
de un hipercubo 4D (o un cubo) con un hiperplano (o un plano). Los términos en castellano utili zados en este artículo para hacer referencia 
a tal acción serán desenvolver o hiperaplanar (4D). También el término "unravelings" deberá entenderse como el conjunto de volúmenes 
(o caras) de un hipercubo (o un cubo) a los que ya fue aplicada la acción de desenvolvimiento. 

RESUMEN 
Este artículo presenta un método para desenvolver al hipercubo 
y formar la cruz tridimensional (teseracto) que corresponde al 
hiperaplanamiento de su frontera. El envolver el hipercubo 
implicará aplicar el método a la inversa. También se presenta 
un método para visualizar dichos procesos. Las 
transformaciones a aplicar incluyen rotaciones alrededor de 
planos (propias del espacio 4D). Dichos procesos son 
visualizados a través de un sistema de animación por 
computadora. 
 

Palabras Claves: Modelado 4D, Animación 4D, Geometría 
Computacional, Interrogaciones y Razonamiento Geométrico. 
 

1. INTRODUCCIÓN 
Coxeter [5], Rucker [12], Kaku [9], Robbin [10] y 

Banchoff [ 2] inician sus introducciones al estudio del espacio 
4D aplicando tres métodos de visualización sobre el hipercubo: 
observación de sus sombras (proyección), sus intersecciones 
con el espacio 3D y a través de sus "unravelings".  

Examinar las sombras de un politopo consiste en que si es 
posible hacer dibujos de sólidos 3D cuando éstos son 
proyectados sobre un plano, entonces es posible hacer dibujos o 
modelos tridimensionales de los politopos 4D cuando estos son 
proyectados sobre un hiperplano [5].  

 
Figura 1. Proyección de un cubo sobre un plano. 

 

En el primer caso, y siguiendo la analogía presentada en 
"Flatland" [1] si un ser 3D quiere mostrar un cubo a un ser 2D 
(un “ flatlander” ), entonces el primero deberá proyectar la 
sombra del cuerpo sobre el plano en el que el flatlander habita. 
En este caso, la figura proyectada podría ser, por ejemplo, un 
cuadrado dentro de otro cuadrado (figura 1) llamada proyección 
central. 

Para el caso en que un ser 4D quisiera mostrarnos un hi-
percubo, él debe proyectar la sombra de éste sobre el espacio 
3D en que vivimos. El cuerpo proyectado podría ser un cubo 
dentro de otro cubo [9] (f igura 2) también llamada proyección 
central. Sabemos que un cubo proyectado sobre un plano es 
sólo una representación aproximada. Análogamente, el 
hipercubo proyectado sobre el espacio 3D es también una 
representación aproximada del real. 

 
Figura 2. Proyección de un hipercubo en el espacio 3D. 

 
El método de los "unravelings" consiste en que si un cubo 

puede ser desenvuelto en una cruz bidimensional compuesta 
por las seis caras que forman su frontera (figura 3) entonces, y 
en forma análoga, un hipercubo puede ser también desenvuelto 
en una cruz tridimensional compuesta por los ocho cubos que 
forman su frontera [9]. C. H. Hinton nombró a esta cruz 
tridimensional teseracto (figura 4). 
 

 
Figura 3. Desenvolvimiento de un cubo. 

 

 
Figura 4. El hipercubo desenvuelto (teseracto). 

 

Un flatlander visualizará la cruz bidimensional pero no 
tendrá la capacidad para ensamblarla nuevamente en un cubo 
(aún cuando contase con las instrucciones específicas), debido a 



que es necesaria la traslación de sus caras correspondientes en 
dirección de la tercera dimensión y la rotación alrededor de un 
eje (transformaciones físicamente imposibles en el espacio 2D). 
Pero durante el proceso de ensamblado, este flatlander sí podrá 
visualizar la proyección de las caras del cubo sobre el espacio 
2D en que habita. 

Por analogía, nosotros podremos visualizar la cruz 
tridimensional pero no tendremos la capacidad para 
ensamblarla nuevamente en un hipercubo, debido a que es 
necesaria la traslación de sus cubos frontera en dirección de la 
cuarta dimensión y la rotación alrededor de un plano 
(transformaciones físicamente imposibles en el espacio 3D). 

Analizar el hipercubo es también interesante debido a que 
puede ser realizado usando el recurso de la analogía con el cubo 
y las visualizaciones descritas antes. Hilbert [7] ha determinado 
que un hipercubo está formado dieciséis vértices, veinticuatro 
caras y por ocho cubos (que también son llamados celdas o 
volúmenes). Coxeter [4] también agrega que cada cara es 
compartida por dos cubos que no se encuentran en el mismo 
espacio tridimensional dado que forman un ángulo recto a 
través de una rotación alrededor del plano de soporte de la cara 
compartida. Estas propiedades pueden ser claramente visibles a 
través de la proyección del hipercubo propuesta por Claude 
Bragdon (figura 5) (véase [11] para un análisis sobre la 
obtención de esta proyección). 
 

X

Y ZW

 
Figura 5. El hipercubo con proyección de Bragdon. 

 
2. PROBLEMA 

Kaku [9] y Banchoff [ 2] describen con detalle el modelo 
de representación del hipercubo a través de sus "unravellings" y 
mencionan la incapacidad física de un ser 3D para envolverlo 
nuevamente debido a las transformaciones que se requieren. 
Kaku [9] y Banchoff [ 2] también describen que si 
presenciáramos el proceso de envolvimiento, siete de los ocho 
cubos que forman la cruz desaparecerían repentinamente 
debido a que ya se han movido hacia la cuarta dimensión. Sin 
embargo no proporcionan una metodología que indique las 
transformaciones y sus parámetros necesarios para ejecutar 
dicho procedimiento. A pesar de dicha incapacidad nuestra, lo 
que sí podemos es visualizar una proyección de los cubos de la 
frontera del hipercubo en nuestro espacio 3D durante su 
desenvolvimiento y ensamblado.  

Este artículo presenta un método para desenvolver al 
hipercubo y formar la cruz tridimensional (teseracto) que 
corresponde al hiperaplanamiento de su frontera (figura 6). El 
envolver el hipercubo implicará aplicar el método a la inversa. 
Las transformaciones a aplicar incluyen rotaciones alrededor de 
planos. Dicho proceso podrá ser visualizado a través de un 
sistema de animación por computadora. 
 

3. METODOLOGÍA PARA DESENVOLVER UN 
HIPERCUBO 

En primer lugar habrán de tomarse las siguientes 
consideraciones a fin de hacer más fácil el proceso: 
�� La posición del hipercubo en el espacio 4D. 
�� Seleccionar un hiperplano (subespacio 3D inmerso en el 

hiperespacio) hacia el que los volúmenes serán dirigidos. 

�� Establecer ángulos de giro que garanticen que todos los 
volúmenes quedarán completamente inmersos en el 
hiperplano seleccionado. 

�� Durante su movimiento hacia el hiperplano seleccionado, 
todas los volúmenes deberán mantener una relación de 
adyacencia de cara con otro volumen. 
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Figura 6. El paso del hipercubo al teseracto. 

 

La posición del hipercubo en el espacio 4D es esencial ya 
que de ella dependerán los planos de rotación alrededor de los 
cuales deberán girar los volúmenes para ser posicionados sobre 
un hiperplano. Por lo tanto se determinará que uno de los 
vértices del hipercubo coincida con el origen, que seis de sus 
caras coincidan cada una con alguno de los planos XY, YZ, 
ZX, XW, YW y ZW y que todas las coordenadas sean positivas 
(véase [2] para la metodología para obtener las coordenadas de 
los vértices del hipercubo). Las coordenadas a usar se presentan 
en la tabla 1 (cada vértice es numerado arbitrariamente). 
 

Vértice X Y Z W 
0 0 0 0 0 
1 1 0 0 0 
2 0 1 0 0 
3 1 1 0 0 
4 0 0 1 0 
5 1 0 1 0 
6 0 1 1 0 
7 1 1 1 0 
8 0 0 0 1 
9 1 0 0 1 
10 0 1 0 1 
11 1 1 0 1 
12 0 0 1 1 
13 1 0 1 1 
14 0 1 1 1 
15 1 1 1 1 

Tabla 1. Las coordenadas del hipercubo a desenvolver. 
 

Así como la posición del hipercubo en el espacio 4D tiene 
relación con los planos de rotación a utili zar, también la tendrá 
el hiperplano seleccionado sobre el que los volúmenes 
finalmente serán posicionados. Si se observan las coordenadas 
de los vértices del hipercubo, se encontrará que ocho de ellas 
presentan W=0, esto se traduce en que uno de los volúmenes 
del hipercubo (el formado por los vértices 0-1-2-3-4-5-6-7) 
tiene por hiperplano de soporte a W=0. Seleccionar el 
hiperplano W=0 es conveniente ya que uno de los volúmenes 
ya esta "naturalmente inmerso" en el espacio 3D y por lo tanto 
no requerirá transformaciones posteriores. 



 

Volumen Etiqueta y Vértices 

X

Y
Z

W

 

Volumen A 
(0-1-2-3-4-5-6-7) 

X

Y Z

W

 

Volumen B 
(0-1-2-3-8-9-10-11) 

X

Y Z

W

 

Volumen C 
(0-2-4-6-8-10-12-14) 

X

Y Z

W

 

Volumen D 
(0-1-4-5-8-9-12-13) 

X

Y Z

W

 

Volumen E 
(8-9-10-11-12-13-14-15) 

X

Y Z

W

 

Volumen F 
(4-5-6-7-12-13-14-15) 

X

Y Z

W

 

Volumen G 
(1-3-5-7-9-11-13-15) 

X

Y Z

W

 

Volumen H 
(2-3-6-7-10-11-14-15) 

Tabla 2. Los ocho volúmenes del hipercubo. 
 

Ahora también es conveniente identificar los volúmenes 
que forman al hipercubo a través de sus vértices y asignarles 
una etiqueta para futuras referencias. Hasta ahora ya se tiene un 
volumen identificado, el formado por los vértices 0-1-2-3-4-5-
6-7 y será llamado volumen A. Véase la tabla 2. 

Dado que el volumen A ya había sido descrito como 
"naturalmente inmerso" en el espacio 3D y por lo tanto no 
requerirá de transformaciones, es por lo tanto el volumen que 
ocupará la posición central de la "cruz" y será llamado en lo 
sucesivo el "volumen central" .  
 

Volumen adyacente (previo 
a la rotación), plano y 

ángulo de rotación 

Posición en el espacio 3D y 
en el teseracto después de la 

rotación  

X

Y
Z

W

 
B, XY, 90° 

X

Y Z

 
Enfrente (-Z) 

X

Y Z

W

 
C, YZ, -90° 

X

Y Z

 
Izquierda (-X) 

X

Y Z

W

 
D, ZX, 90° 

X

Y Z

 
Abajo (-Y) 

X

Y Z

W

 
F, XY, -90° 

X

Y Z

 
Atrás (+Z) 

X

Y Z

W

 
G, YZ, -90° 

X

Y Z

 
Derecha (+X) 

X

Y Z

W

 
H, ZX, -90° 

X

Y Z

 
Arriba (+Y) 

Tabla 3. Transformaciones aplicadas a los volúmenes 
adyacentes. 

 



De los volúmenes restantes, aquellos que tengan adyacen-
cia de cara con el volumen central podrían ser rotados con faci-
lidad hacia nuestro espacio 3D debido a que su plano de rota-
ción es claramente identificable. Estos volúmenes rotarán alre-
dedor del plano de soporte de la cara que compartan con el 
cubo central y que serán llamados "volúmenes adyacentes". Los 
volú-menes adyacentes son B, C, D, F, G y H. El volumen 
restante, E, será llamado "volumen satélite" y se tratará más 
adelante. 

Todos los volúmenes adyacentes girarán ángulos rectos, 
así se garantiza que su coordenada W sea igual a cero, pero es 
importante tener en cuenta la dirección de giro ya que de lo 
con-trario los volúmenes podrían una vez rotados coincidir con 
el volumen central. Los planos de rotación y la dirección para 
cada volumen adyacente son presentados en la tabla 3 (en las 
imáge-nes se incluye también al volumen central sólo para 
referenciar la posición inicial y final del volumen 
correspondiente). 

En este punto ya tenemos a 7 de los 8 volúmenes del 
hipercubo colocados en su posición final (los volúmenes A, B, 
C, D, F, G y H). El volumen que ha de presentar la serie de 
transformaciones más compleja es el E, esto es por las 
siguientes dos particularidades: 
��Su hiperplano de soporte es paralelo al del volumen central, 

por lo tanto no existe ningún tipo de adyacencia con éste (de 
ahí que no fue designado como volumen adyacente). 

��De las posiciones por ocupar en la "cruz" aún falta aquella 
que corresponde al volumen más alejado del volumen central 
(en la parte inferior, según la figura 4). El volumen que 
ocupará esta posición será el E, es por esta razón por la que 
fue llamado con anterioridad volumen satélite. 

 

Posición actual Transformación 

X

Y Z

W

 

Rotación de los volú-
menes D y satélite alre-
dedor del plano ZX (90°). 

X

Y ZW

 

Volumen D en su 
posición final. Rotación 
del volumen satélite 90° 
alrededor de la cara 
compartida con el volu-
men D (plano paralelo a 
ZX). 

X

Y

-Y

Z

- W

 

Volumen satélite en su 
posición final (parte 
inferior de la cruz sobre 
el eje -Y). 

Tabla 4. Transformaciones asociadas al volumen satélite 
(volumen E). 

 

Al inicio del documento se menciona la necesidad de que 
los volúmenes durante su movimiento hacia el hiperplano 
seleccionado deberán mantener una relación de adyacencia de 
cara con otro volumen. Los volúmenes B, C, D, F, G y H son 

los seis que comparten una cara con el volumen central (el cual 
se mantiene estático durante todo el proceso). Para determinar 
las transformaciones que se aplicarán al volumen satélite, es 
necesario determinar con qué volumen compartirá una cara. El 
volumen central ya se encuentra descartado, y de los restantes 
cualquiera puede serlo. En este trabajo, el volumen D será 
seleccionado como aquel con el que el volumen satélite 
compartirá una cara durante el hiperaplanamiento. 

Para el volumen D ya se había determinado su plano de 
rotación y la dirección correspondientes (plano ZX, 90°) que lo 
llevarán a su posición final. El volumen satélite inicialmente 
tendrá también estos parámetros de movimiento. Esta es una 
forma de asegurar que ambos volúmenes compartan la cara 
correspondiente. 

Cuando el volumen D ha finalizado sus movimientos y ha 
quedado en su posición final, el hiperplano de soporte del 
volumen satélite será perpendicular al hiperplano seleccionado 
y la cara compartida será paralela al plano ZX. El movimiento 
adicional que deberá aplicarse al volumen satélite será un giro 
de 90° alrededor del plano representado por la cara compartida. 

La serie de movimientos a ejecutar sobre el volumen 
satélite se resumen en la tabla 4 (los volúmenes central y D se 
muestran también). 

Ahora han sido determinadas las transformaciones con las 
que el hipercubo será desenvuelto. Para envolverlo sólo habrá 
que aplicar el proceso presentado pero a la inversa 
(considerando que la dirección de los ángulos sea contraria a la 
usada para desenvolver). 
 

4. IMPLEMENTACIÓN 
Rotaciones en el Espacio 4D 

Banks [3] y Hollasch [8] han identificado que si en el es-
pacio 2D una rotación es dada alrededor de un punto y en el es-
pacio 3D es dada alrededor de una línea, entonces en el espacio 
4D, en forma análoga, deberá estar dada alrededor de un plano. 

Hollasch [8] considera que las rotaciones en el espacio 
3D deben ser consideradas como rotaciones paralelas a un 
plano 2D en lugar de rotaciones alrededor de un eje. Hollasch 
[8] apoya esta idea considerando que dado un origen de 
rotación y un punto destino en el espacio 3D, el conjunto de 
todos los puntos rotados para una matriz de rotación dada 
coinciden en un solo plano, el cual es llamado el plano de 
rotación. Además, el eje de rotación en el espacio 3D coincide 
con el vector normal del plano de rotación. El concepto de 
plano de rotación es consistente con el espacio 2D debido a que 
todos los puntos rotados coinciden en el mismo y único plano. 
Finalmente, usando las ideas anteriores, Hollasch [8] construye 
las seis matrices de rotación 4D básicas alrededor de los planos 
principales en el espacio 4D (los planos XY, YZ, XZ, XW, YW 
y ZW) basado en el hecho de que sólo dos coordenadas 
cambian para una rotación dada (las coordenadas cambiantes 
correspon-den al plano de rotación). 

Usando estas ideas, Duff in [6] generaliza el concepto de 
rotación en un espacio nD ( n � 2 ) como la rotación de un eje 
Xa en dirección hacia un eje Xb. El plano descrito por los ejes 
Xa y Xb es lo que Hollasch [8] definió como plano de rotación. 
Duff in [6] presenta la siguiente matriz general de rotación: 
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La matriz Rab ( )�  es una matriz identidad excepto en las 

intersecciones de las columnas a y b con los renglones a y b. 
Debido a que en un espacio nD existen C(n,2) planos 
principales, este número es precisamente el número de 
rotaciones principales (y básicas) para tal espacio. 

A partir de estos conceptos, se debe considerar que una 
rotación puede ser referenciada usando dos notaciones: usando 
los ejes que describen el plano de rotación o usando los ejes que 
describen el subespacio (n-2)D que se encuentra fijo durante la 
rotación. En este documento las rotaciones en el espacio 4D 
han sido referenciadas usando la segunda notación. 

 

Proyecciones 4D-3D-2D 
Banks [3] establece que las mismas técnicas utili zadas 

para la proyección de objetos 3D sobre planos 2D pueden ser 
aplicadas para la proyección de politopos 4D sobre hiperplanos 
3D (nuestro espacio 3D por ejemplo). Entonces se tendrá que 
una proyección paralela 4D-3D (o bien, la eliminación de la 
coordenada W de los puntos del politopo) es: 

 

� � � �zyxPwzyxP ,,',,, �  
 

Una proyección perspectiva 4D-3D se define cuando el 
centro de proyección se encuentra sobre el eje W a una 
distancia pw del origen. Si el hiperplano de proyección es W = 
0 entonces se tendrá que un punto P será proyectado como: 
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Debido a que una proyección 4D-3D producirá un 
volumen como la "sombra" de un politopo 4D, Hollasch [8] 
considera válido procesar tal volumen con alguna de las 
proyecciones 3D-2D (paralela o perspectiva) para ser 
finalmente proyectado en una pantalla de computadora. De esta 
manera, se tendrán cuatro posibles proyecciones 4D-3D-2D: 
�� Proyección Perspectiva 4D-3D - Proyección Perspectiva 3D-2D.  

�� Proyección Perspectiva 4D-3D - Proyección Paralela 3D-2D. 
�� Proyección Paralela 4D-3D - Proyección Perspectiva 3D-2D. 
�� Proyección Paralela 4D-3D - Proyección Paralela 3D-2D. 
Por ejemplo, el hipercubo presentado en la Figura 1 tiene apli -
cadas las proyecciones perspectiva 4D-3D y perspectiva 3D-
2D. 

 
5. RESULTADOS 

En la Tabla 5 se presentan algunas fases de la secuencia 
del desenvolvimiento del hipercubo. En las imágenes 1 a 6 las 
rotaciones aplicadas son �0°, �15°, �30°, �45°, �60° y �75° (el 
sentido de la rotación depende del volumen adyacente). En la 
imagen 7, la rotación aplicada es �82°; el volumen satélite se 
aprecia como un plano -un efecto producido por la proyección 
4D-3D aquí seleccionada. En la imagen 8, la rotación aplicada 
es �90°; los volúmenes adyacentes finalizan sus movimientos. 
En las imágenes 9 a 14, el volumen satélite se mueve indepen-
dientemente y las rotaciones aplicadas respectivamente son 
+15°, +30°, +45°, +60°, +75° y +90°. 
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Tabla 5. Desenvolviendo al Hipercubo 4D (véase el texto para los detalles). 



 
Actualmente, el resultado obtenido en esta investigación 

es usado eficazmente como material didáctico en la 
Universidad de las Américas - Puebla, México. 
 

6. TRABAJO FUTURO 
Observando los unravelings para un cuadrado (un cubo 

2D), el cubo y el hipercubo 4D; podemos generalizar al hiper-
teseracto n-dimensional (n�1) como el resultado del desenvol-
vimiento de un hipercubo (n+1)-dimensional con las siguientes 
propiedades: 
�� El hipercubo (n+1)-dimensional tendrá 2(n+1) celdas n-

dimensionales sobre su frontera. 
�� Una celda central permanecerá estática durante el proceso de 

desenvolvimiento/ envolvimiento. 
�� 2(n+1)-2 celdas serán adyacentes a la celda central. Todas las 

celdas compartirán una celda (n-1)-dimensional con la celda 
central. 

�� Una celda satélite no será adyacente a la celda central debido 
a que sus hiperplanos de soporte son paralelos. Ésta será ad-
yacente a cualquiera de las celdas adyacentes (compartirá una 
celda (n-1)-dimensional con la celda adyacente 
seleccionada). 

�� Todas las celdas adyacentes y satélite durante el proceso de 
desenvolvimiento/ envolvimiento rotarán �90° alrededor del 
hiperplano de soporte de las celdas (n-1)-dimensionales 
compartidas. 

Por ejemplo, el hiper-teseracto 4D es el resultado del 
desenvolvimiento de un hipercubo 5D. El hiper-teseracto 4D 
estará compuesto por 10 hiper-volúmenes, uno de ellos será el 
hiper-volumen central (estático), ocho serán adyacentes al 
hiper-volumen central (comparten un volumen) y el último será 
el hiper-volumen satélite (éste comparte un volumen con 
cualquiera de los volúmenes adyacentes). Véase la Figura 7. 
Los hiper-volumenes adyacentes y satélite rotarán alrededor de 
un volumen o un hiperplano durante el proceso de desenvolvi-
miento/envolvimiento. 
 

 
Figura 7. Las posibles relaciones de adyacencia entre el hiper-
volumen central y los hiper-volúmenes adyacentes y satélite 

que formarán al hiper-teseracto 4D. 

 

En este trabajo se ha propuesto un método para el 
desenvolvimiento del hipercubo 4D y obtención del teseracto. 
También se ha propuesto una generalización para describir las 
propiedades del hiper-teseracto n-dimensional, el resultado del 
desenvolvimiento de un hipercubo (n+1)-dimensional. En el 
espacio 5D las rotaciones tienen lugar alrededor de un volumen, 
mientras que en el espacio 6D tienen lugar alrededor de un 
hiper-volumen y así sucesivamente. Esta es una de las 
direcciones a seguir en nuestra investigación a fin de obtener 
los parámetros necesarios para llevar a efecto el 
desenvolvimiento del hipercubo 5D. Además, otra dirección a 
seguir tiene relación con las rotaciones alrededor de planos 
arbitrarios en el espacio 4D (análogamente a las rotaciones 
alrededor de ejes arbitrarios en el espacio 3D). Al definir los 
procedimientos necesarios para la rotación alrededor de planos 
arbitrarios, la posición del hipercubo puede no ser relevante. 
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