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Abstract

This article presents methods for unravding the hypercube
and the 4D simplex and oltaining the unravdings that
corresponds to the hyper-flattening o their boundaies. These
regular paytopes can ke raveed back using the methods in an
inverse way. The transformations to apgy include rotations
around a pane (characteristic of the 4D space). All these
processes can ke viewed using acomputer animation system.

1. Introduction

Recent interest has been gowing in studying
multidimensional polytopes (4D and beyond) for representing
multidimensional phenomena in the Euclidean ndimensional
space Some of these phenomenas fedures rely on the
polytope’s geometric and topdogic relations. So, we have
developed some dgoarithms for clasdfying nD poytopes
elements as manifold o nonrmanifold [2]. However, [3]
motivates us to think abou two important questions: Is it
possble to visuaize apolytope to know how it looks like? And
if we ca’'t see it, how can we be sure @ou the proper
understanding d its relations and properties? The answer is that
the task of visualizing pdytopes in the fourth and hgher
dimensions belongs to the @mputer graphics field [3].
Visualizing these new dimensions lead us to lean and to
uncerstand the events, relationships and poperties for these
phenomena.

[3], [5], [8], [10] and [12] start their introductions to the 4D
space study pesenting three methods for visudizing the
hypercube: throughits shadows (projedions), its cross £dions
with 3D space andits unravelings.
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Figure 1. Projecting a cube on a plane (central projection).

If it is posdble to make drawings of 3D solids when they are
projeded orto a plane, then it is posshle to make drawings or
3D models of 4D paytopes when they are projeded orto a
hyperplane [5]. The shadows methodis based in this principle.

Let us follow the analogy presented in "Flatland' [1]. If a3D
being wants to show a aibe to a 2D being (a flatlander) then the
first one must projed the aube's hadow onto the plane where the
flatlander lives. For this case, the projeded shape wmuld be, for
example, asquare inside another square (Figure 1).

Figure 2. Hypercube's central projection onto the 3D space.

If 24D being wants to show us a hypercube, he must projed
the shadow onto the 3D spacewhere welive. The projeded body
could be a wbe inside anather cube [8] cdled central projedion
(Figure 2). We know that a projeded cube onto a planeisjust an
approximation d the red one. Anaogously, the hypercube
projeded orto ou 3D spaceis aso a mimic of the red one.
Ancther useful projedionis due to Claude Bragdon(see[11] for
detail s abou this projedion). SeeFigure 3.
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Figure 3. Claude Bragdon's hypercube projection.

A cube can be unraveled as a 2D cross The six faces on the
cube's boundiry will compose the 2D cross (Figure 4). The set
of unraveled facesis cdled the unravelings of the aibe.
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Figure 4. Unraveling the cube.

In analogows way, a hypercube dso can be unraveled as a
3D cross The 3D crossis composed by the @ght cubes that
forms the hypercube's boundry [8]. This 3D cross was hamed
tesseract by C. H. Hinton (Figure 5).

Figure 5. The unraveled hypercube (the tesseract).

A flatlander will visualize the 2D cross bu he will not be
able to asembly it badk as a aibe (even if the spedfic
instructions are provided). Thisfad is true because of the needed
facerotations in the third dmension around an axis which are
physicdly impossble in the 2D space However, it is passble
for the flatlander to visualize the raveling process through the
projedion d the faces and their movements onto the 2D space
where helives.

Analogouwsly, we can visualize the tessrad but we wont be
able to asembly it badk as a hypercube. We know this becaise it
is necessry the trandlation o the abes (the hypercube's
boundxry) in the fourth dmension and rotate them around a
plane (this transformations are physicdly impaossble in ou 3D
space.

Before going any further, we would like to underline that the
cube’'s boundxry faces can be grouped into threepairs of parallel
faces, where their suppating planes define two 2D-spaces
parallel to ead ather. Each peir can be obtained by ignaring all
those elges paral el to ead main axis (X, Y and Z), seeFigure 6

Figure 6. Viewing the cube’s bound ary faces.

It is interesting to analyze the hypercube using its analogy
with the aube and the visualization methods above described. [6]
has determined that a hypercube is composed of sixteen vertices,
twenty-four faces and eight boundng cubes (also cdled cdls or
volumes). Similarly, and as siown in Figure 7, all these volumes
can be grouped into four pairs of parallel cubes, furthermore,
their suppating hyper-planes define two 3D-spaces parallel to
ead aher [9]. Moreover, [4] statesit isinstructive for the reader
to find al eight boundng cubesin the Bragdoris projedion.

[5] paints that ead faceis shared by two cubes nat in the
same threedimensiona space because they form aright angle
through a rotation around the shared facés sppating dane.
These properties are visible through Bragdons projedion
(Figure 3). The Bragdons projedion as well as the central
projedionwill be used throughthe remaining d this work.

Figure 7. Viewing t_h_e_hypercube’s bound ary volumes.
2. Problem

[3] and [8] describe with detail a representation model for
the hypercube throughtheir unravelings. They also mention the
physicd incgpadty of a 3D being to ravel the hypercube bad,
because the required transformations are not posshle in ou 3D
space(Figure 8).

[3] and [8] also describe that if we witness the raveling
process seven of eight cubes that compaose the tessrad will
suddenly disappea, becaise they have moved in the diredion o
the fourth dmension. However, they dont provide a
methoddogy that indicaes the transformations and their
parameters to exeaute the raveling pocess In spite of our
physicd incgpadty, we can visualize aprojedion orto ou 3D
space of the aubes on the hypercube's boundxry through the
unraveling and raveling processes.
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Figure 8. The hypercube's unraveling process.

This article presents a method for unraveling the hypercube
and cetting the 3D-cross (tessrad), and umaveling the 4D
simplex and ggetting the stellated tetrahedron that corresponds to
the hyper-flattening d their boundry. These polytopes can be
raveled badk using the same method in an inverse way. The
transformations to apply include rotations around a plane (See
[7] for detail s about the topic). All these processes can be viewed
using a mmputer animation system.



Table 1. Unraveling the cube (the red face is the satellite face and the blue one is the central face).
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3. Unraveling the 4D Hypercube
3.1. Cube' s Unraveling M ethodology

Althoughthis processis absolutely trivial, it isincluded here
to undxline some key points that will be very useful when
extending it to the 4D case.

The unraveling process for a aibe can be resumed in the
following steps:

1. Identify afacethat is "naturaly embedded" into the plane
where dl the aube's faces will be positioned. This facewill
be cdled "central facé. Becaise the centra face is
"naturally embedded" in the seleded fina plane (for
example, the XY plane), it will not require ay
transformation.

2. ldentify those faces that share an edge with the central face
There ae four of such faces and they will be cdled
"adjacent faces'.

3. After the identificaion d the ceitral and adjacett faces
there will be afacewhose suppating dane is paralel to
central facés suppating face This face will be cdled
"satellite face' because its movements will be aound an
edge that is $ared with any arbitrary seleded adjacent face
(and the seleded adjacent facewill rotate aoundan edge
that is shared with the central face.

4. The ajacent faces will rotate aoundthose elges that share
with the central face

5.  When the central, adjacet and satellit e faces are identified,
it must be determined the rotating angles and their
diredions. All four adjacent faces will rotate right angles,
however two oppaite ajacent faces will have oppaite
rotating dredions; otherwise, ore of them will end in the
same pasition as the central face

Table 1 presents ome snapshats from the aube's unraveling
sequence. In snapshaots 1 and 2,the gplied rotations are 0° and
+30° (the rotation's sgn depends of the ajacett face). In
snapshat 3, the gplied rotation is +53° the satellit e facelooks
like a dtraight line --an effed due to the seleded 3D-2D
projedion. In snapshot 4 the gplied rotation is +90° the
adjacent faces have finished their movements. In snapshats 5 to
6, the satellite face moves independently and the gplied
rotations are +60° and +90°.

3.2. Hypercube' s unraveling methodology

The process will be eaier if we take the following
considerations:
e  Seled the hypercube's positionin the 4D space
e Seled the hyperplane (a 3D subspace enbedded in the
hyperspace where the volumes will be direded to.

e  Establish the anges which guaranteethat all volumes will
be totally embedded in the seleded hyperplane.

e All the volumes through their movement into the selected
hyperplane must maintain a face d&jacent to another

volume.
Table 2. Hypercube's coordinates.
Vertex [X| Y [ Z [ W
0 0[O 0 0
1 1( 0 0 0
2 0] 1 0 0
3 1( 1 0 0
4 0[O 1 0
5 1( 0 1 0
6 0 1 1 0
7 1( 1 1 0
8 0[O 0 1
9 1( 0 0 1
10 0] 1 0 1
11 1( 1 0 1
12 0[O 1 1
13 1( 0 1 1
14 0] 1 1 1
15 1( 1 1 1

The hypercube's position in the 4D space is esential,
because it will define the rotating danes used by the volumes to
be positioned orto a hyperplane. For simplicity, one vertex of
the hypercube will coincide with the origin, six of its faces will
coincide eab ore with some of XY, YZ, ZX, XW, YW and ZW
planes and all the mordinates will be pasitive (see [3] for the
methoddogy to get the hypercube's coordinates). The
coordinates to use ae presented in Table 2 (eath vertex is
arbitrary numbered).

We know now why the hypercube's position in the 4D space
is important, since it will define the rotating danes to use. The
situation is the same for the seleded hyperplane, becaise it is
where dl the volumes will be finaly pasitioned. Observing the
hypercube's coordinates we can seethat eight of them present
their fourth coordinate value (W) equal to zero. This fad
represents that one of the hypercube's volumes (formed by
vertexes 0-1-2-3-4-5-6-7) has W=0 as its suppating hyperplane.
Seleding the hyperplane W=0 is useful becaise one of the
volumes is "naturally embedded" in the 3D space ad it wont
require ay transformations.

Now, it is also useful to identify the hypercube's volumes
through their vertices and to label them for future references.
Until now we have one identified vdume, it is formed by
vertexes 0-1-2-3-4-5-6-7, and it will be cdled vdume A. See
Table 3.




Table 3. The hypercube's volumes
(the numbers indicate the vertices that compose them).
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Volume H
(2-3-6-7-10-11-14-15)

Volume G
(1-3-5-7-9-11-13-15)

We have drealy described vdume A as "naturaly
embedded” in the 3D space because it wont require ay
transformations. Volume A will occupy the central pasition in
the 3D crossand it will cdled the "central volume".

From the remaining vdumes, six of them will have face
adjacency with the ceatral volume. Due to this charaderistic
they can easily be rotated toward ou spacebecause their rotating
plane is clealy identified. Each of these volumes will rotate
around the suppating dane of its dhared face with centra
volume. They will be cdled "adjacent volumes'. Adjacent
volumesare B, C, D, F, G andH. The remaining vdume E will
be cdled "satellit e volume" and it will be discussd later on.

All of the ajacet volumes will rotate right angles. In this
way we guaranteethat their W coordinate will be equal to zero.
Asin the 3D caseg, it is adso important to consider their rotating
diredions, becaise the volumes, after the rotations, could
otherwise mincide with the central volume. The direction and
rotating danes for eat adjacent volume ae presented in Table 4
(the central volume is also included in ead image & areference
for theinitial and final position d the volume being analyzed).

At this point, we have seven of the d@ght hypercube's
volumes placed in their final positions (volumesA, B, C, D, F, G
and H). Volume E will perform a rather more coomplex set of

transformations. There ae two reasons that justify this

conclusion:

e The suppating hygerplane for volume E is paraléel to the
suppating hyprplane  for the ceitra  volume.
Consequently, there ae no adjacencies between vdume E
and central volume (this is the reason for nat cdling
"adjacent volume" to vdume E).

e In the tessrad, we dtill have an empty position. This
position corresponds to the most distant volume from the
central volume (the inferior position, Figure 5). This
position will be occupied by vdume E. This is the reason
for cdling "satellit e volume" to vdume E.

Table 4. Applied transformations to the adjacent volumes.

Adjacent volume (previous to Position in the 3D spaceand in
rotation), rotation plane and angle the tesseract after rotation

Y Y z
W P % \
\
N
(\ %
X
X
B, XY, +90° Front (-2)
Y /z ,
W \ /
AN
C, YZ -90° Left (-X)
Y z Y ,Z
e N
W .
K \
# X
} X
D, ZX, +90° Down (-Y)
Y z Y /Z
W
\ AN
X N
F, XY, -90° Back(+2)
Y 2 y z
W
N\
X X
G, YZ -90° Right (+X)
A~ Z [ .
\J\ .
H, ZX, -90° Up (+Y)




Table 5. Associated transformations to satellite volume.

Current position Transformations

Y z

Rotation d volumes D and
satellit e aoundthe plane ZX
(+90°).

VolumeD isinitsfina
position. Rotation o satellite
volume of +90° aroundthe
/ shared facewith vdume D
(paral el planeto ZX).

Satellite volumein its final
position (inferior positionin
the 3D crossonY axis).

-Y

At the beginning d this document its is mentioned the need
for maintaining a face ajacency between al the volumes while
they rotate towards the seleded hyperplane. Volumes B, C, D, F,
G and H share afacewith central volume (remember that central
volume is gatic during the whole unraveling process. In order
to determine the needed transformations for the satellit e volume,
we must first seled the volume which will share a facewithiit.

Any vdume, except the cantral one, can be seleded for this. In
thiswork, valume D will be seleded to share afacewith satellite
volume throughthe hyper-flattening process

The diredion and the rotation dane for volume D was
determined before (ZX plane +90°). These transformations will
teke it to its fina position. During the beginning o the
unraveling process the same transformations will be gplied to
satellite volume. In this way, we ensure that volumes E and
satellite will share aface

When vdume D has finished its movement, it will be placel
initsfinal positionin thetesserad. At this moment, the satellite
volume's auppating hyperplane will be perpendicular to the
seleded hyperplane and the shared facewill be parale to ZX
plane. The last movement to apply to the satellite volume will
be a 90° rotation aroundthe suppating gdane of the shared face
with vdume D.

The set of movements to be exeauted for the satellit e volume
are resumed in the Table 5 (Central volume axd vdume D are
shown too).

3.3. Visualizing The Hypercube' s Unraveling Process

Table 6 presents me snapshots from the hypercube's
unraveling sequence In snapshaots 1 to 6, the goplied rotations
are +0°, +15°, £30°, +45°, £60° and £75° (the rotation's dgn
depends on the aljacent volume). In snapshot 7, the gplied
rotation is £82° the satellite volume looks like a plane --an
effed due to the seleded 4D-3D projedion. In snapshat 8, the
applied rotation is +90°% the afjacent volumes finish their
movements. In snapshats 9 to 14, the satellite volume moves
independently and the gplied rotations are +15°, +30°, +45°,
+60°,+75°and +90°.

Table 6. Unraveling the hypercube (satellite volume is shown in blue and central volume in red, see text for details).
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4. Unraveling the 4D Simplex

Using a method similar to that of urnraveling a aube, we
presented how to urravel a 4D hypercube. We have nat found
any references that mention any methods or results (like the
teserad as the result of the hypercube's unraveling) abou the
unraveling processfor other 4D regular polytopes such asthe 4D
simplex which corresponds to the 4D equivalent of the
tetrahedron (Figure 9). As the hypercube's unraveling process
we will visualize aprojedion orto ou 3D spaceof the volumes
(tetrahedrons) on the 4D simplex's boundry through its
unraveling and raveling processes.

Figure 9. The 4D simplex

4.1. The Tetrahedron Unraveling M ethodology

Althoughthe tetrahedron's (3D simplex) unraveling process
is trivial, we will consider here some key paints that will be
extended later in the 4D simplex urraveling:

1. ldentify a facethat is "naturally embedded" into the plane
where dl the tetrahedron’s faces will be positioned. Thisface
will be cdled "central facée. Because the central faceis
"naturally embedded" in the seleded pane, it will not
require ay transformation.

2. Eadch o the remaining faces shares an edge with the central
face Thesefaces will be cdled "adjacent faces".

3. The ajacent faces will rotate aoundthose elges that share
with the central face

4. When the central and adjacent faces are identified, it must be
determined the rotating anges and their diredions. The
rotating angle is the supdement of the tetrahedron's dihedral
angle. Finally we obtain a stellated triangle.

Table 7. Unraveling the 3D simplex (see text for details).
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Table 7 presents ome snapshots from the 3D simplex's
unraveling sequence. In snapshots 1 and 2,the gplied rotations
are +0 and £27.35° (the rotation's sgn depends of the aljacent
facd. In snapshat 3 the gplied rotation is £54.7% one aljacent
facelooks like astraight line --an effed due to the seleded 3D-
2D projedion. In snapshats 4 and 5, the gplied rotations are
+76.58°and +109.4°.

4.2. The 4D Simplex's Unraveling M ethodology

Because the 4D simplex boundry is composed by five
tetrahedrons [5], we can exped, by analogy, that the unravelings
of the 4D simplex will be atetrahedron surrounced by four other
tetrahedrons and sharing a facewith ead ore (the unravelings
of the tetrahedron are a triangle surrounced by dher three

triangles and sharing an edge with ead ore). We will refer to
the unravelings of the 4D simplex as a stellated tetrahedron (as
the unravelings of the hypercube ae referred as the tesserad).
We will consider and adapt the same recommendations
proposed in sedion 3.2to urraveling the simplex:
e Sded thesimplex's pasitionin the 4D space
e Sded the hyperplane (a 3D subspace enbedded in the
hyperspace where the volumes will be direded to.
e  Establish the angles which guaranteethat al volumes will
be totally embedded in the seleded hyperplane.
e All the volumes through their movement into the seleded
hyperplane must maintain a face ajaceit to another
volume.

Table 8. The 4D simplex coordinates.

Vertex X Y Z W
0 0 0 0 0
1 1 0 0 0
2 JA f% 0 0
3 J4 f% \/% 0
A I R A

We mnsider that the simplex will have apaosition with the
following charaderistics:
e  Onevertex of the simplex will bethe origin.
e Anedgewill coincidewith X axis.
e A facewill coincidewith XY plane.
e All the mordinates will be positive.

The mordinates to use ae presented in Table 8 (see[3] for a
methoddogy to get the 4D simplex's coordinates).

Observing the 4D simplex's coordinates we can see that
four of them present their fourth coordinate value (W) equal to
zero. This fad represents that one of the simplex's volumes
(formed by \‘ertexes 0-1-2-3) has W=0 as its sppating
hyperplane. Seleding the hyperplane W=0 is useful becaise one
of the volumes is "naturally embedded" in the 3D space ad it
wont reguire ay transformations.

Table 9. The 4D simplex's bound ary volumes.

Volume's Volume's
e Volume and ST Volume and
position in the L abel position in the L abel
4D simplex 4D simplex
2 / !
\
\\ Volume A Volume D
: 0-1-2-3 0-2-3-4
1 1
2 v / V 2 v
Volume B ‘ Volume E
s 0-1-2-4 s 1-2-3-4
2 v g
Volume C
s 0-1-3-4




Now, it is also useful to identify the simplex's volumes
through their vertices and to label them for future references.
Until now we have one identified vdume, it is formed by
vertexes 0-1-2-3, and it will be cdled vdume A. SeeTable 9.

We have dready described vdume A as "naturally
embedded" in the 3D space becaise it wont require ay
transformations. Volume A will occupy the central position in
the stell ated tetrahedron and it will cdled the "central volume".

Table 10. Applied transformations to the adjacent volumes
(rotation around XY plane is the same for all volumes).

All of the remaining vdumes will have face ajaceixcy with
the central volume. Due to this characderistic they can "easily"
be rotated toward ou space becaise their rotating gdane is
clealy identified. Each of these volumes will rotate aoundthe
suppating pane of its dared facewith central volume. They
will be cdled "adjacent volumes".

Althoughthe rotating danes are dealy identified, the main
difference between the hypercube and simplex's unraveling is
that the rotating danes dont correspondto 4D spacemain planes
(XY, YZ, ZX, XW, YW and ZW) in the simplex's unraveling.

Adj acent volume Tranormations Position in the siell ated Due to_ _thlsd stuat'lon, the él/otl1ume's rotanon; will  be ha
previous to 0 apply tetrahedron after the compoasition d rotations around the 4D spacemain planes. The
rotation transformations objedive taken for us was to pasition a volume's facein the XY
plane, and then rotate it 104° 29'.This angle @rresponds to the
suppement of the simplex's dihedral angle that is 75° 31'[4]. In
this way we guarantee that their W coordinate will be equal to
Volume B zero. The diredion and rotating danes for eat adjacent volume
Xy 10429 are presented in Table 10 (the central volume is also included in
ead image & areferencefor the initial and final position d the
volume being analyzed).
Now, all the transformations to urravel the simplex have
Volume C been_ de_termined. To ravel it badk, the same process mus? be
XW 109 30 applied in an inverse way but only the angles' signs for rotations
XY 10£ 29 arou_nd XY plang_ must be mange_d, becaise the remaining
XW -109 30 rotations only pasition the volumes with afaceon XY plane.
4.3. Visualizing The 4D Simplex’s Unraveling Process
Volume D Table 11 pesents ome snapshots from the 4D simplex's
ZW -60° unraveling sequence. In snapshats 1 to 8, the gplied rotations
XW 70°°30' around XY plane ae +0, +1.043°,+2.086°,+4.172°,+6.258°,
f\;v--l%i 323 +7.301°,+8.344°and +£9.387°(the rotation's sgn depends of the
Z2W 60° adjacent volume). In snapshat 9, the gplied rotation around XY
plane is £10.439 the ajacent volumes look like planes
Volume E (coinciding with the central volume's faces) --an effed due to the
T(Z-\}\}Oé%oo) 4D-3D projedion. In snapshots 10 to 18, the gplied rotations
XW 70° 30 around XY plane ae +20.43,+30.43,+40.43,4£50.43,460.43,
XY -104 29 +70.43,+£80.43,+90.43and +104.3.
XW -70° 30 At the present time, the results of this reseach are used with
ZW -60° efficiency as didadic materia in the Universidad de las
T(1,00,0) Américas - Puebla, México.
Table 11. Unraveling the 4D simplex (see text for details).
1 2 3 4 5 6
8 9 10 11 12
14 15 16 17 18




5. Future Work
5.1. The n-Dimensional Hyper-T esser act

Observing the unravelings for the square (a 2D cube), the
cube and the 4D hypercube and the fad a nD parallelotopes-
family share analogows properties [4] we can generdize the n-
dimensional hyper-tesseract (n>1) as the result of the (n+1)-
dimensional parallelotope’s unraveling with the following
properties:

e The (n+l)-dimensional hypercube will have 2(n+l) n-
dimensional cdlsonitsboundxry [3].

e A central cdl will be static during the unraveling/raveling
process

e 2(n+1)-2 cdls are ajacent to centra cdl. All of them will
share a(n-1)-dimensional cel with central cdl.

o A satellite cdl won't be ajacent to central cdl becaise their
suppating hyperplanes are paralld. It will be ajacent to any
of the ajacent cdls (it will share a(n-1)-dimensiona cdl
with the seleded adjacent cdl).

e All the djaceit cdls and satellite cél during the
unravelingraveling process will rotate +90° around the
suppating hyperplane of the (n-1)-dimensional shared cdls.

For example, the 4D hyper-tessrad is the result of the 5D
hypercube’s unraveling. The 4D hyper-teserad will be
composed by 10 hygrvolumes, where one of them will be the
central hypervolume (static), eight of them are ajacent to
central hypervolume (they share avolume) and the last one will
be the satellit e hypervolume (it shares a volume with any o the
adjacent hypervolumes). See Figure 10. The aljacet
hypervolumes and the satellit e hypervolume will rotate aounda
volume or a hyperplane during the unraveling/raveling process
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Figure 10. The possible adjacency relations between the
hyper-tesseract's central hypervolume and adjacent
hypervolumes.

5.2. The Stellated n-Dimensional Simplex

Analyzing the unravelings for the triangle (a 2D simplex),
the tetrahedron (a 3D simplex) and the 4D simplex and the fad a
nD simplexes-family share analogows properties [4], we can
generdize the stellated n-dimensional simplex (n>1) as the
result of the (n+1)-dimensional simplex’s unraveling with the
following poperties:

e The (n+1)-dimensional simplex will have (n+2) n-dimensional
cdlsonitsboundxry.

e A central cdl will be static during the unraveling/raveling
process

e (n+1) cdlsare ajacent to centra cdl. All of them will share a
(n-1)-dimensiona cdl with central cdl.

o All the ajacent cdls during the unraveling'raveling process
will rotate the suppement of the simplex's dihedral ange
around the suppating hyperplane of the (n-1)-dimensional
shared cdls.

6. Conclusions

In this reseach we foundmethods to urravel the hypercube
and the 4D simplex. Also, we have propcsed a generdlizaion to
describe the properties of the n-dimensional hyper-tessrad, the
result of the (n+1)-dimensional paralelotope’s unraveling and
the stellated n-dimensional simplex, the result of the (n+1)-
dimensional simplex’s unraveling. For the 5D spacethe rotations
will be aounda volume, for the 6D spacethey will be aounda
hypervolume and so forth. This is the diredion to follow in our
reseach to get the neeled parameters to urravel the 5D
hypercube and simplex and to oltain the 4D hyper-tesseradt and
the stellated 4D simplex. Also, ancther diredion to follow will
be related to rotations around arbitrary planes in the 4D space
(analogowly to rotations around an arbitrary axis in the 3D
space. Finding the procedures to rotate aoundarbitrary planes,
the hypercube and simplex’ s position may na be relevant.
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ABSTRACT
This article presents our experimental results for classifying edges and faces as manifold or non-manifold elements in 4D Orthogo-
nal Pseudo-Polytopes (4D-OPP's). For faces in 4D-OPP's we propose a cndition to classify them as manifold or non-manifold. For
the elges analysis in 4D-OPP's we have developed two approaches: 1) The analogy between incident (manifold and non-manifold)
edges to a vertex in 3D Orthogonal Pseudo-Polyhedra (3D-OPP's) with incident (manifold and non-manifold) faces to a edge in
4D-OPP's; and 2) The extension of the ancept of "cones of faces" (which is applied for classifying a vertex in 3D-OPP's as mani-
fold or non-manifold) to "hypercones of volumes' for classifying an edge as manifold or non-manifold in 4D-OPP's. Both approa-
ches have provided the same results, which present that there are aght types of edges in 4D-OPP's. Finaly, the generalizations for
classifying the n-3 and the n-2 dimensiona boundary elements for n-dimensional Orthogonal Pseudo-Polytopes as manifold or non-

manifold elementsis also presented.
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1. INTRODUCTION

Recent interest has been growing in studying multidimensional
polytopes (4D and beyond) for representing phenomena in n-
dimensional spaces. Some examples include the works descri-
bed in [Fei90], [Weg97] and [Lee99]. These previous works
show how some of these phenomenas features rely on the
polytopes geometric and topologic relations. However, due to
the need o visualizing and analyzing these phenomena (i.e.
multidimensional data), it is essential first to analyze these
polytopes and their boundaries that compose them [Her98]. So,
this article covers that first step, in our research, with the
boundary's analysis for classifying edges and faces as manifold
or non-manifold elementsin 4D Orthogonal Pseudo-Polytopes.
2. THE 4D ORTHOGONAL POLYTOPES

[Cox63] defines an Euclidean polytope I1;, as a finite region of
n-dimensional space enclosed by a finite number of (n-1)-
dimensional hyperplanes. The finiteness of the region implies
that the number N,; of bounding hyperplanes satisfies the
inequality Nn.1>n. The part of the polytope that lies on one of
these hyperplanes is called a cll. Each cell of aIl,isan (n-1)-
dimensional polytope, I1,1. The cls of all,; areI1,,'s, and so
on; we thus obtain a descending sequence of elements I3,
Ip.4,..., I1; (an edge), Io (a vertex).

Orthogonal Polyhedra (3D-OP) are defined as polyhedra with all
their edges (I1;'s) and faces (I1,'s) oriented in three orthogonal
directions ([Jua88] & [Pre85]). Orthogonal Pseudo-Polyhedra
(3D-OPP) will refer to regular and orthogonal polyhedra with
non-manifold boundary [Agu98].

Similarly, 4D Orthogonal Polytopes (4D-OP) are defined as
4D polytopes with all their edges (I1y's), faces (I12's) and vadu-
mes (I15's) oriented in four orthogonal direcions and 4D Ortho-
gonal Pseudo-Polytopes (4D-OPP) will refer to 4D regular and
orthogonal polytopes with non-manifold boundary. Because the
4D-OPP's definition is an extension from the 3D-OPP's, is easy
to generalize the concept to define n-dimensional Orthogonal
Polytopes (nD-OP) as n-dimensional polytopes with al their
ITh1's, I2'S,..., [11's oriented in n orthogonal directions. Fina-
Ily, n-dimensional Orthogonal Pseudo-Polytopes (nD-OPP)

are defined as n-dimensional regular and orthogonal polytopes
with non-manifold boundary.

3. THE 1, ANALYSISFOR 2D, 3D AND 4D-OPP'S

ThelIlo Analysisfor 2D-OPP's

A set of quasi-digoint rectangles determines a 2D-OPP whose
vertices must coincide with some of the rectangles vertices
[Aguog]. Each of these rectangles vertices can be considered as
the origin of a2D local coordinate system, and they may belong
to upto four rectanges, one for each local quadrant. The two
possible adjacency relations between the four possible rectan-
gles can be of edge or vertex. There ae 2* = 16 possible combi-
nations which, by applying symmetries and rotations, may be
grouped into six equivalence dasses, also called configurations
[Srig1].

[
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Table 1. The 2D configurationswith all their
rectanglesincident to the origin.

Because we ae interested in the vertex analysis, we will consi-
der only those configurations where al their rec¢angles are inci-
dent to the origin. According to the mnfigurations' nomen-
clature presented in [Agu98], the studied configurations are b, c,
d, e and f (see Table 1). There are only two types of vertices in
the 2D-OPP's. the manifold vertex with two incident edges
(configurations b and €), and the non-manifold vertex with
four incident edges (configuration d) [Agu98]. The remaining
configurations represent no vertex because configuration ¢ has
only two incident and collinear edges, and in configuration f
there are no incident edges.

TheTIl; Analysisfor 3D-OPP's

A set of quasi-disoint boxes determines a 3D-OPP whose
vertices must coincide with some of the boxes' vertices [Agu98].
Each of these boxes' vertices can be mnsidered as the origin of a
3D local coordinate system, and they may belong to up to eight
boxes, one for each local octant. There are 2 = 256 possible
combinations which, by applying symmetries and rotations, may
be grouped into 22 equivalence dasses [Lor87], also caled
configurations [Sri81]. Each configuration has its complemen-
tary configuration which is the dass that contains the comple-
mentary combinations of all the combinations in the given class
[Agu98]. Grouping complementary configurations leads to the
14 major cases [Van94]. The configurations with 5, 6, 7 and 8
surrounding boxes are complementary, and thus analogous, to




combinations with 3, 2, 1 and 0 surrounding boxes, respectively
[Agu98]. Finaly, each configuration, with four surrounding
boxes is self-complementary.

~a
)

b c d f i

Table 2. The 3D configurationswhere all their boxes are
incident to asame edge (the arr ows ow the analyzed edge).

Because we are interested in the edge analysis, we will consider
only those anfigurations where all their boxes are incident to a
same alge. According to the cnfigurations' associated namen-
clature presented in [Agu98], the studied configurations are b, c,
d, f and i (see Table 2). [Agu98] concluded that there ae only
two types of edgesin the 3D-OPP's:

= The manifold edge with two incident faces. This type of ed-
gesisfoundin configurations b and f. The edge’s two incident
faces in configuration b belong to one cube’s boundary and
they are perpendicular to each other. The elge's two incident
faces in configuration f belong to two dfferent cubes with
edge adjacency and they result perpendicular to each cther.
The non-manifold edge with four incident faces. This type
of edges is found in configuration d where two of its faces
belongs to a aibe and the remaining belong to a second cube
with edge adjacency.

The remaining configurations represent no edge because in
configuration c there ae only two incident and coplanar faces,
and in configuration i there are no incident faces.

TheIlz Analysis For 4D-OPP's

A set of quasi-digoint hyper-boxes (i.e., hypercubes, which in

this paper will be represented using Claude Bragdon's

projection [Ruc84]) determines a 4D-OPP whose vertices must
coincide with some of the hyper-boxes vertices. We will
consider the hyper-boxes' vertices as the origin of a 4D locd
coordinate system, and they may belong to up to 16 hyper-
boxes, one for each loca hyper-octant. The 4D-OPP’s vertices
are determined according to the presence of absence of each of
these 16 surrounding hyper-boxes. The four possible adjacency
relations between the 16 possible hyper-boxes can be of volume,
face, edge or vertex. There are 2'°=65,536 possible combi-
nations of verticesin 4D-OPP's which can be grouped, applying
symmetries and rotations, into 253 equivalence classes, also ca

Iled configurations [Pér01]. Each configuration has its comple-

mentary configuration which is the dass that contains the com-

plementary combinations of all the combinations in the given

class. Grouping complementary configurations leads to the 145

major cases [Pér01]. The ombinationswith 9, 10, 11, 12, 13, 14,

15 and 16 surrounding hyper-boxes are complementary, and thus

analogous, to combinations with 7, 6, 5, 4, 3, 2, 1 and 0 surroun-

ding hyper-boxes, respectively. Finally, each configuration, with
eight surrounding hyper-boxes is self-complementary [Pér01].

We will consider only those corfigurations whose hyper-boxes

are incident to a same face. According to the cnfigurations’

associated nomenclature presented in [Pér01], the studied
configurations are 2, 3, 4, 7 and 13 (Table 3). In [P&r01] is con-
cluded that there ae only two types of facesin the 4D-OPP's:

* The manifold faces with two incident volumes. The face's
two incident volumes in configuration 2 telong to the
boundary of only one hypercube and they are perpendicular to
each ather. While in configuration 7, The face's two incident
volumes belong to two dfferent hypercubes with face
adjacency and they result perpendicular to each other.

* The non-manifold faces with four incident volumes. This
type of faces is found in configuration 4, where two o its
incident volumes belongs to a hypercube and the remaining
two belong to a second hypercube with face adjacency.

= The remaining configurations represent no face because in
configuration 3 there are only two incident and co-
hyperplanar volumes, and in configuration 13 there are no
incident volumes (analogous to 3D configurations ¢ and i in
Table 2).

Adjacencies between hyper-boxes

Configuration

N
LA

13

Table 3. Configurations 2, 3, 4, 7 and 13for 4D-OPP's

Classifying the IT,.2’sin nD-OPP’s

Finally, the generalized conditions to classify aIl,., as manifold

or non-manifold in anD-OPP are:

o If two perpendicular IT,1's are incident to a I, then it must
be dassified as manifold.

o If four Iy S are incident to aIly., then it must be dassified as
non-manifold.

4. THE I1T,.3 ANALYSISFOR 3D AND 4D-OPP’'S
ThelIlp Analysisfor 3D-OPP’'s
There ae eight types of vertices (also two non valid vertices are
identified) for 3D-OPP's [Agu98]. These vertices can be dassi-
fied depending on the number of two-manifold and nan-
manifold edges incident to them and they are referred as V3, V4,
V4N1, VAN2, V5N, V6, VEN1 and VN2 [Aguag] (Table 4). In
this nomenclature "V" means vertex, the first digit shows the
number of incident edges, the "N" is present if at least one non-
manifold edge isincident to the vertex and the second digit isin-
cluded to distinguish between two different types that otherwise
could receive the same name.
Each vertex has the following properties[Agu98]:
e V3: al three incident edges are two-manifold and perpen-
dicular to each other.



e V4: al four incident edges are two-manifold, they lie on a
plane, and can be grouped in two couples of collinear edges.

e VAN1: three of its four incident edges are perpendicular to
each ather and aso two-manifold ones, while the fourth is
non-manifold and collinea to one of the other three.

e VAN2: two of its four incident edges are two-manifold and
collinear, while each of its other two is non-manifold and
perpendicular to the other three

e VV5N: four of its five incident edges are two-manifold and lie
in aplane, whil e the fifth is non-manifold and perpendicular to
the rest of them.

¢ V6: al six incident edges are two-manifold.

o VV6N1: three of its $x incident edges are perpendicular to each
other and also two-manifold ones, while each of its remaining
three elges is non-manifold and collinear to one of the first
three.

o V6N2: all of its $x incident edges are non-manifold.

o Non valid vertex 1: itstwo manifold edges are llinear.

* Non valid vertex 2: its two non-manifold edges are collinear.

E3 E4 E4AN1 E4N2 E5N
E6 E§N1 E6N2 Non valid Non valid
"~ S| o1 | edge2

V3 V4 V4N1 V4AN2 V5N
veé VeN1 VBN2 | Non valid | Non walid
' . vertex 1 vertex 2

Table 4. Vertices present in 3D-OPP's (dotted linesindicate non-
manifold edges and continuous linesindicate manifold edges).

TheIl; Analysisfor 4D-OPP's

Vertices can be defined in terms of the manifold or non-

manifold edges that are incident to these vertices in 3D-OPP's

[Aguo8]. The same process will be extended to describe edges

in terms of the manifold or non-manifold faces that are incident

to those edges in 4D-OPP's. In thisway, we have identified eight
types of edges and two non valid edges. We will also extend the
nomenclature used by [Agu98] to describe them. Such edges
will be referred as E3, E4, E4AN1, E4N2, E5N, E6, E6N1 and

E6N2 (Table 5). The only difference with the nomenclature used

to describe the vertices is that "E" means edge instead of "V"

that means vertex. Each edge has the following properties:

e E3: all three incident faces are two-manifold and perpendi-
cular to each other.

o E4: al four incident faces are manifold and lie on a hyperpla-
ne, and they can be grouped in two couples of coplanar faces.

e EAN1: three of its four incident faces are perpendicular to
each ather and also two-manifold ones, while the fourth is
non-manifold and coplanar to ore of the other three.

e E4AN2: two of its four incident faces are two-manifold and
coplanar, while each of its other two is non-manifold and
perpendicular to the other three.

o ESN: four of itsfive incident faces are two-manifold and liein
a hyperplane, while the fifth is non-manifold and perpendicu-
lar to the rest of them.

e E6: al six incident faces are two-manifold.

e E6N1: three of its dx incident manifold faces are perpen-
dicular to each ather, while each of its remaining three facesis
non-manifold and coplanar to ore of the first three.

e E6N2: all of its six incident faces are non-manifold.

¢ Non valid edge 1: its two manifold faces are wplanar.

o Non valid edge 2: its two non-manifold faces are cplanar.

It results interesting that the number, classifications and pasi-

tions of the incident faces to an edge in 4D-OPP's are analogous

to the way that a set of edges are incident to a vertex in 3D-

OPP's.

Table5. Edges present in 4D-OPP's (dotted linesindicate non-
manifold faces and continuous lines indicate manifold faces).

Classifying the Ilo’'s in Polyhedra Through its Cones of
Faces

A polyhedron is a bounded subset of the 3D Euclidean Space
enclosed by a finite set of plane polygons such that every edge
of a polygon is shared by exactly one other polygon (adjacent
polygons) [Pre85]. A pseudo-polyhedron is a bounded subset
of the 3D Euclidean Space enclosed by a finite mlledion of
planar faces such that every edge has at least two adjacent faces,
and if any two faces meet, they meet at a common edge [Tan91].
Edges and vertices, as boundary elements for polyhedra, may be
either two-manifold (or just manifold) or non-manifold
elements. In the @se of edges, they are (non) manifold elements
when every points of it is aso a (non) manifold point, except
that either or both o its ending vertices might be apoint of the
opposite type [Agu98]. A manifold edge is adjacent to exactly
two faces, and a manifold vertex is the apex (i.e., the common
vertex) of only one cone of faces. Conversely, a non-manifold
edge is adjacent to more than two faces, and a non-manifold
vertex is the gex (i.e., the mmmon vertex) of more than one
cone of faces[Ros91].

3D vertex Classfication
V3 Manifold
V4 Manifold
V4N1 Non-manifold
V4N2 Non-manifold
V5N Non-manifold
V6 Non-manifold or manifold
acording to its geometric
context.
V6N1 Non-manifold
V6N2 Non-manifold

Table 6. 3D-OPFP'svertices classification.

Using the concept of cones of faces it is easy to construct an
algorithm to determine the dassification of a vertex as manifold
or non-manifold in any pdyhedron o pseudo-polyhedron.
Using this algorithm over the possible vertices in 3D-OPP's we
have the results presented in Table 6 which coincide with those
presented by [Agu98].

Classifying the IT1’sin 4D Polytopes Through its Hyper-
Cones of Volumes

Due to the analogy between 3D-OPP's vertices described in
terms of their incident manifold or non-manifold edges, and 4D-
OPP's edges described in terms of their incident manifold or
non-manifold faces, the next logica step isto extend the ancept
of cones of faces presented in the previous section to classify 4D
polytopes' edges as manifold or non-manifold.

Faces, edges and \ertices, as boundary elements for 4D
polytopes, may be dther manifold or non-manifold elements.
[Cox63] and [Han93] have stated that a manifold face is adja-
cent to exactly two volumes, and now we suggest that a mani-
fold edge is the ammon edge (apex) of only one hyper-cone of
volumes. Conversely, we have suggested that a non-manifold
face is adjacent to more than two volumes, and now we suggest
that a non-manifold edge is the common edge (apex) of more
than one hyper -cone of volumes.




Using the concept of hyper-cones of volumes, it is easy to ex-
tend the dgorithm for obtaining the vertex classification for 3D-
OPP's used for previous sction, to allow us classifying an edge,
as manifold or non-manifold, in any 4D polytope or 4D pseudo-
polytope The dgorithm is defined with the following steps:
Get the set of I3'sthat are incident to edge A (aIly).
2 From the set of Il3's select ore of them.
3 The seleded I1; has two I1;'s that are incident to A, get
one of them and label it as START and ANOTHER.
4 Repesat
If the number of IT5's to ANOTHER is more than one,
then A isanon-manifold ;. End.

42 The ANOTHERTI, is common to another ITs, findit.

4.3 The I13 has ancther I, that is common to A, find it
and label it as ANOTHER.

4.4 Until START = ANOTHER (it has been found a hyper-

cone of volumes).
5 If there ae more I15's to analyze then A is non-manifold
(there are more hyper-cones of volumes). End.
6 Otherwise, A is manifold (A is the common edge of only
one hyper-cone of volumes). End.
5.RESULTS
Using the dgorithm presented in the previous ction over the
possible edges in 4D-OPP's we have that the edges classi-
fications are analogous to the 3D-OPP's vertices' classifications.
Table 7 shows the edges classificaions given by the extended
agorithm and their analogous 3D results.

Clasdfication e
4D 3D Classfication through
edge through hyper-cones | | oo cones of faces ’
of volumes

E3 Manifold V3 Manifold

E4 Manifold V4 Manifold

E4N1 | Non-manifold V4N1 [ Nornrmanifold

E4N2 | Non-manifold V4N2 [ Nornrmanifold

E5N Non-manifold V5N Non-manifold

E6 Non-manifold or V6 Non-manifold or
manifold acwrding to manifold accrding to
its geometric context. its geometric context.

E6N1 | Non-manifold V6N1 [ Non-manifold

E6N2 | Non-manifold V6N2 | Non-manifold

Table 7. 4D-OPP's edges classifications and their analogy
with 3D-OPP' s vertices.
Classifying the I,z in nD Polytopes Through its nD
Hyper-Cones of I1y.1's
Due to the analogy found between 3D vertices and 4D edges
with the extension of the @ncept of cones of faces, isfeasible to
generalize the last presented algorithm to classify the I1,.5; as
manifold or non-manifold in nD poalytopes through their nD
hyper-cones of I1,i's. The proposed general algorithm is the
following:
1  Gettheset of [1y.1's that are incident to 1,3 A.
2 From the set of I,.1's select one of them.
3 The selected .1 has two In.2's that are incident to T35 A,
get one of them and label it as START and ANOTHER.
4 Repeat
4.1 If the number of incident ITn4's to ANOTHER is more
than one, then A isanon-manifold ITp.3.

4.2 The ANOTHERTT,,, is common to another T4, findit.

4.3 The Iy has another I, that is common to A, find it
and label it as ANOTHER.

4.4 Until START = ANOTHER (it has been found a nD hyper-

cone of I1p.1's).

5 If there are more Iln4's to analyze then Il,3 A is non-
manifold (there ae more nD hyper-cones of I1n.1's).

6  Otherwise, Iy3 A is manifold (A is the common IT,; of
only one nD hyper-cone of [1,.1'S).

The Eight Types of TTn.3’s in nD Orthogonal Pseudo-
Polytopes

Due to the analogy between vertices in 3D-OPP's and edges in
4D-OPP's (Table 7), we can extend their properties to propose
the eight types of I1n3's in ND-OPP's. Such IT,3's will be refe-
rred as 11,33, T34, I1,34N1, I1,24N2, I1,35N, I1,.36, IT1,36N1
and I1,.36N2. In this nomenclature ‘I1n3" indicates the (n-3)-
dimensional element (i.e. verticesin 3D-OPP's and edges in 4D-
OPP's), the first digit shows the number of incident Iy, (i.e.
edges in 3D-OPP's and faces in 4D-OPP's), the ‘N’ is present if
at least one non-manifold I1y, is incident to the I1,.; and the
seaond digit is included to distinguish between two different
types that otherwise could receive the same name.

6. FUTURE WORK

The results of this article are being used in studying the
extension for the Extreme Vertices Model (EVM) [Agu9g] to
the four dimensional space (EVM-4D). The EVM-4D will be a
representation model for 4D-OPP's that will allow queries and
operations over them. However, the fact related to a model
purely geometric (four geometric dimensions) is not restrictive
for our research, because it will be used under geometries as the
4D spacetime. The first main application for the EVM-4D will
cover the visudlization and analysis for multidimensional data
under the mntext of a Geographical Information System (GIS).
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Abstract

This article presents the “Test-Box” heuristic that gives a
solution to the problem of determining the configurations
that can represent the n-Dimensional Orthogonal Pseudo-
Polytopes. This heuristic presents better performance that
the procedure through exhaustive searching. It has as a
fundament the extrusion of (n-1)-dimensional configurations
to obtain n-dimensional configurations.

1. Introdu ction

Recent interest has been growing in studying
multidimensional  polytopes (4D and beyond) for
representing multidimensional phenomena in the Euclidean
n-dimensional space. Some of these phenomena’s features
rely on the polytopes’ geometric and topologic relations
[Aguilera,03]. However, due to the need of visualizing and
analyzing these phenomena (i.e. multidimensional data), it
is essential first to analyze these polytopes and their
boundaries that compose them [Herman,98]. Therefore, this
article covers the analysis for obtaining the configurations
that can represent the n-Dimensional Orthogonal Pseudo-
Polytopes. Moreover, it is presented a heuristic that gives a
solution for determining those configurations in 5D space
and beyond.

2. The n-Dimensional Orthogon al Pseudo -Polytopes

[Coxeter,63] defines an Euclidean polytope I1, as a finite
region of n-dimensional space enclosed by a finite number
of (n-1)-dimensional hyperplanes. The finiteness of the
region implies that the number N,; of bounding
hyperplanes satisfies the inequality N,..>n. The part of the
polytope that lies on one of these hyperplanes is called a
cell. Each cell of a I, is an (n-1)-dimensional polytope, ITj..
The cells of a I, are Il,.;'s, and so on; we thus obtain a
descending sequence of elements Il,3, Ilng4,..., I1; (an
edge), I, (a vertex).

We know that a II; (a 3D Euclidean polytope) is a
polyhedron. The polyhedron’s cells are IT,. A I, (a 2D
Euclidean polytope) is a polygon. The polygon’s cells are
IT;. A I1; (a 1D Euclidean polytope) is a segment. Finally,
the segment’s cells are I, a set of vertices. The cells of a
I1, (a 4D Euclidean polytope) are I1; (polyhedra, also called
volumes in the context of Iy).

Orthogonal Polyhedra (3D-OP) are defined as
polyhedra with all their edges and faces oriented in three
orthogonal directions ([Preparata,85] & [Juan-Arinyo,88]).
Orthogonal Pseudo-Polyhedra (3D-OPP) will refer to regular
and orthogonal polyhedra with non-manifold boundary
[Aguilera,98].

Similarly, 4D Orthogon al Polytopes (4D-OP) are
defined as 4D polytopes with all their edges, faces and
volumes oriented in four orthogonal directions and 4D
Orthogon al Pseudo-Polytopes (4D-OPP) will refer to 4D
regular and orthogonal polytopes with non-manifold boun-
dary [Aguilera,02]. Because the 4D-OPP’s definition is an
extension from the 3D-OPP’s, is easy to generalize the
concept to define n-dimensional Orthogon al

Polytopes (nD-OP) as n-dimensional polytopes with all
their Iy.q, Ih,,..., II; oriented in n orthogonal directions.
Finally, n-dimensional Orthogonal Pseudo-Polytopes
(nD-OPP) are defined as n-dimensional regular and or-
thogonal  polytopes  with  non-manifold  boundary
[Aguilera,02].

3. Configurations for 1D, 2D, 3D and 4D-OPP’s.

3.1. Configurations for Segments in 1D Space

Although it is a trivial case, we will present the three
possible configurations in 1D space (table 1). They will be
usefulness when proposing the “Test-Box” heuristic.

a b c

Table 1. The posible configurations (a-c) in 1D space.

We have the configuration a with 0 surrounding
segments, which is complementary to configuration ¢ with
two surrounding segments. Configuration b with just one
segment is autocomplementary [Aguilera,98].

3.2 Configurations for 2D-OPP’s.

A set of quasi-disjoint rectangles determines a 2D-OPP
whose vertices must coincide with some of the rectangles'
vertices [Aguilera,98]. Each of these rectangles’ vertices can
be considered as the origin of a 2D local coordinate system,
and they may belong to up to four rectangles, one for each
local quadrant. The two possible adjacency relations
between the four possible rectangles can be of edge or
vertex. There are 2* = 16 possible combinations which, by
applying rotational symmetries, may be grouped into six
equivalence classes, also called configurations [Srihari,81]
(table 2). Moreover, each possible combination has its
complementary combination, and each configuration has its
complementary configuration which is the class that
contains the complementary combinations of all the
combinations in the given class [Aguilera,98].
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Table 2. Possible configurations (a to f) for 2D-OPP's.

These 16 possible combinations are distributed in the
following way [Aguilera,98]:
4 (4
2= ZC[IJ =1+4+6+4+1=16
k=0

And using combinatorial analysis, there are:




1 combination with zero surrounding rectangles
(configuration a).

4 combinations with one surrounding rectangle
(configuration b).

6 combinations with two surrounding rectangles

combinations  with  three

c 4 _ 4 surrounding
3 rectangles (configuration e).

1 combination with four surrounding rectangles
(configuration f).

Configurations a and f, as well as configurations b and
e, are complementary to each other. Configurations c and d

0 1

(configurations ¢ and d).

L%

% €
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L

are self-complementary [Aguilera,98].

Table 3. Possible configurations (a to v) for 3D-OPP's.

3.3. Configurations for 3D-OPP’s.

A set of quasi-disjoint boxes determines a 3D-OPP whose
vertices must coincide with some of the boxes' vertices
[Aguilera,98]. Similarly to the 2D case, each of these boxes'
vertices can be considered as the origin of a 3D local
coordinate system, and they may belong to up to eight
boxes, one for each local octant. The three possible
adjacency relations between the eight possible boxes can
be of face, edge or vertex. There are 2°® = 256 possible
combinations which, by applying rotational symmetries, may
be grouped into 22 equivalence classes [Lorensen,87], also
called configurations [Srihari,81] (table 3). As in the 2D
case, each possible combination has its complementary
combination, and each configuration has its complementary
configuration which is the class that contains the
complementary combinations of all the combinations in the
given class [Aguilera,98]. Grouping complementary
configurations leads to the 14 major cases [Van Gelder,94].

Similarly to the 2D case, these 256 possible
combinations are distributed in the following way
[Aguilera,98]:

8 (8
:ZC[kJ =1+8+28+56+70+56+28+8+1= 256
k=0

And using combinatorial analysis, there are:

8 _ 1 combination with zero surrounding boxes
0 (configuration a).

8 _ 8 combinations with one surrounding box
1 (configuration b).

28 combinations with two surrounding boxes
(configurations c, d and e).

56 combinations with three surrounding boxes
(configurations f, g and h).

70 combinations with four surrounding boxes
(configurations i, j, k, I, m and n).

The remaining combinations with 5, 6, 7 and 8
surrounding boxes are complementary, and thus analogous,
to combinations with 3, 2, 1 and O surrounding boxes,
respectively [Aguilera,98]. Finally, each configuration, with
four surrounding boxes is self-complementary.

3.4 Configurations for 4D-OPP’s.

By analogy, it can be assumed that a set of quasi-disjoint
hyper-boxes (i.e., hypercubes, which in this paper will be
represented using Claude Bragdon'’s projection [Rucker,77])
determines a 4D-OPP whose vertices must coincide with
some of the hyper-boxes’ vertices. We will consider the
hyper-boxes’ vertices as the origin of a 4D local coordinate
system, and they may belong to up to 16 hyper-boxes, one
for each local hyper-octant. The 4D-OPP’s vertices are
determined according to the presence of absence of each of
these 16 surrounding hyper-boxes. The four possible
adjacency relations, extending by analogy, between the 16
possible hyper-boxes can be of volume, face, edge or
vertex. There are 2'® = 65,536 possible combinations which
can be grouped, applying rotational symmetries, into 253
equivalence classes called configurations [Pérez,01]. Each
possible combination has its complementary combination,



and each configuration (i.e. each class) has its
complementary configuration which is the class that
contains the complementary combinations of all the

combinations in the given class. Grouping complementary
configurations leads us to the 145 major cases [Pérez,01].

The 65,536 possible combinations are distributed in the
following way [Pérez,01]:

5 (16 1+16+120+ 560+ 1,820+ 4,368+
2e= Z K j = <8,008+11,440+12870+11440+ 8,008+
k=0
=65536

4,368+ 1820+560+120+16+1
And using combinatorial analysis, there are:
o
C =
0
o
C =
1
)
C =
2

1 combination with zero surrounding hyper-
boxes (configuration 1).

16 combinations with one surrounding hyper-
box (configuration 2, shown in table 4).

120 combinations with two surrounding hyper-
boxes: configurations 3 (volume adjacency), 4
(face adjacency), 5 (edge adjacency) and 6
(vertex adjacency), shown in table 4.

C 3 boxes (configurations 7 to 12, only 7 and 8

shown in table 4).
16
4

(16] 560 combinations with three surrounding hyper-
[ 1,820 combinations with four surrounding
C
5

(@]

shown in table 4).
4,368 combination with five surrounding hyper-
boxes (configurations 29 to 48).

8,008 combinations with six surrounding hyper-
boxes (configurations 49 to 78).

@]

hyper-boxes (configurations 13 to 28, only 13
16
6

16 11,440 combinations with seven surrounding
7 hyper-boxes (configurations 79 to 108).
c 16 _ 12,870 combinations with eight surrounding
8 hyper-boxes (configurations 109 to 145).
The remaining combinations with 9, 10, 11, 12, 13, 14,
15 and 16 surrounding hyper-boxes are complementary,
and thus analogous, to combinations with 7, 6, 5, 4, 3, 2, 1
and 0 surrounding hyper-boxes, respectively. Finally, each

configuration, with eight surrounding hyper-boxes is self-
complementary [Pérez,01].
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Table 4. Configurations 2-8 and 13 for the 4D-OPP’s (each hypercube is show using Bragdon'’s projection).




4. The Problem of Determining the Configurations for
nD-OPP’s (n > 4)

For the Euclidean n-Dimensional space we have 2" possible
hyper-octants (4 quadrants for 2D space, 8 octants for 3D
space, and 16 hyper-octants for 4D space). This number of
hyper-octants has repercurssion over the possible number
of combinations of vertices described through the presence
of absence of hyper-boxes each one in every hyper-octant.
In general, we have that the total number of combinations in
nD space is [Hill,98]:
2(2")

It was before discussed that in 4D space we have 2'° =
65,536 combinations. [Pérez,01] determined that there are
253 configurations for 4D-OPP’s through exhaustive
searching. However, if we want to determine the
configurations for 5D-OPP’s through exhaustive searching,
we would have to consider that there are 32 hyper-octants
in 5D space, and for instance to analyze 2% = 4,294,967,296
combinations [Hill,98].

Moreover, if the number of configurations is associated
with the total number of combinations, it is evident that the
first one is very less than the second one. For example, in
3D space we have 22 configurations for 256 possible
combinations, this can be translated as that only the 8% of
the combinations can perform the role of representatives
(equivalence classes) of the others. See table 5 for the
application of this comparison over the configurations in 1D,
2D and 4D spaces.

nD o ] ) Percentage

Space Combinations Configurations (Conﬂgu_ratn_)ns Vs.
Combinations)

1D 4 3 75 %

2D 16 6 37.5%

3D 256 22 8%

4D 65,536 253 0.3 %

5D 4,294,967,296 ? <<0.3%

Table 5. Comparing the number of configurations with the number of
combinations for the nD-OPP’s.

These situations lead us to conclude that the complexity
imposed by the exhaustive searching makes difficult to
determine the configurations for OPP’s in spaces of 5
dimensions and beyond [Hill,98]. In the following sections
we will present a heuristic for obtaining the configurations in
a more direct way. The heuristic has as first step to obtain a
subset of the nD configurations’ final set through the
extrusion of (n-1)D configurations. This process will be
described in the following section.

5. Extruding Configurations

The extrusion of a configuration (n-1)D to an nD space
implies that each one of its boxes will be traslated in a
direction that is perpendicular to the (n-1)D space in which
are embedded. The traslation of each box will describe then
a hyper-box (this process is analogous to obtaining the
hypercube through the method proposed by Bragdon
[Rucker,77]). It is important to consider that an nD
configuration obtained through the extrusion of a (n-1)D
configuration is not unique, because there are two possible
traslation directions for each box. For example, in table 6 it
is presented the extrusion of the 2D configuration e for
obtaining 3D configurations f, g and h.

Through extruding configurations it is possible to obtain
some configurations from nD space by using the
configurations from (n-1)D space and so on. By this way, we
obtain then a recursive process whose basic case are the
configurations for 1D-OPP’s (see table 1).

h

Table 6. Extrusion of 2D configuration e and the obtained 3D
configurations (the arrows indicate the extrusion direction for each
rectangle).

6. Obtaning the Configurations Through a “Test-Box”

The “Test-Box” heuristic starts with the following principle: to
have access to (n-1)D configurations for obtaining the nD
configurations. Each (n-1)D configuration is extruded just
one time and in just one direction, this means that, the
boxes that compose the (n-1)D configuration are extruded
towards the same perpendicular direction from space in
which are embedded. Once this process is applied, the
(n-1)D configuration is not required again. For example, five
configurations for 2D-OPP’s are extruded just one time and
towards the same direction for obtaining five configurations
for 3D-OPP’s (table 7).

2D Extrusion: 3D 2D
Configuration Configuration | Configuration

Extrusion: 3D
Configuration

= © EQ G
c c
d N d E e g f E
f é i E
Table 7. Extruding 2D configuration in the same direction and
obtaining their 3D analogous.

Once the configurations from (n-1)D space have been
extruded, we have now the same number of nD
configurations (denominated analogous configurations
[Aguilera,02]). The next step is the use of each nD
configuration for obtaning the remaining configurations. We
will use a “Test-Box” (a rectangle, a cube, a hypercube,
etc.). For each configuration, we will add it a “Test-Box” in
one of its empty hyper-octants. This adding will produce a
new combination which must be analized with the set of the
configurations (before combinations) yet processed. If the
combination is not in the set of configurations, then we have
a new configuration. This process is repeated until all the
configuration’s empty hyper-octants have been evaluated
with a “Test-Box”. In Table 8 are shown the 3D
combinations obtained from the configuration f and by
applying a “Test-Box” in all its empty octants.

We have now the elements to propose an algorithm
applying extrusions and a “Test-Box”. The algorithm is
resumed with the following main procedures:

1. For a number n of dimensions we obtain the (n-1)D
configurations. If n = 1 then we have the basic case




which return the configurations from table 1 (1D
configurations).
2. The (n-1)D configurations are extruded in nD
configurations.
3. It is added a “Test-Box” to each nD configuration in
their empty hyper-octants, this operation will produce i k i

new combinations.

4. Each new produced combination will be evaluated with
the set of identified configurations. If it is a new
configuration then it will be added to the set of
identified configurations and considered to be
evaluated with a “Test-Box”, because it could produce | i

new configurations. . Table 8. Obtaining new configurations through 3D configuration f
We present now the proposed algorithm: and a “Test-Box” (shown as wireframe model).

Input: The number of dimensions > O for the configurations to obtain.
Output: The set of configurations for the specified space.
getConfigurationsForSpaceUsingTestBox(dimensions)

if(dimensions == 1)
/I Basic Case: just return the three configurations for 1D space.
return getConfigurationsForlDSpace( );

else
{
/* Recursive call: the configurations from (n-1)D space are obtained and they are added
to the set ‘previousConfigurations’. */
previousConfigurations = getConfigurationsForSpaceUsingTestBox(dimensions - 1);
For each configuration c in the set previousConfigurations
{
[* Configuration ‘c’ is (n-1)D. The configuration ‘newC’ (n-dimensional) is the
result of extruding configuration ‘c’. */
newC = extrudeConfiguration(c);
/* The configuration ‘newC’ is added to the set ‘configurations’ (the configurations from
current nD space). */
configurations.add(newC);
/* Starts the cicle for generating new combinations from the configurations contained in the
set ‘configurations’ using a “Test-Box” (rectangle, cube, hypercube,etc.) whose
position (hyper-octant to occupy) is indicated by variable ‘testBoxPosition’. */
hyperOctants = 29mensens,
testBoxPosition = 0;
For each configuration c in the set configurations
{
testBoxPosition = 0;
[* Starts the cicle for generating new combinations from configuration ‘c’ using a “Test-Box”. */
while(testBoxPosition < hyperOctants)
{
/* 1t is obtained the combination ‘newC’ from configuration ‘c’ and the “Test-Box”
added in the hyper-octant specified by ‘testBoxPosition’. */
newC = getNewConfiguration(c, testBoxPosition);
/* It is verified if combination ‘newC’ was before obtained. If not, then it is added
to set ‘configurations’ and for instance a new configuration has been found. */
if(configurations.isContained(newC) == false)
configurations.add(newC);
testBoxPosition++;
}
/I All the posible configurations have been found. The set ‘configurations’ is returned as output,.
return configurations;
}

For determining the number of nD combinations [deBerg,97]. Be CTB (Configurations-by-Test-Box) the
analyzed to obtain the nD configurations through the “Test-  number of configurations obtained by the algorithm and 2"
Box” heuristic it is necessary to analyze the output’s size, the number of hyper-octants for the nD space. Then the
i.e., the number of configurations. Due to we will know the  number of combinations to analyze is at most:
number of configurations until the algorithm finishes, we CTB- on
have then an output-sensitive complexity analysis



This is an upper bound because we are considering that
for each configuration (with 1, 2, 3, etc. hyper-boxes) there
are 2" empty hyper-octants (this is possible only for
configurations with O hyper-boxes). We must consider, in
fact, that configurations with 1 box have 2"-1 empty hyper-
octants, configurations with 2 boxes have 2"-2 empty hyper-
octants and so on. Be CTB; the number of those
configurations with i boxes, then we have that the exact
number of combinations to analyze is:

2n
D .CTB, - (2" -i)
i=0

7. Results

The presented algorithm has confirmed the expected
configurations for 2D, 3D [Aguilera,98] and 4D [Pérez,01]
spaces. Specifically, the greatest number of combinations to
analyze for obtaining the configurations in 4D space is
253 * 2* = 4,048. Although this is an upper bound, it is better
than the obtained through exhaustive searching by
[Pérez,01] (2'° = 65,536). Through the “Test-Box” heuristic
we have found 20,983 configurations for the 5D-OPP’s (see
table 9 for the configuration’s distribution).

5D hyper-boxes (i) | CTB; 5D hyper-boxes (i) CTB;
0 1 32 1
1 1 31 1
2 5 30 5
3 10 29 10
4 38 28 38
5 66 27 66
6 164 26 164
7 236 25 236
8 454 24 454
9 570 23 570
10 887 22 887
11 989 21 989
12 1,388 20 1,388
13 1,406 19 1,406
14 1,754 18 1,754
15 1,607 17 1,607
16 1,831

Table 9. Configuration’s distribution for 5D-OPP’s.

The precise number of analyzed 5D combinations is:
25
D> 'CTB - (2°-i) =
i=0
1.32+1-31+5-30+10-29+38- 28+ 66- 27 +164 - 26 +
236- 25+ 454 - 24+ 570-23+887-22+989- 21+
1,388-20+1,406-19+1,754-18+1,607-17+1,831-16 +
1,607-15+1,754-14+1,406-13+1,388-12+ 98911+
887-10+570-9+454-8+236-7+164-6+66-5+
38-4+10-3+5-2+1-1+1-0

= 335,728

This result represents a great improvement compared
with the number of combinations to analyze through
exhaustive searching (2°?= 4,294,967,296).

For obtaining the configurations for the 6D-OPP’s we
would have to analyze, through exhaustive searching, a
total of 2* = 18,446,744,073,709,551,616 combinations.
Through the “Test-Box” heuristic, we found 15,440,344
configurations, which implies that the number of 6D
combinations analyzed is (upper-bound):

15,440,344 - 2° = 988,182,016

8. Conclusions

It is esential to determine the configurations for the nD-
OPP’s, because they represent a finite subset which can be
used to determine geometric and topologic properties for
these nD-OPP’s. For example, [Aguilera,03] uses only the
configurations for determine the properties for 4D-OPP’s.
Through the “Test-Box” heuristic, we have now a method
faster and more direct to obtain configurations for nD-OPP’s
in spaces of 5 dimensions and beyond.
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ABSTRACT
This article presents our experimental study about the
1-dimensional boundary elements (edges) for 4D Orthogonal

Pseudo-Polytopes (4D-OPP’s). We propose a new characterization
for these elements which classify them as Extreme or Non-Extreme.
We show how this characterization is the result of a 3D analysis
over the possible configurations for the 4D-OPP’s.

1. The 4D Orthogon al Polytopes and Their Properties
1.1. Definition

[Coxeter,63] defines an Euclidean polytope I, as a finite region of
n-dimensional space enclosed by a finite number of
(n-1)-dimensional hyperplanes. The finiteness of the region implies
that the number N,.; of bounding hyperplanes satisfies the inequality
Nni>n. The part of the polytope that lies on one of these
hyperplanes is called a cell. Each cell of a II, is an (n-1)-
dimensional polytope, IT,.1. The cells of a I, are Iy..'s, and so on;
we thus obtain a descending sequence of elements I3, [Ty.4,..., [Ty
(an edge), I, (a vertex).

Orthogonal Polyhedra (3D-OP) are defined as polyhedra with all
their edges (I1;'s) and faces (I1,"s) oriented in three orthogonal
directions ([Juan-Arinyo0,88] & [Preparata,85]). Orthogonal Pseudo-
Polyhedra (3D-OPP) will refer to regular and orthogonal polyhedra
with non-manifold boundary [Aguilera,98].

Similarly, 4D Orthogon al Polytopes (4D-OP) are defined as
4D polytopes with all their edges (I1;'s), faces (I1;’s) and volumes
(Is's) oriented in four orthogonal directions and 4D Orthogon al
Pseudo-Polytopes (4D-OPP) will refer to 4D regular and
orthogonal polytopes with non-manifold boundary [Aguilera,02].

4\ 1 combination with O 4 4 combinations with 1
C 0)” surrounding rectangles. C[l): surrounding rectangle.
Configuration: Configuration:
a b
I 4 _ 6 combinations with 2 surrounding rectangles.
2 Configurations:
@) ©
® @
c d
4\ 4 combinations with 3 4 1 combination with 4
C(gjz surrounding rectangles. C[4]= surrounding rectangles.
Configuration: Configuration:
@ ® O
® © @ ©
e f

Table 1. Combinatorial Analysis for Configurations in the 2D-OPP’s.
1.2. Configurations and Vertex Analysis for 2D-OPP’s

A set of quasi-disjoint rectangles determines a 2D-OPP (2D
Orthogonal Pseudo-Polygon) whose vertices must coincide with
some of the rectangles' vertices [Aguilera,98]. Each of these
rectangles’ vertices can be considered as the origin of a 2D local
coordinate system, and they may belong to up to four rectangles,

one for each local quadrant. The two possible adjacency relations
between the four possible rectangles can be of edge or vertex.
There are 2* = 16 possible combinations which, by applying symme-
tries and rotations, may be grouped into six equivalence classes,
also called configurations [Srihari,81]. The distribution of the 16
combinations can be determined using combinatorial analysis
[Aguilera,98], which is presented in table 1.

According to table 1, configurations a and f, as well as
configurations b and e, are complementary to each other.
Configurations ¢ and d are self-complementary [Aguilera,98].

Considering only those configurations where all their rectangles
are incident to a vertex (configurations b, c, d, e and f, see table 1) it
is concluded that there are only two types of vertices in the 2D-
OPP’s: the manifold vertex with two incident edges
(configurations b and e), and the non-manifold vertex with four
incident edges (configuration d) [Aguilera,98]. The remaining
configurations represent no vertex because in configuration c there
are only two incident and collinear edges, and in configuration f
there are no incident edges.

8 combinations with
zero surrounding = one surrounding box.
boxes. Configuration: Configuration:
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a b

1 combination with (SJ
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28 combinations with two surrounding boxes.
Configurations:
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d e

56 combinations with three surrounding boxes.

Configurations:
g i! h i;

70 combinations with four surrounding boxes.

Configurations:
i ! k E
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Table 2. Combinatorial Analysis for Configurations in the 3D-OPP’s.



1.3. Configurations and Edge Analysis for 3D-OPP’s

A set of quasi-disjoint boxes determines a 3D-OPP whose vertices
must coincide with some of the boxes' vertices [Aguilera,98]. Each
of these boxes' vertices can be considered as the origin of a 3D
local coordinate system, and they may belong to up to eight boxes,
one for each local octant. There are 2° = 256 possible combinations
which, by applying symmetries and rotations, may be grouped into
22 equivalence classes [Loresen,87], also called configurations
[Srihari,81]. Each configuration has its complementary configuration
which is the class that contains the complementary combinations of
all the combinations in the given class [Aguilera,98]. Grouping
complementary configurations leads to the 14 major cases [Van
Gelder,94]. The distribution of the 256 combinations can be
determined using combinatorial analysis [Aguilera,98], which is
presented in table 2.
The combinations with 5, 6, 7 and 8 surrounding boxes are
complementary, and thus analogous, to combinations with 3, 2, 1
and O surrounding boxes (table 2), respectively [Aguilera,98].
Finally, each configuration, with four surrounding boxes is self-
complementary.
Considering only those configurations where all their cubes are
incident to a same edge (b, c, d, f and i; table 2), it is concluded that
there are only two types of edges in the 3D-OPP’s [Aguilera,98]:
= The manifold edge with two incident faces. This type of edges
is found in configurations b and f. The edge’s two incident faces
in configuration b belong to one cube’s boundary and they are
perpendicular to each other. The edge’s two incident faces in
configuration f belong to two different cubes with edge adjacency
and they result perpendicular to each other.

= The non-manifold edge with four incident faces. This type of
edges is found in configuration d, where two of its faces belongs
to a cube and the remaining belong to a second cube with edge
adjacency.

= The remaining configurations represent no edge because in
configuration c there are only two incident and coplanar faces,
and in configuration i there are no incident faces.

1.4. Configurations and Face Analysis for 4D-OPP’s

A set of quasi-disjoint hyper-boxes (i.e., hypercubes, which in this
paper will be represented using Claude Bragdon’s projection
[Rucker,77]) determines a 4D-OPP whose vertices must coincide
with some of the hyper-boxes’ vertices. We will consider the hyper-
boxes’ vertices as the origin of a 4D local coordinate system, and
they may belong to up to 16 hyper-boxes, one for each local hyper-
octant. The 4D-OPP’s vertices are determined according to the
presence of absence of each of these 16 surrounding hyper-boxes.
The four possible adjacency relations between the 16 possible
hyper-boxes can be of volume, face, edge or vertex. There are 2'° =
65,536 possible combinations of vertices in 4D-OPP’s which can be
grouped, applying symmetries and rotations, into 253 equivalence
classes, also called configurations [Pérez,01]. Each configuration
has its complementary configuration which is the class that contains
the complementary combinations of all the combinations in the
given class. Grouping complementary configurations leads to the
145 major cases [Pérez,01].

The distribution of the 65,536 combinations can be determined
using combinatorial analysis [Pérez,01]:

configuration 1.

configuration 2, shown in table 3.
configurations 3, 4 (table 3), 5 and 6.
configurations 7 (table 3) to 12.
configurations 13 (table 3) to 28.

configurations 29 to 48.

[16]= 1 combination with zero surrounding hyper-boxes:
16 combinations with one surrounding hyper-box:
120 combinations with two surrounding hyper-boxes:
560 combinations with three surrounding hyper-boxes:
1,820 combinations with four surrounding hyper-boxes:

4,368 combinations with five surrounding hyper-boxes:

8,008 combinations with six surrounding hyper-boxes:
configurations 49 to 78.

11,440 combinations with seven surrounding hyper-
boxes: configurations 79 to 108.

ClG _ 12,870 combinations with eight surrounding hyper-
8 boxes: configurations 109 to 145.

The remaining combinations with 9, 10, 11, 12, 13, 14, 15 and
16 surrounding hyper-boxes are complementary, and thus
analogous, to combinations with 7, 6, 5, 4, 3, 2, 1 and 0 surrounding
hyper-boxes, respectively. Finally, each configuration, with eight
surrounding hyper-boxes is self-complementary [Pérez,01].

Adjacencies between Configuration
hyper-boxes
2
®
3
@
©)
@ 4
®
U
[
7
13

Table 3: Configurations 2, 3, 4, 7 and 13 for 4D-OPP's (each
hypercube is shown using Bragdon'’s projection).

Considering only those configurations where all their hyper-
boxes are incident to just one face (configurations 2, 3, 4, 7 and 13,
see table 3), it results that there are only two types of faces in the
4D-OPP’s (for a more detailed analysis see [Aguilera,02]):
= The manifold faces with two incident volumes. The face’s two

incident volumes in configuration 2 belong to the boundary of only



one hypercube and they are perpendicular to each other. While in
configuration 7, The face’s two incident volumes belong to two
different hypercubes with face adjacency and they result
perpendicular to each other.

= The non-manifold faces with four incident volumes. This type
of faces is found in configuration 4, where two of its incident
volumes belongs to a hypercube and the remaining two belong to
a second hypercube with face adjacency.

= The remaining configurations represent no face because in
configuration 3 there are only two incident and co-hyperplanar
volumes, and in configuration 13 there are no incident volumes
(analogous to 3D configurations c and i in table 2).

1.5. The Eight Types of Vertices in the 3D-OPP’s

The vertices in the 3D-OPP’s can be classified depending on the
number of two-manifold and non-manifold edges incident to them.
They are referred as V3, V4, V4AN1, V4N2, V5N, V6, V6N1 and
V6N2 (there are also two non valid vertices) [Aguilera,98]. In this
nomenclature "V" means vertex, the first digit shows the number of
incident edges, the "N" is present if at least one non-manifold edge
is incident to the vertex and the second digit is included to
distinguish between two different types that otherwise could receive
the same name (See [Aguilera,98] for detailed properties of these
eight vertices). See table 4.

V3 Az V4N1 VAN2
V5N V6 VG‘N 1 VEN2
R4
Non valid Non valid
vertex 1 vertex 2

Table 4. Vertices present in 3D-OPP's (dotted lines indicate non-
manifold edges and continuos lines indicate manifold edges).

1.6. The Eight Types of Edges in the 4D-OPP’s

Analogously to the vertices in the 3D-OPP’s, the edges in 4D-OPP’s
can be described in terms of the manifold or non-manifold faces that
are incident to them. In this way, [Pérez,01] has identified eight
types of edges and two non valid edges; and extended the
nomenclature used by [Aguilera,98] to describe them. Such edges
are referred as E3, E4, E4N1, E4N2, E5N, E6, E6N1 and E6N2
(See Table 5). The only difference with the nomenclature used by
[Aguilera,98] is that "E" means edge instead of "V" that means
vertex (See [Pérez,01] for detailed properties of these eight edges).

E3 E4 E4N1 E4N2

<"\ <A | AP

E5N E6 E6N1 E{NZ
(><: S N
NN &L
A4
N
Non valid Non valid
edge 1 edge 2

R NN NN

Table 5. Edges present in 4D-OPP's (dotted lines indicate non-
manifold faces and continuos lines indicate manifold faces)

2. The Extreme Vertices in the 3D-OPP’s
2.1. Properties

[Aguilera,98] defines a brink or extended-edge as the maximal

uninterrupted segment, built out of a sequence of collinear and

contiguous two-manifold edges of a 3D-OPP with the following

properties:

= Non-manifold edges do not belong to brinks.

= Every two-manifold edge belongs to a brink, whereas every brink
consists of m edges (m > 1), and contains m+1 vertices.

= Two of the vertices of type V3, V4N1 or V6N1 (section 1.5) are at
either extreme of the brink (Extreme Vertices). These vertices
have in common that they are the only ones that have exactly
three incident two-manifold and perpendicular edges, regardless
of the number of incident non-manifold edges, therefore those
vertices mark the end of brinks in all three orthogonal directions.

= The m-1 vertices of type V4, VAN2, V5N or V6 are the only
common point of two collinear edges of a same brink (interior
vertices).

= Due to all six incident edges of a V6N2 vertex are non-manifold
edges, none of them belongs to a brink, thus this vertex does not
belong to any brink.
(This work not consider brinks in 1D-OPP’s and 2D-OPP’s,
however see [Aguilera,98] for details). See Figure 1.a for an
example of a wireframe model of a 3D-OPP. Also in Figure 1.b
are shown the OPP’s brinks parallel to X axis. The continous lines
indicate manifold edges and the dotted one a non-manifold edge
(it do not belong to a brink). The points at both extremes of the
brinks are Extreme Vertices.

_—
r Y Y
—
f e ——"
x —_— . - - = _»x
’\ AN
— —
a b

Figure 1. a) A wireframe model of a 3D-OPP. b) Their brinks parallel
to X axis (See text for details).

Based in the previous properties for brinks, [Aguilera,98]
presents the following properties for the Extreme Vertices in the
3D-OPP’s:
= Every Extreme Vertex of a 3D-OPP has exactly 3 incident
manifold edges perpendicular to each other. This number is even
for every non-extreme vertex.

= Every Extreme Vertex has an odd number of incident faces, and
every non-extreme vertex has an even number of incident faces.

= Any Extreme Vertex of a 3D-OPP when is locally described by a
set of surrounding boxes, is surrounded by an odd number of
such boxes. An even number of surrounding boxes either defines
a non-extreme vertex, or does not define any vertex at all.

2.2. The 2D Analysis for Vertices in 3D-OPP's

In section 1.3 were presented the configurations, identified by
[Aguilera,98], which determine a 3D-OPP through a set of quasi-
disjoint boxes. Each of these boxes’ vertices can be considered as
the origin of a 3D local coordinate system. In such 3D local
coordinate system can be identified three main planes: XY, YZ and
XZ. If the faces that are coplanar to such main planes are grouped,
ignoring those faces that are shared by two cubes (face adjacency),
they compose three 2D configurations (one for each main plane).
For these 2D configurations the vertex can be classified as manifold
or non-manifold (section 1.2). See Table 6 for examples for 3D
configurations b to k.

Applying this analysis over the 22 configurations for the 3D-
OPP’s [Pérez, 01], it results that for those configurations whose
vertex is extreme (V3, V4N1 or V6N1) and their number of boxes is
odd, the three vertex analysis for their 2D configurations classify the
2D vertex as manifold (in Table 6, configurations b and f, for
example). From this pattern, we can infer if a vertex is extreme or
non-extreme.
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Table 6. Vertex analysis for 2D configurations on the main planes in 3D configurations b to k.

2.3. The 3D Analysis for Edges in 4D-OPP's

The vertex analysis for 2D configurations embedded in the main
planes of a 3D configuration (previous section) classify the 2D
vertex as manifold or non-manifold, and through these three 2D
analysis we can infer if the 3D vertex is extreme or non-extreme.
For consequence, in analogous way, we can assume that the edges
analysis for 3D configurations embedded in the main hyperplanes of
a 4D configuration will classify to 3D edges as manifold or non-
manifold, and through these 3D analysis we can infer, due to the
analogy with 3D vertex, if the 4D edges are “Extreme” or “Non-
Extreme”.

In section 1.4 were presented the 253 configurations which
determine a 4D-OPP through a set of quasi-disjoint hyper-boxes

(hypercubes). Each of these hyper-boxes’ vertices can be
considered as the origin of a 4D local coordinate system. In such 4D
local coordinate system can be identified four main hyperplanes:
XYZ, XYW, XZW and YZW. If the volumes that are co-hyperplanar
to such main hyperplanes are grouped, ignoring those volumes that
are shared by two hypercubes (volume adjacency), they will
compose four 3D configurations (one for each main hyperplane).
Table 7 presents the four 3D configurations that are present in 4D
configurations 3 to 6.

For the 3D configurations that are embedded in the main
hyperplanes in 4D space, it is possible to analyze their edges and
classify them as manifold or non-manifold (section 1.3). In Table 8
are shown the edges analysis for the 3D configurations that are
present in 4D configurations 3 to 6.
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Table 7. Determining the 3D configurations on the main hyperplanes in 4D configurations 3 to 6.

3D Edges Analysis
4D Configuration Configuration Configuration Configuration
Configuration on XYZ hyperplane on XYW hyperplane on XZW hyperplane on YZW hyperplane
X: Non edge X: Non edge X: Non edge Y: Manifold
-X: Non edge -X: Non edge -X: Non edge -Y: Manifold
3 Y: Manifold Y: Manifold Z: Non edge Z: Non edge
-Y: Manifold -Y: Manifold -Z: Non edge -Z: Non edge
Z: Non edge W: Non edge W: Non edge W: Non edge
-Z: Non edge -W: Non edge -W: Non edge -W: Non edge
X: Manifold X: Manifold X: Manifold Y: Manifold
-X: Manifold -X: Manifold -X: Manifold -Y: Manifold
4 Y: Manifold Y: Manifold Z: Non edge Z: Non edge
-Y: Manifold -Y: Manifold -Z: Non edge -Z: Non edge
Z: Non edge W: Non manifold W: Non edge W: Non edge
-Z: Manifold -W: Non edge -W: Non edge -W: Non edge
X: Manifold X: Manifold X: Manifold Y: Manifold
-X: Manifold -X: Manifold -X: Manifold -Y: Manifold
5 Y: Manifold Y: Manifold Z: Manifold Z: Manifold
-Y: Manifold -Y: Manifold -Z: Manifold -Z: Manifold
Z: Manifold W: Non edge W: Non edge W: Non edge
-Z: Manifold -W: Non manifold -W: Non manifold -W: Non manifold
X: Manifold X: Manifold X: Manifold Y: Manifold
-X: Manifold -X: Manifold -X: Manifold -Y: Manifold
6 Y: Manifold Y: Manifold Z: Manifold Z: Manifold
-Y: Manifold -Y: Manifold -Z: Manifold -Z: Manifold
Z: Manifold W: Manifold W: Manifold W: Manifold
-Z: Manifold -W: Manifold -W: Manifold -W: Manifold

Table 8. Edges analysis for 3D configurations on the main hyperplanes in 4D configurations 3 to 6.




3. Results

Through a computer program [Pérez,01], the edges analysis for
the 3D configurations embedded in the main hyperplanes of a 4D
configuration, was applied over the 253 configurations for the 4D-
OPP’s and the obtained results are:
= A edge in a 4D-OPP can be classified by three 3D analysis (a 4D
edge can only be present in three of the four main hyperplanes)
as:

= 3 times as manifold and 0 times as non-manifold, or
= 0 times as manifold and once as non-manifold, or
= 0 times as manifold and 3 times as non-manifold, or
= 0 times as manifold and 0 times as non-manifold.
= The above patterns can be found in any 4D configuration
because it can have from 0 to 8 incident edges to the origin.
= Following the analogy with the vertex analysis for 2D
configurations embedded in the main planes of a 3D configuration
(section 2.2), we can propose that if a edge in a 4D-OPP has
been classified in the 3D analysis three times as manifold, then it
can be considered as an Extreme edge, and any other result will
classify it as a Non-Extreme Edge.
= The manifold or non-manifold classification for a edge in a 4D-
OPP is independent of its classification as extreme or non-
extreme. Is the same situation for a vertex in a 3D-OPP, where its
classification as extreme or non-extreme is independent of its
classification as manifold or non-manifold (For the topic of the
characterization of vertices and edges in 3D-OPP’s and 4D-
OPP’s respectively, as manifold or non-manifold see
[Aguilera,03]).
= If we analyze the incident manifold or non-manifold faces that are
incident to an extreme or non-extreme edge in 4D-OPP's, we can
observe that the analogy with the description of extreme or non-
extreme vertices in terms of the incident manifold or non-manifold
edges that are incident to those vertices is preserved, as shown
in Table 9.

Classification Classification
4D 3D
edge (Extreme or vertex (Extreme or
Non-Extreme) Non-Extreme)
E3 Extreme V3 Extreme
E4 Non extreme V4 Non extreme
E4N1 Extreme V4N1 Extreme
E4N2 Non extreme V4N2 Non extreme
ESN Non extreme V5N Non extreme
E6 Non extreme V6 Non extreme
E6N1 Extreme V6N1 Extreme
E6N2 Non extreme V6N2 Non extreme

Table 9. The 4D-OPP's edges classifications and their analogy with
3D-OPP's vertices.

Conclusions and Future Work

The characterization of edges, as Extreme or Non-Extreme,
together with the classification of faces and edges as manifold or
non-manifold (both discussed in [Aguilera,02] and [Aguilera,03]),
provide a solid theorical base for extending the Extreme Vertices
Model (EVM), presented in [Aguilera,97] and [Aguilera, 98], to the
fourth dimensional space (EVM-4D). The EVM-4D will be a
representation model for 4D Orthogonal Polytopes that will allow
queries and operations over them. However, the fact related to a
model purely geometric (four geometric dimensions) is not
restrictive for our research, because it will be applied under
geometries as the 4D spacetime. The first main application for the
EVM-4D covers the visualization and analysis for multidimensional
data and events under the context of a Geographical Information
System (GIS).
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Abstract

This article presents our experimental results for
classifying edges as manifold or non-manifold
elements in 4D Orthogonal Pseudo-Polytopes (4D-
OPP's). For this edges' analysis in 4D-OPP's we have
developed two approaches: 1) The analogy between
incident (manifold and non-manifold) edges to a
vertex in 3D Orthogonal Pseudo-Polyhedra (3D-
OPP's) with incident (manifold and non-manifold)
faces to a edge in 4D-OPP's; and 2) The extension of
the concept of "cones of faces" (which is applied for
classifying a vertex in 3D-OPP's as manifold or non-
manifold) to "hypercones of volumes" for classifying
an edge as manifold or non-manifold in 4D-OPP's.
Both approaches have provided the same results,
which present that there are eight types of edges in
4D-OPP's. Finally, the generalizations for classifying
the n-3 dimensional boundary elements for n-
dimensional Orthogonal Pseudo-Polytopes as mani-
fold or non-manifold elements is also presented.

1. Introduction

Recent interest has been growing in studying

multidimensional polytopes (4D and beyond) for

representing phenomena in n-dimensional spaces.

Some examples include:

e In [Feiner,90] is presented the n-Vision system for
the visualization of n-dimensional spaces. Its
applications are related to the visualization and
control of multidimensional financial data.

o [Wegenkittl,97] presents a visualization interactive
tool for exploring and analyzing multidimensional
dinamical systems. Such systems include chemical
reactions and statistical models.

o [Lees,99] describes Geotouch, a Geographical
Information System (GIS) which includes the time
as a fourth dimension with the objective of visua-
lizing earthquake hypocenters, volcanic eruptions or
other time sequences of events.

e In [Weeks,02] a set of tools for visualizing and
understanding 2 and 3-manifolds are referred,
whose main objective is to analyze the possible
topologies of our universe.

Those examples show how some of these
phenomena's features rely on the polytopes'
geometric and topologic relations. However, due to
the need of visualizing and analyzing these

phenomena (i.e. multidimensional data), it is essential
first to analyze these polytopes and their boundaries
that compose them [Herman,98]. So, this article
covers that first step, in our research, with the
boundary's analysis for classifying edges as manifold
or non-manifold elements in 4D Orthogonal Pseudo-
Polytopes.

2. The 4D Orthogonal Polytopes

2.1 Definition

[Coxeter,63] defines an Euclidean polytope IT, as a fi-
nite region of n-dimensional space enclosed by a
finite number of (n-1)-dimensional hyperplanes. The
finiteness of the region implies that the number Ny.; of
bounding hyperplanes satisfies the inequality Nj.1>n.
The part of the polytope that lies on one of these
hyperplanes is called a cell. Each cell of a I, is an
(n-1)-dimensional polytope, T1y.1. The cells of a ITy1
are Il,.2's, and so on; we thus obtain a descending
sequence of elements T3, In.s,..., 11 (an edge), Ip
(a vertex).

We know that a I3 (a 3D Euclidean polytope) is
a polyhedron. The polyhedron’s cells are IT,. A T1, (a
2D Euclidean polytope) is a polygon. The polygon’s
cells are ITl1. A II; (a 1D Euclidean polytope) is a
segment. Finally, the segment’s cells are Iy, a set of
vertices. The cells of a I14 (a 4D Euclidean polytope)
are I (polyhedra, also called volumes in the context
of H4)

Orthogonal Polyhedra (3D-OP) are defined as
polyhedra with all their edges and faces oriented in
three orthogonal directions ([Joan-Arinyo,88] & [Pre-
parata,85]). Orthogonal Pseudo-Polyhedra (3D-OPP)
will refer to regular and orthogonal polyhedra with
non-manifold boundary [Aguilera,98]. Similarly, 4D
Orthogonal Polytopes (4D-OP) are defined as 4D
polytopes with all their edges, faces and volumes
oriented in four orthogonal directions and 4D
Orthogonal Pseudo-Polytopes (4D-OPP) will refer
to 4D regular and orthogonal polytopes with non-
manifold boundary. Because the 4D-OPP's definition
is an extension from the 3D-OPP's, is easy to
generalize the concept to define n-dimensional
Orthogonal Polytopes (nD-OP) as n-dimensional
polytopes with all their II,.1, ITn-2,..., IT; oriented in n
orthogonal directions. Finally, n-dimensional Ortho-

! In this article we have omitted some background information because it is contained in [Pérez,03a] and [Pérez,03b]. Both
references also have been submitted to this CONIELECOMP Conference. In the following sections will be indicated which
of the references should be consulted to obtain the proper background information.



gonal Pseudo-Polytopes (nD-OPP) are defined as
n-dimensional regular and orthogonal polytopes with
non-manifold boundary.

3. The ITh.3 Analysis for 3D and 4D-OPP’s

3.1 The I Analysis for 3D-OPP’s

There are eight types of vertices (also two non valid
vertices are identified) for 3D-OPP's [Aguilera,98].
These vertices can be classified depending on the
number of two-manifold and non-manifold edges? in-
cident to them and they are referred as V3, V4, V4NL1,
V4AN2, V5N, V6, V6N1 and V6N2 [Aguilera,98] (Table
1). In this nomenclature "V" means vertex, the first
digit shows the number of incident edges, the "N" is
present if at least one non-manifold edge is incident
to the vertex and the second digit is included to
distinguish between two different types that otherwise
could receive the same name.

V3 V4

//

V4N1

V5N V6

V4N2

Non valid vertex 1
N

Non valid vertex 2

Table 1. Vertices present in 3D-OPP's (dotted lines
indicate non-manifold edges and continuous lines
indicate manifold edges).

Each vertex has the following properties [Aguilera,98]:

o V3: all three incident edges are two-manifold and
perpendicular to each other. It is present in 3D
configurations3 b, f, 0 and u.

o VV4: all four incident edges are two-manifold, they lie
on a plane, and can be grouped in two couples of
collinear edges. It is present in configuration j.

e VAN1: three of its four incident edges are
perpendicular to each other and also two-manifold
ones, while the fourth is non-manifold and collinear

2 The characterization as manifold or non-manifold for edges
in 3D-OPP’s and faces in 4D-OPP’s is resumed in
[Pérez,03a].

® The nD-OPP’s can be represented and/or decomposed by
a set of configurations or equivalence classes. See
[Pérez,03b] for an introduction to this topic.

to one of the other three. It
configurations g and p.

e VAN2: two of its four incident edges are two-
manifold and collinear, while each of its other two is
non-manifold and perpendicular to the other three. It
is present in configuration k.

¢ VV5N: four of its five incident edges are two-manifold
and lie in a plane, while the fifth is non-manifold and
perpendicular to the rest of them. It is present in
configurations d and s.

e V6: all six incident edges are two-manifold. It is
present in configurations e, | and t.

¢ V6N1: three of its six incident edges are
perpendicular to each other and also two-manifold
ones, while each of its remaining three edges is
non-manifold and collinear to one of the first three. It
is present in configurations h and q.

e V6N2: all of its six incident edges are non-manifold.
It is present in configuration n.

e Non valid vertex 1: its two manifold edges are
collinear. It is present in configurations ¢ and r.

¢ Non valid vertex 2: its two non-manifold edges are
collinear. It is present in configuration m.

is present in

3.2 The I1; Analysis for 4D-OPP’s

Vertices can be defined in terms of the manifold or
non-manifold edges that are incident to these vertices
in 3D-OPP's [Aguilera,98]. The same process will be
extended to describe edges in terms of the manifold
or non-manifold faces® that are incident to those
edges in 4D-OPP's. In this way, we have identified
eight types of edges and two non valid edges. We will
also extend the nomenclature used by [Aguilera,98] to
describe them. Such edges will be referred as E3, E4,
E4N1, E4N2, E5N, E6, E6N1 and E6N2 (Table 2).
The only difference with the nomenclature used to
describe the vertices is that "E" means edge instead
of "V" that means vertex.
Each edge has the following properties:

e E3: all three incident faces are two-manifold and
perpendicular to each other.

e E4: all four incident faces are manifold and lie on a
hyperplane, and they can be grouped in two
couples of coplanar faces.

e EAN1: three of its four incident faces are
perpendicular to each other and also two-manifold
ones, while the fourth is non-manifold and coplanar
to one of the other three.

e E4AN2: two of its four incident faces are two-manifold
and coplanar, while each of its other two is non-
manifold and perpendicular to the other three.

e E5N: four of its five incident faces are two-manifold
and lie in a hyperplane, while the fifth is non-
manifold and perpendicular to the rest of them.

¢ EG6: all six incident faces are two-manifold.

e E6N1: three of its six incident faces are
perpendicular to each other and also manifold ones,
while each of its remaining three faces is non-
manifold and coplanar to one of the first three.



e E6N2: all of its six incident faces are non-manifold.

e Non valid edge 1: its two manifold faces are
coplanar.

e Non valid edge 2: its two non-manifold faces are
coplanar.

It results interesting that the number, classi-
fications and positions of the incident faces to an
edge in 4D-OPP's are analogous to the way that a set
of edges are incident to a vertex in 3D-OPP's.

E3 E4

NN

E4N1

N
ANEN

E5N E6

E4N2

Non valid ed?e 1

E6N2
N
C X : I\
N XI - —| Non valid edge 2
\/\l A & L
Table 2. Edges present in 4D-OPP's (dotted lines

indicate non-manifold faces and continuous lines indicate
manifold faces).

3.3 Classifying the TIp in Polyhedra Through its
Cones of Faces

A polyhedron is a bounded subset of the 3D
Euclidean Space enclosed by a finite set of plane
polygons such that every edge of a polygon is shared
by exactly one other polygon (adjacent polygons)
[Preparata,85]. A pseudo-polyhedron is a bounded
subset of the 3D Euclidean Space enclosed by a finite
collection of planar faces such that every edge has at
least two adjacent faces, and if any two faces meet,
they meet at a common edge [Tang,91].

Edges and vertices, as boundary elements for
polyhedra, may be either two-manifold (or just
manifold) or non-manifold elements. In the case of
edges, they are (non) manifold elements when every
points of it is also a (non) manifold point, except that
either or both of its ending vertices might be a point of
the opposite type [Aguilera,98]. A manifold edge is
adjacent to exactly two faces, and a manifold vertex is
the apex (i.e., the common vertex) of only one cone
of faces. Conversely, a non-manifold edge is adja-
cent to more than two faces, and a non-manifold

vertex is the apex (i.e., the common vertex) of more
than one cone of faces [Rossignac,91].

3D . . e
vertex Configuration(s) Classification
V3 b,f, 0,u Manifold
V4 i Manifold
V4N1 | g, p Non-manifold
VAN2 |k Non-manifold
V5N d,s Non-manifold
V6 et Non-manifold in

configurations e and t.
Manifold for configuration |I.
VEN1 | h, g Non-manifold
V6N2 |n Non-manifold

Table 3. 3D-OPP's vertices classification.

Using the concept of cones of faces it is easy to
construct an algorithm to determine the classification
of a vertex as manifold or non-manifold in any
polyhedron or pseudo-polyhedron. Using this algo-
rithm over the possible vertices in 3D-OPP's we have
the results presented in Table 3 which coincide with
those presented by [Aguilera,98].

3.4 Classifying the I11in 4D Polytopes Through its
Hyper-Cones of Volumes

Due to the analogy between 3D-OPP's vertices
described in terms of their incident manifold or non-
manifold edges, and 4D-OPP's edges described in
terms of their incident manifold or non-manifold faces,
the next logical step is to extend the concept of cones
of faces presented in section 3.3 to classify 4D poly-
topes' edges as manifold or non-manifold.

Faces, edges and vertices, as boundary ele-
ments for 4D polytopes, may be either manifold or
non-manifold elements. [Coxeter,63] has stated that a
manifold face is adjacent to exactly two volumes, and
now we suggest that a manifold edge is the common
edge (apex) of only one hyper-cone of volumes.
Conversely, it has been suggested that a non-
manifold face is adjacent to more than two volumes
[Aguilera,02], and now we suggest that a non-
manifold edge is the common edge (apex) of more
than one hyper-cone of volumes.

Using the concept of hyper-cones of volumes, it
is easy to extend the algorithm for obtaining the
vertex classification for 3D-OPP’s used for section
3.3, to allow us classifying an edge, as manifold or
non-manifold, in any 4D polytope or 4D pseudo-
polytope. The algorithm will be defined with the
following steps (1 to 6):

1 Get the set of I13's that are incident to edge A
(aTl).

2 From the set of ITs’s select one of them.

3 The selected IT; has two IT;'s that are incident
to A, get one of them and label it as START
and ANOTHER.



4 Repeat
If the number of IT3's to ANOTHER is more
than one, then A is a non-manifold II;.

End.

4.2 The ANOTHER TII; is common to another
113, find it.

4.3 The II3 has another I, that is common to
A, find it and label it as ANOTHER.

4.4 Until START = ANOTHER (it has been found a

hyper-cone of volumes).

5 If there are more Il3's to analyze then A is non-
manifold (there are more hyper-cones of
volumes). End.

6  Otherwise, A is manifold (A is the common
edge of only one hyper-cone of volumes). End.

See the next code for an implementation of the
algorithm in a high level language, Java [Gosling,00].
For this code, an edge "e" is evaluated to classify it as
manifold or non-manifold. If the edge is manifold (and
for instance, the apex of only one hyper-cone of
faces), then the method returns true, otherwise, the
edge is non-manifold (it is the apex of more than one
hyper-cone of faces) and it returns false.

boolean isManifoldEdge(Polytope p, Edge e)
{
Volume volumes|[ ]=getVolumesincidentToEdge(p,e);
Volume v = selectAndRemoveVolume(volumes);
Face f1 = getincidentFaceToEdge(v, e);
Face start = f1;
Face another = f1;
do{ //do-while begins
if(getNumberOfincidentVolumesToFace
(volumes,another) > 1)
return false;
v=removeVolumelncidentToFace(volumes,another);
another=getincidentFaceToEdge(v,another,e);
} while(another != start); //do-while ends
if(volumes.length > 0) return false;
return true;

}

4D Classification 3D Classification

edge through h yper- vertex through
cones of volumes cones of faces

E3 Manifold V3 Manifold
E4 Manifold V4 Manifold
E4N1 | Non-manifold VAN1 Non-manifold
E4N2 [ Non-manifold V4AN2 Non-manifold
E5N [ Non-manifold V5N Non-manifold

E6 Non-manifold when | V6 Non-manifold
2 or 6 hypervolumes for
are incident to it. configurations

Manifold when 4 eandt.

hypervolumes are Manifold for

incident to it. configuration |.
E6N1 [ Non-manifold V6N1 Non-manifold
E6N2 [ Non-manifold V6N2 Non-manifold

Table 4. 4D-OPP’s edges classifications and their
analogy with 3D-OPP's vertices.

4. Results

Using the algorithm presented in section 3.4 over the
possible edges in 4D-OPP’s we have that the edges'
classifications are analogous to the 3D-OPP’s ver-
tices’ classifications. Table 4 shows the edges’ classi-
fications given by the extended algorithm and their
analogous 3D results.

4.1 Classifying the Ily3 in nD Polytopes Through
its nD Hyper-Cones of ITn.1's

Due to the analogy found between 3D vertices and
4D edges with the extension of the concept of cones
of faces, is feasible to generalize the algorithm
presented in section 3.4 to classify the I3 as
manifold or non-manifold in nD polytopes through
their nD hyper-cones of TIn1's. The proposed general
algorithm is the following:

1 Get the set of IT.;'s that are incident to I3 A.

2 From the set of I1,.1's select one of them.

3 The selected II,; has two II,.'s that are
incident to TIn.3 A, get one of them and label it
as START and ANOTHER.

4 Repeat

4.1 If the number of incident TIni's to

ANOTHER is more than one, then A is a
non-manifold ITn-3. End.

4.2 The ANOTHER TII,.; is common to another

ITn.q, find it.

4.3 The II,.1 has another I1,, that is common

to A, find it and label it as ANOTHER.

4.4 Until START = ANOTHER (it has been found a

nD hyper-cone of T1n.1'S).

5 If there are more IT,.1's to analyze then I3 A is
non-manifold (there are more nD hyper-cones
of Ip-1's). End.

6 Otherwise, ITn3 A is manifold (A is the common
IT,-3 of only one nD hyper-cone of I,.1's). End.

4.2 The Eight Types of I1,3's in nD Orthogon al
Pseudo-Polytopes

Due to the analogy between vertices in 3D-OPP’s and
edges in 4D-OPP’s (see Table 4), we can extend their
properties to propose the eight types of II,.3's in nD
Orthogonal Pseudo-Polytopes. Such II,.3's will be
referred as T1,.33, .34, [n-34N1, T1n34N2, TIn35N,
I1,-36, I1n-36N1 and I1,.36N2. In this nomenclature (just
as the used in sections 3.1 and 3.2) "II,.3" indicates
the (n-3)-dimensional element (i.e. vertices in 3D-
OPP’s and edges in 4D-OPP’s), the first digit shows
the number of incident T (i.e. edges in 3D-OPP’s
and faces in 4D-OPP’s), the "N" is present if at least
one non-manifold ITy., is incident to the TIy3 and the
second digit is included to distinguish between two
different types that otherwise could receive the same
name.



For each TI,3 we can expect the following
properties:

e [1,33: all three incident Il,,'s are manifold and
perpendicular to each other.

e I1,34: all four incident Il,,'s are manifold, they lie
on a hyperplane, and can be grouped in two
couples of co-hyperplanar IT;.»'s.

e [1,34N1: three of its four incident II,,'s are
perpendicular to each other and also manifold ones,
while the fourth is non-manifold and co-hyperplanar
to one of the other three.

o [1,.34N2: two of its four incident I1,.2's are manifold
and co-hyperplanar, while each of its other two is
non-manifold and perpendicular to the other three.

e I1,35N: four of its five incident I1,.,'s are manifold
and lie in a hyperplane, while the fifth is non-
manifold and perpendicular to the rest of them.

e [1,.36: all six incident Iy.»'s are manifold.

o [1,.36N1: three of its six incident TII,.'s are
perpendicular to each other and also manifold ones,
while each of its remaining three TI,;'s is non-
manifold and co-hyperplanar to one of the first
three.

e [1,36N2: all of its six incident Il,,'s are non-
manifold.

5. Future Work

The results of this article are being used in studying
the extension for the Extreme Vertices Model (EVM)
[Aguilera,98] to the fourth dimensional space (EVM-
4D). The EVM-4D will be a representation model for
4D Orthogonal Polytopes that will allow queries and
operations over them. However, the fact related to a
model purely geometric (four geometric dimensions)
is not restrictive for our research, because it will be
used under geometries as the 4D spacetime. The first
main application for the EVM-4D covers the
visualization and analysis for multidimensional data
under the context of a Geographical Information
System (GIS).
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RESUMEN

Este aticulo presenta un método ra desenvalver a hipercubo
y formar la auz tridimensional (teserado) que rresponce d
hiperaplanamiento de su frontera El envdver el hipercubo
implicaa glica € método a la inversa. También se presenta
un méodo pra visudiza dichos procesos. Las
transformadones a glica incluyen rotadones arededor de
planos (propias del espado 4D). Dichos procesos n
visudizados a través de un sistema de aimadon pa
computadora.

Palabras Claves: Modelado 4D, Animadon 4D, Geometria
Computadonal, Interrogadones y Razonamiento Geométrico.

1.INTRODUCCION

Coxeter [5], Rucker [12], Kaku [9], Robbn [1Q] vy
Banchoff [2] inician sus introducciones al estudio del espado
4D aplicendo tres métodas de visuaizaddn sobre @ hipercuba
observadén ce sus ombras (proyeccion), sus intersecdones
conel espado 3D y através de sus "unravelings'.

Examinar las ©mbras de un pditopoconsiste en que s es
posible hace dibujos de solidos 3D cuando éstos n
proyedados ohre un dano, entonces es pasible hace dibujos o
modelos tridimensionales de los padlitopos 4D cuando estos n
proyedados bre un hperplano[5].

Boy-f

Figura 1. Proyeca6n ce un cubosobre un gdano.

En el primer caso, y siguiendo la analogia presentada en
"Flatland" [1] si unser 3D quiere mostrar un cuboa un ser 2D
(un “flatlander”), entonces e primero deberd proyedar la
sombra del cuerpo sobre d plano en € que d flatlander habita.
En este ca&o, la figura proyedada podia ser, pa giemplo, un
cuadrado dentro de otro cuadrado (figura 1) llamada proyecdon
central.

Para d caso en que un ser 4D quisiera mostrarnas un h-
percubo, é debe proyedar la sombra de é&te sobre d espado
3D en que vivimos. El cuerpo poyedado podria ser un cubo
dentro de otro cubo[9] (figura 2) también llamada proyecdén
central. Sabemos que un cubo poyedado sobre un dano es
s0lo ura representaddn aproximada. Andlogamente, €l
hipercubo poyedado sobre d espado 3D es también ure
representad 6n aproximada del red.

Figura2. Proyecddn ce un hpercuboen € espado 3D.

El método cklos "unravelings' consiste en que si uncubo
puede ser desenvuelto en ura auz bidimensional compuesta
por las wis caras que forman su frontera (figura 3) entonces, y
en forma andloga, un hipercubo plede ser también desenvuelto
en um auz tridimensional compuesta por los ocho cubos que
forman su frontera [9]. C. H. Hinton nambré a esta auz
tridimensional teseracto (figura 4).

o

Figura 3. Desenvolvimiento de uncubo.

Figura4. El hipercubo desenvuelto (teseraco).

Un flatlander visualizara la auz bidimensional pero no
tendra la cgaddad para ensamblarla nuevamente en un cubo
(aln cuando contase @n las instrucciones espedficas), debido a

! Todas las referencias consultadas utili zan e verbo inglés "unravel" paraindicar la acidn ce hace coincidir los voltimenes (o las caras)
de un hipercubo 4 (0 uncubo) con un hperplano (0 un pano). Los términaos en castell ano ili zados en este aticulo parahace referencia
atal acdoén seran desenvolver o hiperaplanar (4D). También € término "unravelings' debera entenderse amo el conjunto de volimenes
(o caras) de un hipercubo (o uncubg) alos que yafue glicadala acton de desenvalvimiento.



gue es necesaria la trasadén ce sus caras correspondentes en
direcddn ce latercera dimensién y la rotadén arededor de un
ge (transformadones fisicamente imposibles en el espado 2D).
Pero duante d proceso de ensamblado, este flatlander si podra
visualizar la proyecdon ck las caras del cubo sobre d espado
2D en ge habita.

Por analogia, nosotros podemos visudizar la aquz
tridimensional pero no tendremos la cgaddad para
ensamblarla nuevamente en un hipercubo, dbido a que e
necesaria la trasladén de sus cubes frontera en drecdon e la
cuarta dimensién y la rotaddn drededor de un pgdano
(transformadones fisicanente imposibles en € espado 3D).

Analizar € hipercubo es también interesante debido a que
puede ser redizado wsandoel reaurso de laanalogia wn el cubo
y las visualizadones descritas antes. Hilbert [7] ha determinado
gue un hpercubo esta formado dedséis vértices, veinticuatro
caas y pa ocho cubcs (que también son llamados cddas o
volumenes). Coxeter [4] también agrega que cala caa e
compartida por dos cubos que no se encuentran en el mismo
espado tridimensiond dado qie forman un anguo redo a
través de unarotadén arededor del plano ce sopate de la caa
compartida. Estas propiedades pueden ser claramente visibles a
través de la proyecdon dal hipercubo popuesta por Claude
Bragdon (figura 5) (véase [11] para un andlisis bre la
obtencion e esta proyecdén).

W Y z

AN /

Figura5. El hipercubocon groyecdén ce Bragdon.

2.PROBLEMA

Kaku [9] y Banchoff [2] describen con cetalle e modelo
de representaddn cel hipercuboatravés de sus "unravellings' y
mencionan la incgpaddad fisica de un ser 3D para envaverlo
nuevamente debido a las transformadones que se requieren.
Kaku [9] y Banchoff [2] también describen que s
presenciaramos €l proceso de evavimiento, siete de los ocho
cubcs que forman la aquz desaparecaian repentinamente
debido a que ya se han movido hada la warta dimension. Sin
embargo no propacionan ura metoddogia que indique las
transformadones y sus parametros necesarios para gecutar
dicho procedimiento. A pesar de dicha incapaddad nuestra, lo
gue si podemos es visualizar una proyecdon ck los cubos de la
frontera del hipercubo en nuestro espado 3D durante su
desenvavimiento y ensamblado.

Este aticulo presenta un método para desenvolver a
hipercubo y formar la auz tridimensional (teserado) que
corresponce d hiperaplanamiento de su frontera (figura 6). El
envalver € hipercuboimplicard glicar el método a la inversa.
Las transformadones a gli car incluyen rotadones arededor de
plancs. Dicho poceso poda ser visuaizado a través de un
sistema de animadon pa computadora.

3.METODOL OGIA PARA DESENVOLVER UN
HIPERCUBO
En primer lugar habran de tomarse las sguientes
consideradones afin de hace mésfadl el proceso:
e Laposicion el hipercuboen el espado 4D.
e Selecdonar un hperplano (subespado 3D inmerso en €l
hiperespado) hada d que los volimenes sran drigidos.

e Establece anguos de giro que garanticen que todcs los
volumenes quedaran completamente inmersos en e
hiperplano selecdonado.

e Durante su movimiento hada d hiperplano selecdonado,
todas los volimenes deberdn mantener una reladén de

adyacenciade caa wn dro vdumen.
Y

" 2

X \ N

-Y
Figura 6. El paso del hipercuboal teserado.

Lapasicion cel hipercuboen el espado 4D es esencial ya
gue de dla dependeran los planos de rotaddn alrededor de los
cuales deberan grar los volimenes para ser posicionados hre
un hperplano. Por lo tanto se determinar4 que uno c los
vértices del hipercubo coincida @n € origen, qe seis de sus
caras coincidan cada una @n alguno e los plancs XY, YZ,
ZX, XW, YW y ZW y que todas |as coordenadas san pasitivas
(véase [2] parala metoddogia para obtener las coordenadas de
los vértices del hipercubg). Las coordenadas a usar se presentan
enlatablal (cadavértice es numerado arbitrariamente).

Vértice | X| Y | Z | W
0 0| O 0 0
1 11 0 0 0
2 0| 1 0 0
3 1 1 0 0
4 0| O 1 0
5 11 0 1 0
6 0| 1 1 0
7 1] 1 1 0
8 0| O 0 1
9 11 0 0 1
10 0| 1 0 1
11 1] 1 0 1
12 0| O 1 1
13 1|1 0 1 1
14 0| 1 1 1
15 11 1 1 1

Tabla 1. Las coordenadas del hipercuboadesenvalver.

Asi como lapasicion del hipercuboen el espado 4D tiene
relad6n con los planos de rotadon a utili zar, también la tendra
el hiperplano selecdonado sobre @ que los volUmenes
finalmente seran pasicionados. Si se observan las coordenadas
de los vértices del hipercubo, se encontrara que ocho e dlas
presentan W=0, esto se traduce en que uno ck los vollimenes
del hipercubo (el formado pa los vértices 0-1-2-3-4-5-6-7)
tiene por hiperplano de sopate a W=H. Selecdonar e
hiperplano W=0 es conveniente ya que uno c los volimenes
ya esta "naturalmente inmerso" en el espado 3D y por lo tanto
no requerira transformadones posteriores.



Volumen Etiquetay Vértices
Y P
‘v\»‘\ /
Volumen A
\ (0-1-2-3-4-5-6-7)
Y Z
\ Volumen B

(0-1-2-3-8-9-10-11)

Volumen C
(0-2-4-6-8-10-12-14)

Volumen D
(0-1-4-5-8-9-12-13)

Volumen E
(8-9-10-11-12-13-14-15)

Volumen F
(4-5-6-7-12-13-14-15)

AN Volumen G
N\ (1-3-5-7-9-11-13-15)
N\
;
Y
\ AN Volumen H

(2-3-6-7-10-11-14-15)

Tabla2. Los ocho vdUmenes del hipercubo.

Ahora también es conveniente identificar los volimenes
gue forman a hipercubo a través de sus vértices y asignarles
una diqueta para futuras referencias. Hasta éhoraya se tiene un
volumen identificado, €l formado pa los vértices 0-1-2-3-4-5-
6-7 y serallamado vdumen A. Véase latabla 2.

Dado qie d volumen A ya habia sido descrito como
"naturamente inmerso" en € espado 3D y por lo tanto no
requerira de transformadones, es por lo tanto el volumen que
ocupard la posicion central de la "cruz" y sera llamado en lo
sucesivo el "volumen central".

Volumen adyacente (previo | Posicion en el espacio 3Dy
alarotacion), planoy en el teseracto despuésdela
angulo derotacion rotacion
Y 5 \ Y 7
W /
AN
( :
X
B, XY, 90° Enfrente (-2)
z Y /z
W,
C, YZ -90° Izquierda (-X)
Y z Y z
W \
X
X
’
D, ZX, 90° Abajo (-Y)
Y z Y z
\r'\& \
X X
F, XY, -90° Atrés (+2)
Y /Z Y /z
W /
\
X X
G, YZ -90° Derecha (+X)
/\‘/Z Y /Z
W AN
H, ZX, -90° Arriba (+Y)

Tabla 3. Transformadones apli cadas a los volumenes
adyacentes.



De los volimenes restantes, aquell os que tengan adyacen-
ciade caa on el volumen central podian ser rotados con fad-
lidad hada nuestro espado 3D debido a que su plano ce rota-
cién es claramente identificable. Estos volimenes rotardn are-
dedor del plano ¢k soporte de la caa que cmpartan con €
cubocentral y que seran llamados "volUmenes adyacentes'. Los
volU-menes adyacentes ©n B, C, D, F, G y H. El volumen
restante, E, sera llamado "volumen satélite" y se tratard més
adelante.

Todos los volimenes adyacentes giraran anguos redos,
asl se garantiza que su coordenada W seaigual a ceo, pero es
importante tener en cuenta la direcdaén ce giro ya que de lo
con-trario los volumenes podrian ura vez rotados coincidir con
el volumen central. Los planocs de rotadon y la direcaon para
cada volumen adyacente son presentados en la tabla 3 (en las
iméage-nes ® incluye también al volumen centra sdlo para
referenciar la posicion inicid 'y finad del volumen
correspondente).

En este purto ya tenemos a 7 de los 8 vdumenes del
hipercubo colocados en su pasicion fina (los volimenes A, B,
C, D, F, Gy H). El volumen que ha de presentar la serie de
transformadones més complgja & e E, esto es por las
siguientes dos particul aridades:

e Su hiperplano de soparte es paralelo a del volumen central,
por lo tanto noexiste ninguntipo ce alyacencia @n éste (de
ahi que no fue designado como vdumen adyacente).

e De las posiciones por ocupar en la "cruz" ain fata aquella
que corresponce d volumen mas aleado del volumen central
(en la parte inferior, segin la figura 4). El volumen que
ocupara esta posicion serd @ E, es por esta razdn pa la que
fue llamado con anterioridad voumen satélite.

Posicién actual Transformacion

Y A

W

Rotadon de los vold-
menes D y satélite dre-
dedor del plano ZX (90°).

W, i z Volumen D en s

posicion final. Rotadon
del volumen satélite 90°
drededor de la caa
7/ compartida @n & volu-
men D (plano paralelo a
ZX).

Volumen satélite en su
posicion  fina  (parte
inferior de la aquz sobre
e ge-Y).

-W
-Y

Tabla 4. Transformadones asociadas al volumen satélite
(volumen E).

Al inicio del documento se menciona la necesidad de que
los volimenes durante su movimiento hada € hiperplano
selecdonado deberdn mantener una reladon ce alyacencia de
caa mn dro vdumen. Los volimenes B, C, D, F, Gy H son

los sis que comparten ura caa @n el volumen central (el cual
se mantiene estético durante todo el proceso). Para determinar
las transformadones que se @licardn a volumen satélite, es
necesario determinar con qé volumen compartira una caa. El
volumen central ya se encuentra descartado, y & los restantes
cualquiera puede serlo. En este trabgjo, el volumen D sera
selecdonado como aquel con € que d volumen satélite
compartirduna caadurante d hiperaplanamiento.

Para d volumen D ya se habia determinado su gano ce
rotadén yladirecdén correspondentes (plano ZX, 909 que lo
llevardn a su pasicion fina. El volumen satdlite inicialmente
tendra también estos parametros de movimiento. Esta e una
forma de asegurar que anbos volUmenes compartan la caa
correspondente.

Cuandoel volumen D ha finalizado sus movimientosy ha
quedado en su pasicion final, € hiperplano e sopate del
volumen satélite sera perpendicular a hiperplano selecdonado
y la caa cmmpartida sera paralela d plano ZX. El movimiento
adicional que debera glicarse d volumen satélite serd un gro
de 90° arededor del plano representado pa la caa mmpartida.

La serie de movimientos a geautar sobre d volumen
satélite se resumen en la tabla 4 (los volimenes centra y D se
muestran también).

Ahora han sido determinadas las transformadones con las
que @ hipercubo sera desenvuelto. Para envalverlo solo habra
que @licar e proceso presentado pero a la inversa
(considerando que ladirecddn ce los anguos ea ontraria ala
usada para desenvalver).

4. IMPLEMENTACION
Rotaciones en e Espacio 4D

Banks [3] y Hollasch [8] han identificado qe si en e es-
pado 2D unarotadon es dada drededor de un purio yen el es-
pado 3D es dada drededor de unalineg entonces en el espado
4D, en forma andloga, deberd estar dada drededor de un gano.

Hollasch [8] considera que las rotadones en e espado
3D deben ser consideradas como rotadones paralelas a un
plano 2D en lugar de rotadones alrededor de un gje. Holl asch
[8] apoya esta idea ®nsiderando que dado un @igen de
rotaddn y un puio destino en el espado 3D, € conjunto de
todos los purtos rotados para una matriz de rotadon ceda
coinciden en un solo pano, el cua es llamado e plano
rotadon. Ademés, e ge de rotad6n en € espado 3D coincide
con el vedor normal del plano dce rotaddn. El concepto de
plano dce rotadon es consistente mn el espado 2D debido aque
todos los purtos rotados coinciden en € mismo y drico plano.
Finamente, usando las ideas anteriores, Hollasch [8] construye
las ®is matrices de rotaddn 4D bésicas arededor de los planos
principales en el espado 4D (los planas XY, YZ, XZ, XW, YW
y ZW) basado en e hecho & que sdlo dos coordenadas
cambian para una rotadon ceda (las coordenadas cambiantes
correspon-den al plano derotadon).

Usando estas idess, Duffin [6] generaliza ¢ concepto de
rotadén en unespado nD (N > 2) como larotadén ce un gje
Xa en drecddn hada un gje Xb. El plano descrito pa los ges
Xay Xb eslo gue Hollasch [8] definié como plano ce rotadon.
Duffin [6] presentala siguiente matriz general de rotadon:
r,=1 izai#b
r,, = Cosd
I, = CosY
r, =—Sing
I, =Sin@

r; =0 elsewhere

Rab(g) =5




Lamatriz R, (9) esunamatriz identidad excepto en las

intersecdones de las columnas ay b con los rengones ay b.
Debido a que en un espado nD existen C(n,2) planos
principales, este nimero es predsamente d nimero de
rotadones principales (y bésicas) paratal espado.

A partir de estos conceptos, se debe cnsiderar que una
rotadon piede ser referenciada usando de notadones: usando
los gjes que describen el plano derotaddn o wsandolos ges que
describen el subespado (n-2)D que se encuentra fijo durante la
rotadon. En este documento las rotadones en € espado 4D
han sido referenciadas usandola segunda natad6n.

Proyecciones 4D-3D-2D

Banks [3] establece que las mismas témicas utili zadas
para la proyecdén ce objetos 3D sobre planos 2D pueden ser
aplicadas para la proyecddn ce palitopcs 4D sobre hiperplanas
3D (nuestro espado 3D por gemplo). Entonces * tendra que
una proyecadn paralela 4D-3D (0 hien, la diminaddn ce la
coordenada W de los purtos del pditopo) es:

Px, v, z WrP(X vy 2

Una proyecddn perspediva 4D-3D se define aando €
centro de proyecddn se encuentra sobre € ge W auma
distancia pw del origen. Si € hiperplano de proyecd6n es W =
0 entonces s tendra que un purio P serd proyedado como:

Debido a que una proyecdon 4D-3D prodiwcira un
volumen como la "sombra' de un pditopo 4, Hollasch [8]
considera vdlido pocesar tal volumen con aguma de las
proyecdones 3D-2D (pardela o perspediva) para ser
finalmente proyedado en ura pantalla de mmputadora. De esta
manera, se tendran cuatro pasibles proyecdones 4D-3D-2D:
® Proyecdon Perspediva4D-3D - Proyecdon Perspediva 3D-2D.
e Proyecddn Perspediva 4D-3D - Proyecaon Paralela 3D-2D.
e Proyecddn Paralela4D-3D - Proyecdén Perspediva 3D-2D.
e Proyecddn Paralela4D-3D - Proyecdén Paralela 3D-2D.

Por gemplo, el hipercubo presentado en la Figura 1 tiene apli-
cadas las proyecdones perspediva 4D-3D y perspediva 3D-
2D.

5.RESULTADOS

En la Tabla 5 se presentan algunes fases de la seaiencia
del desenvolvimiento del hipercubo. En las imégenes 1 a 6 las
rotadones aplicadas ©n+0°, £15°,+30°,+45°,£60° y+75° (el
sentido e la rotadon depende del volumen adyacente). En la
imagen 7, la rotaddn aplicada es +82°% el volumen satélite se
apreda cmo un pano -un efedo prodwido pa la proyecdon
4D-3D aqui selecdonada. En laimagen 8, la rotad6n aplicada
es £90° los volumenes adyacentes finalizen sus movimientos.
En las imégenes 9 a 14, e volumen satélite se mueve indepen-

[ X pw Y- pw Z- pw dientemente y las rotadones aplicadas respedivamente son
Px y z wiP ( S lr— pW_W] +15°,430°, +45°, +60°, +75° y+90°.
1 2 3 4 5
A
' U ’ 4
6 7 8 9 10

—_— —

L 4

Tabla 5. Desenvalviendoa Hipercubo 4 (véase d texto paralos detall es).

!r ’-r .’r -r .




Actualmente, e resultado olienido en esta investigadon
es usado eficaamente @mo material didadico en la
Universidad de las Américas - Puebla, México.

6. TRABAJO FUTURO
Observando los unravelings para un cuadrado (un cubo
2D), el cubo yel hipercubo 4; podemos generdizar a hiper-
teseracto n-dimensional (n>1) como €l resultado dal desenvol-
vimiento de un hipercubo (n+1)-dimensional con las sguientes
propiedades:

e El hipercubo (n+1)-dimensiona tendrd 2(n+1) cddas n-
dimensionales obre su frontera.

e Una cdda catra permaneced estaticadurante @ proceso de
desenvalvimiento/ envolvimiento.

e 2(n+1)-2 cddas sran adyacetes ala ceda cantral. Todas las
cddas compartiran ura céda (n-1)-dimensional con la cedda
central.

e Una cdda satélite no serd alyacente ala céda central debido
a que sus hiperplanos de soparte son peralelos. Esta sera a-
yacente a wialquiera de las cddas adyacentes (compartira una
cdda (n-1)-dimensiond con la cdda ayacete
selecdonada).

e Todas las cddas adyacentes y satélite durante & proceso de
desenvalvimiento/ envalvimiento rotardn +90° alrededor del
hiperplano & sopate de las cddas (n-1)-dimensionaes
compartidas.

Por gemplo, e hiper-teseracdo 4D es € resultado ol
desenvalvimiento de un hipercubo D. El hiper-teseracdo 4D
estard ompuesto pa 10 hiper-volimenes, unode dlos ra d
hiper-volumen central (estético), ocho seran adyacetes a
hiper-volumen central (comparten unvolumen) y el Ultimo seré4
el hiper-volumen satélite (éste mmparte un vdumen con
cualquiera de los volUmenes adyacentes). Véase la Figura 7.
L os hiper-volumenes adyacentes y satélite rotaran arededor de
un vdumen o un fhiperplano duante d proceso de desenvalvi-
miento/envolvimiento.

N } /
/N
}

Figura7. Las posibles reladones de alyacencia entre € hiper-
volumen centra y |os hiper-volimenes adyacentes y satélite
que formaran a hiper-teserado 4D.

En este trabgjo se ha propuesto un método pra €
desenvalvimiento del hipercubo 4 y ohtencién el teserado.
También se ha propuesto ura generalizadén para describir las
propiedades del hiper-teseraco ndimensional, el resultado cel
desenvalvimiento de un hpercubo (n+1)-dimensiona. En €
espado 5D lasrotadones tienen lugar alrededor de un vdumen,
mientras que en el espado 6D tienen lugar arededor de un
hiper-volumen y asi sucesivamente. Esta e una de las
direcdones a seguir en nuestra investigadon a fin de obtener
los parametros necesarios para llevar a dedo €
desenvolvimiento del hipercubo . Ademés, otra direcdon a
seguir tiene reladdn con las rotadones arededor de planas
arbitrarios en e espado 4D (analogamente a las rotadones
alrededor de ges arbitrarios en el espado 3D). Al definir los
procedimientos necesarios para la rotad6n arededor de planos
arbitrarios, la posicion del hipercubo puede no ser relevante.
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