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c© Henrik Melbéus, April 2012
Printed in Sweden by Universitetsservice US AB, Stockholm April 2012



Abstract

This thesis is an investigation of the subject of extra dimensions in particle physics.
In recent years, there has been a large interest in this subject. In particular, a
number of models have been suggested that provide solutions to some of the problem
with the current Standard Model of particle physics. These models typically give
rise to experimental signatures around the TeV energy scale, which means that
they could be tested in the next generation of high-energy experiments, such as the
LHC. Among the most important of these models are the universal extra dimensions
model, the large extra dimensions model by Arkani-Hamed, Dimopolous, and Dvali,
and models where right-handed neutrinos propagate in the extra dimensions.

In the thesis, we study phenomenological aspects of these models, or simple mod-
ifications of them. In particular, we focus on Kaluza–Klein dark matter in universal
extra dimensions models, different aspects of neutrino physics in higher dimensions,
and collider phenomenology of extra dimensions. In addition, we consider conse-
quences of the enhanced renormalization group running of physical parameters in
higher-dimensional models.

Key words: Higher-dimensional quantum field theories, universal extra dimen-
sions, Arkani-Hamed–Dimopolous–Dvali (ADD) model, hierarchy problem, Kaluza–
Klein dark matter, neutrino mass, seesaw mechanism, leptonic mixing, renormal-
ization group running, collider phenomenology, Large Hadron Collider
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Sammanfattning

Denna avhandling är en studie inom ämnet extra dimensioner i partikelfysik. Under
senare år har det funnits ett stort intresse för detta ämne. I synnerhet har ett antal
modeller föreslagits som tillhandah̊aller lösningar p̊a n̊agra av problemen med den
nuvarande standardmodellen för partikelfysik. Dessa modeller ger vanligtvis upphov
till experimentella signaturer runt TeV-energiskalan, vilket innebär att de kan testas
i nästa generation av högenergiexperiment, s̊asom LHC. Bland de viktigaste av
dessa modeller är universella extra dimensioner, stora extra dimensioner, som har
föreslagits av Arkani-Hamed, Dimopolous och Dvali, och modeller där högerhänta
neutriner propagerar i de extra dimensionerna.

I avhandlingen studerar vi fenomenologiska aspekter av dessa modeller, eller
enkla modifikationer av dem. Framför allt fokuserar vi p̊a Kaluza–Klein-mörk ma-
teria i universella extra dimensioner, olika aspekter av neutrinofysik i högre di-
mensioner och acceleratorfenomenologi för extra dimensioner. Dessutom studerar
vi konsekvenserna av det utökade renormeringsgruppslöpandet för fysikaliska para-
metrar i högredimensionella modeller.
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This thesis is the result of my research at the Department of Theoretical Physics
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List of acronyms

ACT Air Cherenkov telescope
ADD Arkani-Hamed–Dimopolous–Dvali
BLT Boundary localized term
CDM Cold dark matter
CL Confidence level
CMBR Cosmic microwave background radiation
DM Dark matter
EFT Effective field theory
EWPO Electroweak precision observable
EWSB Electroweak symmetry breaking
FLRW Friedmann–Lemâıtre–Robertson–Walker
GWS Glashow–Weinberg–Salam
KK Kaluza–Klein
KKDM Kaluza–Klein dark matter
LEP Large electron-positron collider
LKP Lightest Kaluza–Klein particle
LHC Large hadron collider
MACHO Massive compact halo object
MOND Modified Newtonian dynamics
MUED Minimal universal extra dimensions
NFW Navarro–Frenk–White
PMNS Pontecorvo–Maki–Nakagawa–Sakata
QCD Quantum chromodynamics
QED Quantum electrodynamics
QFT Quantum field theory
RG Renormalization group
RS Randall–Sundrum
SM Standard model
SSB Spontaneous symmetry breaking
UED Universal extra dimensions
UV Ultraviolet
VEV Vacuum expectation value
WIMP Weakly interacting massive particle

Notation and conventions

Throughout this thesis, we use the Einstein summation convention, i.e., we implic-
itly sum over pairs of indices, unless otherwise stated.

Ordinary four-dimensional spacetime indices are denoted by lower-case Greek
letters, extra-dimensional spacetime indices by lower-case Roman letters, and gen-
eral spacetime indices of the higher-dimensional spacetime by upper-case Roman
letter.
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The sign convention for the Minkowski metric and its generalization is given by
(gµν) = diag(1,−1,−1,−1).

We use natural units, setting c = ~ = 1.
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Chapter 1

Introduction

I’m a physicist. I have a working knowledge of the entire Universe and everything
it contains.

— Sheldon Cooper

While few non-fictional physicists would claim to have such a full grasp of Na-
ture, the above quote captures the essence of the subject of physics. Generally
speaking, the aim of physics is to obtain a description of Nature under a large
variety of different circumstances, ranging from the evolution of the Universe as a
whole down to the very smallest distance scales. Such a description is obtained by
making experiments and observations of different phenomena, finding patterns in
the experimental data, and using these patterns to formulate mathematical models.
These models must be able to make well-defined predictions, so that they can be
tested against the results of other experiments in order to assess the validity of the
models in different contexts. In this way, some models will be rejected, and others
will have to be extended in order to expand their range of validity. Ultimately, any
physical model is judged by its ability to properly describe the behavior of Nature.

In this thesis, we are interested in a description of Nature in terms of its fun-
damental building blocks and the interactions among them. These building blocks
are the elementary particles, and the subject area is known as particle physics.
According to the theory of quantum physics, high energies are needed in order to
study small distance scales, and hence, particle physics also goes under the name
high-energy physics.

One of the most successful ways of experimentally probing the regime of particle
physics is to accelerate particles to very high energies and collide them. In such
collisions, extremely high energy densities can be achieved, and these energies can
be converted into mass, thus creating new particles. By studying the properties
of these particles, information on high-energy physics can be obtained. In order
to produce a particle in a collision, an energy at least large enough to create the
rest mass of the particle is needed. Hence, in order to reveal increasingly heavy
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4 Chapter 1. Introduction

particles, the energy available in accelerators has to be successively increased. Since
interactions among elementary particles are also described in terms of particles,
the same principle applies for finding new types of interactions. As technology is
developed, the maximum energy that can be reached increases, and in this way,
higher energy regimes in particle physics are successively probed.

A considerable experimental and theoretical effort during the 20th century led to
the formulation of the so-called Standard Model of particle physics in the beginning
of the 1970’s. The Standard Model is one of the most successful physical models ever
constructed. Remarkably, with few exceptions, it has remained unchanged for the
last forty years. A number of particles that were predicted by the Standard Model
but were not yet experimentally detected at the time when it was formulated have
since been confirmed to exist and to have the expected properties. Some examples
are the Z and W bosons, the top quark, and the tau neutrino. The only particle
proposed by the Standard Model that has not yet been detected is the so-called
Higgs boson, which emerges as a result of the way particles obtain their masses in
the Standard Model.

In addition to particle collisions, particles are naturally created in high-energy
environments in the Universe, such as stars and supernovae. Although heavy par-
ticles are typically unstable and decay long before reaching the Earth, important
information could be obtained from the patterns of their stable decay products.
These cosmic particles can be searched for in astrophysical experiments, and such
methods are becoming increasingly important. The backside of astrophysical ex-
periments is that it is not possible to control the sources of the particles, but only to
make observations. Part of the experimental analysis then consists of determining
the source of the observed particles, which introduces additional uncertainty. On
the other hand, the energies available in the astrophysical context can be larger
by far than what could be achieved in man-made accelerators, and in this sense,
astrophysical experiments and accelerators are complementary to one another.

Also from the theoretical side, particle physics is becoming increasingly intercon-
nected with the subject areas of astrophysics and cosmology. A particular example
is the subject of dark matter, where cosmological observations imply that there ex-
ist massive particles that have not yet been detected [9]. Since none of the particles
in the Standard Model can constitute this dark matter, these observations point
towards new physics that lies beyond the Standard Model. Elementary particles
can also be used as probes of celestial objects, such as stars and supernovae. In
particular, neutrinos, which are weakly interacting and can escape the dense and
hot environments of such objects, play an important role in this context.

Although the Standard Model successfully describes most observed particle
physics phenomena up to the highest energy scales that have been reached, there
are a number of important exceptions. The dark matter problem mentioned above
is one such problem, and another problem is related to the properties of neutrinos.
In the Standard Model, neutrinos are massless, but observations of neutrino flavor
oscillations indicate that this is in fact not the case [10–13]. Hence, these observa-
tions point towards the need for an extension of the model. The Standard Model
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also suffers from a number of problems from a theoretical point of view. Most
importantly, it does not include the gravitational interaction, which is difficult to
describe on a quantum physical level. Another problem, known as the hierarchy
problem, is that the mass of the Higgs boson seems to be unnaturally small in
relation to the high-energy scale where gravity becomes strong. Finally, the Stan-
dard Model includes a large number of parameters that are not determined by the
model, but have to be experimentally measured. A more fundamental theory would
be expected to reveal relations between these parameters, decreasing their number
to only a few. After a more technical introduction to the Standard Model in Ch. 2,
we will give a more detailed description of those problems with the model that are
important for this thesis.

In order to resolve the problems with the Standard Model, a number of exten-
sions of the model have been proposed. Two important examples are supersym-
metric models [14], where each particle in the Standard Model is accompanied by
a heavy so-called superpartner, and grand unified theories [15], which attempt to
describe the different interactions in the Standard Model as manifestations of a sin-
gle unified interaction, which emerges at very high energies. At present, a problem
is that experimental data that could discriminate among these models have been
lacking for many years. Interestingly, general considerations, as well as several of
the suggested models, predict the existence of new physics close to the energy scale
that the next generation of particle physics experiments will be able to probe.

The prime example of such an experiment is the Large Hadron Collider (LHC)
at CERN in Geneva, Switzerland, which has been collecting data from high-energy
proton collisions for one year. The LHC is quickly covering ground at energy scales
beyond the current boundaries, and will help to bring new understanding to the
field. In particular, the main goal of the LHC is the detection of the Higgs bosons.
So far, no conclusive evidence for its existence has been obtained, but large ranges
for its mass have been excluded, with only a small region remaining. A large effort
is also being made to search for extensions of the Standard Model at the LHC.

In order to understand the implications of the data that the LHC and other
experiments produce, it is of fundamental importance to work out the specific ex-
perimental signals that different models would give rise to. Most of the predicted
new particles beyond the Standard Model are expected either to decay into other
particles before they can be measured in detectors or to be extremely weakly inter-
acting, so that they escape detection altogether. However, through measurements
of other particles, that are produced at the same time, the existence of the new
particles can be indirectly inferred. A major problem in this context is that it is not
possible to “turn off” the well-known interactions of the Standard Model that are
already well established. Hence, new physics signals are generally plagued by a large
number of background events, and it is an important task to find signatures of the
new physics phenomena that are as “clean” as possible. Finally, different models
often give rise to very similar signatures, meaning that even if an observed event is
established as a new physics signal, the problem still remains of determining which
model that best describes the observation. Similar problems exist in astrophysical
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experiments. The branch of particle physics working to bridge the gap between
theoretical models and experimental results is known as phenomenology.

One way of extending the Standard Model is through the use of additional spa-
tial dimensions. As we perceive the world, it is made up of three spatial and one
temporal dimension, and no deviations from this notion have been experimentally
observed. However, in principle, there could be more than three spatial dimensions,
provided that, by some mechanism, the extra dimensions are hidden up to the en-
ergy scales that have been experimentally probed. Such a mechanism was proposed
by Oskar Klein in 1926 [16]. He pointed out that if the extra dimensions are finite
and small in size, large energies would be needed in order to resolve them. Klein,
together with Theodor Kaluza [17], pioneered the subject of extra dimensions in
the 1920’s, and the subject generally goes under the name Kaluza–Klein theory.

In recent years, the subject of extra dimensions has received much attention, in
large part inspired by string theory, which requires the existence of ten or eleven
dimensions [18]. In particular, several models have been suggested which could be
tested in the next generation of experiments, such as the LHC. These models provide
solutions to different problems with the Standard Model, such as the dark matter
problem and the hierarchy problem. In this thesis, we consider the phenomenology
of a number of such extensions of the Standard Model in different contexts.

With the advent of the LHC, particle physics is finally being explored beyond
the regime of the Standard Model. Hopefully, the coming years will provide an-
swers to questions that have been asked in particle physics for a long time, and
the nature of the extension of the Standard Model beyond its current limits will
be revealed. Whether it will be extra dimensions, supersymmetry, or something
completely different, it will surely be an exciting time for particle physicists.

1.1 Overview of the thesis

The rest of Part I of the thesis has the following structure. In Ch. 2, we give a
more detailed description of the Standard Model of particle physics. In Ch. 3, we
briefly introduce the subject of neutrino physics. Then, in Ch. 4, we discuss the
general features of higher-dimensional quantum field theories. Next, in Ch. 5, we
introduce the universal extra dimensions model, including the construction of a
realistic models and its phenomenological consequences. In Ch. 6, we discuss the
ADD model of large extra dimensions and models of neutrinos in extra dimensions.
Then, in Ch. 7, we present the subject of dark matter, focusing on dark matter
models in the context of extra dimensions. Finally, in Ch. 8, we summarize Part I
of the thesis and discuss the main results of the scientific papers that are presented
in Part II.



Chapter 2

The Standard Model of

particle physics

The Standard Model (SM) of particle physics is currently the most well-established
and accurate description of Nature on the smallest known distance scale. It de-
scribes three of the four known fundamental interactions in Nature—the strong,
the weak, and the electromagnetic.

We begin this chapter with an overview of the particles and interactions in the
SM. We specifically consider the Higgs sector, with a particular emphasis on the
Higgs mechanism and the experimental bounds on the Higgs boson. Then, we
discuss some of the problems of the SM that are of particular importance for this
thesis. Finally, we discuss how the SM might be considered as an effective field
theory (EFT), which is the low-energy approximation of some more fundamental
theory.

2.1 Particles and interactions

The SM is a gauge theory, which is based on the gauge group SU(3)c ⊗ SU(2)L ⊗
U(1)Y. The SU(2)L⊗U(1)Y sector describes the Glashow–Weinberg–Salam (GWS)
model of the electroweak interactions. Here, the subscript L stands for “left”,
indicating that the SU(2)L sector acts only on left-handed fermions, and Y stands
for the weak hypercharge, which is an Abelian quantum number. At energies lower
than the electroweak scale, MEW ≃ 246 GeV, the GWS sector is broken by the
Higgs mechanism to U(1)Q of quantum electrodynamics (QED), where Q is the
electric charge. Corresponding to the GWS sector, there is an Abelian gauge boson
Bµ and a non-Abelian SU(2)L triplet W i

µ, i = 1, 2, 3, which act as mediators of the
electroweak interactions. The SU(3)c sector describes quantum chromodynamics
(QCD), which is the theory of the strong interactions. The subscript c stands for
“color”, which is the name given to the quantum number of this non-Abelian gauge
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8 Chapter 2. The Standard Model of particle physics

group. The gauge bosons corresponding to this sector are the eight gluons gaµ,
a = 1, . . . , 8, which are SU(3)c octets.

In addition to the twelve gauge bosons, the SM includes twelve spin-1/2 fermions
and their corresponding antiparticles. These particles make up the matter content
of the SM, and they are divided into six quarks,

(

u
d

)

,

(

c
s

)

,

(

t
b

)

,

which interact strongly as well as electroweakly, and six leptons,
(

νe
e−

)

,

(

νµ
µ−

)

,

(

ντ
τ−

)

,

which interact only electroweakly. As indicated above, the quarks and leptons are
grouped into three generations, which are complete replicas of each other except
for the masses of the particles.

Finally, the SM includes a complex scalar SU(2)L doublet Φ = (H+H0)T known
as the Higgs doublet. The role of the Higgs doublet in the SM is to dynamically
generate the masses of all the particles, through the so-called Higgs mechanism.
Of all the particles in the SM, the Higgs boson is the only one that has not been
experimentally detected. In fact, there are a number of possible ways of generating
the particle masses in the SM [19], and the Higgs mechanism as described here is
only the simplest possibility. In this thesis, we will not consider any other possibility.
The Higgs mechanism and the currently ongoing searches for the Higgs boson at
the LHC and the Tevatron are described in Sec. 2.2.

The structure of the SM, i.e., its particle content and the interactions among
these particles, is strongly dictated by gauge invariance. Once the gauge group
is specified, the only freedom left in the theory is the choice of the structure of
the scalar sector, including the interactions between scalars and fermions, and the
choices of gauge group representations for the fermions and scalars, which determine
how these particles interact with the gauge bosons. In addition, the choices of
fermion representations are highly restricted by quantum anomalies, which must
cancel in order for the theory to be internally consistent [20]. In particular, once
the left-handed quarks, which transform non-trivially under all sectors of the gauge
group, are included, anomaly cancellations require the existence of all the other SM
fermions [21].

We will describe the gauge interactions in terms of a general gauge field Aaµ,
where a is a gauge group index. The gauge sector is described by the Yang–Mills
Lagrangian,

LYM = −1

4
F aµνF

a,µν , (2.1)

where
F aµν = ∂µA

a
ν − ∂νA

a
µ − gfabcAbµA

c
ν (2.2)

is the field-strength tensor. Here, g is the gauge coupling constant, and the symbols
fabc are the structure constants of the gauge group. The Yang–Mills Lagrangian
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is determined by gauge invariance, and it describes all the interactions among the
gauge fields. However, it does not describe the masses of the weak gauge bosons,
which are dynamically generated by interactions of these fields with the Higgs field.

The interactions between the gauge bosons and a fermion ψ is given by the term

Lfermion = iψγµDµψ, (2.3)

which is obtained by replacing the derivative ∂µ in the kinetic term for a free fermion
field by the so-called covariant derivative,

Dµ = ∂µ + igAaµT
a
ψ , (2.4)

in order to preserve gauge invariance. Here, T aψ are the generators of the gauge
group in the representation that ψ belongs to. This replacement gives rise to an
interaction term of the form

Lfermion-gauge = −gψγµAaµT aψψ. (2.5)

Hence, the interactions between fermions and gauge bosons are completely deter-
mined once the gauge structure and fermion representations have been chosen.

A particular feature of the fermion interactions in the SM is that they are chiral,
i.e., the left- and right-handed parts of each fermion have different interactions with
the gauge bosons. Specifically, the left-handed fermions are SU(2)L doublets, while
the right-handed ones are singlets. Written in terms of the SU(2)L structure, the
fermions are

QiL =

(

uiL
diL

)

, uiR , diR, LiL =

(

νiL
l−iL

)

, eiR,

where i = 1, 2, 3 is a generation index. Note that there are no right-handed neutri-
nos in the SM, which implies that neutrinos are massless.

The Higgs sector is given by

LHiggs = |DµΦ|2 − V (Φ), (2.6)

where, as for the fermions, the partial derivative has been replaced by a covariant
derivative in order to preserve gauge invariance. The Higgs potential V (Φ) is given
by

V (Φ) = −µ2|Φ|2 + λ

2
|Φ|4. (2.7)

This is the most general renormalizable form of the potential for a complex scalar
field.

Finally, the interactions between the Higgs field and the fermions are Yukawa
interactions, which are given by the Lagrangian

LYukawa = −Y iju QiLΦ̃ujR − Y ijd QiLΦdjR − Y ije LiLΦejR + h.c., (2.8)

where Φ̃ = iτ2Φ
∗ is the conjugate of the Higgs field, and τ2 is the second Pauli

matrix.
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Together, Eqs. (2.1), (2.3), (2.6), and (2.8) describe all the interactions in the
SM. It is noteworthy that these interactions constitute all the possible renormaliz-
able interactions among scalars, spin-1/2 fermions, and gauge bosons in four space-
time dimensions [20].

2.2 The Higgs sector

2.2.1 The Higgs mechanism

The Higgs potential (2.7) has its minimum at

|Φ| =
√

µ2

λ
≡ v ≃ 246 GeV. (2.9)

This minimum defines the vacuum expectation value (VEV) of the Higgs field, and
the physical states are the excitations of the field around this point. Using standard
conventions, we have

Φ =

(

H+

1√
2
(H + v + iA0)

)

=

(

H+

1√
2
(H + iA0)

)

+

(

0
v√
2

)

. (2.10)

Here, the lower component has been written in terms of two real scalar fields, and
the real part H+v is chosen in such a way that H is the excitation from the ground
state given by the VEV v. Since the VEV picks out a particular component of the
Higgs field, it is not SU(2)L symmetric. A symmetry which is respected by the
Lagrangian, but not by the ground state of a system, is said to be spontaneously
broken, and the system is said to undergo a spontaneous symmetry breaking (SSB).

As an example which is more easily analyzed, yet contains the essential features
of the Higgs mechanism, we consider a complex scalar field Φ interacting with an
Abelian gauge field Aµ. Giving Φ the real VEV 〈Φ〉 = v, we write Φ = (H + v +
iφ)/

√
2, and obtain from the Higgs Lagrangian in Eq. (2.6)

LHiggs =
1

2
(Dµφ)

†(Dµφ)

=
1

2
(∂µ − igAµ)(H + v − iφ)(∂µ + igAµ)(H + v + iφ)

=
1

2
∂µH∂

µH +
1

2
∂µφ∂

µφ+
1

2
(gv)2AµA

µ − igvH∂µA
µ

+ interaction terms. (2.11)

The last of the quadratic terms in in Eq. (2.11) is a bilinear term mixing Aµ and
the scalar φ. It can be removed by adding to the Lagrangian a gauge-fixing term
of the form

Lgf = − 1

2ξ
(∂µA

µ − ξgvφ)
2

= − 1

2ξ
(∂µA

µ)2 + gvφ∂µA
µ − 1

2

(

√

ξgv
)2

φ2. (2.12)
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Gauge-fixing terms of this form, parametrized by ξ, define the so-called Rξ gauges
[20]. Adding the terms in Eqs. (2.11) and (2.12) to the Yang–Mills Lagrangian in
Eq. (2.1), we obtain

LYM + LHiggs + Lgf = −1

4
FµνF

µν +
1

2
m2
AAµA

µ − 1

2ξ
(∂µA

µ)2

+
1

2
∂µH∂

µH +
1

2
∂µφ∂

µφ− 1

2

(

√

ξmA

)2

φ2

+ interaction terms, (2.13)

where mA ≡ gv. Through the SSB, the gauge field Aµ has obtained a mass which is
proportional to the VEV of the scalar field, and the imaginary part φ of the complex
field Φ has obtained a gauge-dependent mass mφ =

√
ξmA. It is the Goldstone

boson corresponding to the SSB, and it can be removed from the particle spectrum
by choosing the unitary gauge, ξ → ∞.

This generation of gauge boson masses through a SSB is known as the Higgs
mechanism. After the SSB, only one of the two real components of the Higgs field
remains as a physical scalar particle. The other component is said to be “eaten” by
the gauge boson that gains a mass through the Higgs mechanism. Since a massive
gauge boson has one more degree of freedom than a massless one, the total number
of degrees of freedom is preserved by the SSB.

In the SM, the SSB that occurs when the Higgs field obtains its VEV gives rise
to more complicated mass terms for the electroweak gauge bosons,

Lmass,gauge =
1

2

v2

4

[

g2(W 1
µ)

2 + g2(W 2
µ )

2 + (−gW 3
µ + g′Bµ)

2
]

, (2.14)

where g and g′ are the SU(2)L and U(1)Y coupling constants, respectively. The
two components W 1 and W 2 of the SU(2)L gauge bosons obtain equal masses
mW = gv/2, and the linear combination

Zµ ≡ 1
√

g′2 + g2

(

−gW 3
µ + g′Bµ

)

, (2.15)

known as the Z boson, obtains the mass mZ =
√

g2 + g′2v/2. The orthogonal
combination

Aµ ≡ 1
√

g′2 + g2

(

g′W 3
µ + gBµ

)

, (2.16)

which remains massless, is identified as the photon. Corresponding to the three
gauge bosons that obtain masses, three real components of the Higgs field are eaten,
and a single real scalar field, the Higgs boson H , remains as a physical scalar. In
terms of gauge groups, the VEV of the Higgs field breaks SU(2)L ⊗ U(1)Y to the
Abelian gauge group U(1)Q, and the photon is the gauge boson corresponding to
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this gauge group. Here, Q stands for ordinary electric charge. The electric charge
is related to the quantum numbers of the unbroken gauge group by the relation

Q = T3 + Y, (2.17)

where T3 is the third component of the weak isospin of SU(2)L.
The transformation of the gauge fields from the {W 3, B} basis to the mass

eigenstate basis {Z,A} is given by

(

Z
A

)

=

(

cos θW − sin θW
sin θW cos θW

)(

W 3

B

)

, (2.18)

where the Weinberg angle θW is defined by tan θW = g′/g. The W 1 andW 2 bosons
are usually rotated into the states W±, which are defined as

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ). (2.19)

Due to the chiral structure of the SM, fermion mass terms of the type

Lmass,fermion = mψψLψR + h.c., (2.20)

where h.c. denotes the Hermitian conjugate, are not allowed by gauge invariance.
However, similarly to the gauge bosons, masses for the fermions can be generated
dynamically through their couplings to the Higgs doublet. When the Higgs field
acquires its VEV, the Yukawa interactions given in Eq. (2.8) give rise to mass terms
of the form

Lmass,fermion = mijψLiψRj + h.c., (2.21)

where

mij =
1√
2
Y ijv. (2.22)

Note that this mass matrix is generally not diagonal. This means that the weak
eigenstates differ from the mass eigenstates, and induces mixing among the SM
quarks.

2.2.2 Collider Higgs searches and bounds

The experimental verification of the existence of the Higgs boson is the last missing
piece of the SM, and the main physics objective of the LHC. The only degree of
freedom left in the SM Higgs sector, once the VEV has been measured, is the mass
of the Higgs boson. Hence, the results of searches for the Higgs boson are presented
as exclusion intervals formH . Using approximately 5 fb−1 of data each, the ATLAS
[22] and CMS [23] experiments have explored the range 110 GeV ≤ mH ≤ 600 GeV
without finding conclusive evidence for the Higgs boson. The main production
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Analysis Lint Excluded regions (95 % CL)

ATLAS search [22] 4.9 fb−1
112.9 GeV ≤ mH ≤ 115.5 GeV
131 GeV ≤ mH ≤ 238 GeV
251 GeV ≤ mH ≤ 466 GeV

CMS search [23] 4.8 fb−1 127 GeV ≤ mH ≤ 600 GeV

CDF / DØ [24] 10 fb−1 100 GeV ≤ mH ≤ 106 GeV
147 GeV ≤ mH ≤ 179 GeV

LEP search [26] 2.5 fb−1 114 GeV ≤ mH

LEP / Tevatron EWPO [25] mH ≤ 158 GeV

Table 2.1. Summary of the experimental bounds on the SM Higgs boson mass.
Here, Lint denotes the total integrated luminosity used in each analysis.

channels for the Higgs boson at hadron colliders are gluon fusion, vector boson
fusion, associated vector boson production, and production in association with top
quarks. Among the decay products of the Higgs boson, the γγ, τ+τ−, bb, W+W−,
and ZZ modes have been searched for.

In their analyzes, both ATLAS and CMS have found small excesses of events in
the region around 125 GeV, which could be a first hint for the existence of the Higgs
boson. In addition, in a combined analysis of 10 fb−1 of Tevatron collision data,
the CDF and DØ collaborations found a similar excess in the range 115 GeV .

mH . 135 GeV [24]. However, more data are needed to clarify whether or not the
origin of these excesses is actually due to a SM Higgs boson.

In addition to the direct collider searches, the mass of the Higgs boson can be
constrained by its contribution to well-measured electroweak precision observables
(EWPOs), in particular the W and Z boson masses. A combined analysis of LEP
and Tevatron data from 2010 gives the 95 % CL upper limit mH ≤ 158 GeV [25].
However, it should be noted that these indirect constraints may be modified in
extensions of the SM. This is the case in the universal extra dimensions (UED)
model (see Ch. 5), where the contributions from additional particles are opposite
to those from a heavy Higgs boson, relaxing the constraints.

In Table 2.1, we summarize the most important direct and indirect constraints
on mH .

2.3 Problems with the Standard Model

The SM is a very successful model of particle interactions up to energies at least
of the order of 100 GeV. Below this energy scale, it successfully describes most
observed particle physics phenomena, with a few important exceptions. However,
it does suffer from a number of problems, of theoretical as well phenomenological
nature. Most particle physicists do not believe the SM to be the final story, but
rather the low-energy limit of some more fundamental theory. Such a theory should
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provide solutions to the problems with the SM. Most extensions of the SM that are
proposed aim to solve, or at least alleviate, one or more of these problems. Here,
we mention only the problems that are of the most importance for this thesis.

2.3.1 Dark matter

Cosmological observations strongly indicate that the ordinary matter that is ob-
served makes up only 5 % percent of the total energy in the Universe. Another
23 % consists of some unknown form of matter [9]. The hypothesis that conforms
in the best way with the full body of experimental evidence for this anomaly is
that this matter is due to one or more new particle species, known as dark matter
(DM). Since none of the particles in the SM fit the experimental constraint on such
a DM particle, this problem points towards new physics, beyond the SM. DM is
described in more detail in Ch. 7.

2.3.2 Neutrino oscillations and masses

As mentioned above, the fact that there are no right-handed neutrinos in the SM
implies that neutrinos are massless in this model. However, in 1998, the Super-
Kamiokande experiment provided the first evidence for neutrino oscillations [10].
Since the standard oscillation mechanism demands that neutrinos are massive, this
is another observation that points towards the need for an extension of the SM. We
discuss neutrino physics, including oscillations and mass models, in Ch. 3.

2.3.3 Quantum gravity

Perhaps the most obvious sign that the SM is not a complete theory is that it
completely neglects the gravitational interactions. In order to extend the SM to
include this fourth interaction, a quantized description of gravity would be neces-
sary. However, at energies around the electroweak scale, gravity is far weaker than
the SM interactions. It is expected to become strong only for energies around the
so-called Planck scale, MPl ≃ 1019 GeV, which is far from the energy scales that
any experiment will be able to probe in the foreseeable future. This means that it
is generally very difficult to experimentally test quantum theories of gravity, such
as string theory. On the other hand, the fact that gravity is so weak means that it
is a good approximation to neglect it in most particle physics contexts. In Sec. 6.1,
we describe a model where the influence of gravity becomes important at energy
scales much lower than generally expected.

2.3.4 The hierarchy problem

A problem of a more theoretical kind is related to the SM Higgs boson. All par-
ticles in an interacting quantum field theory (QFT) receive contributions to their
bare masses, due to radiative corrections. For fermions and gauge bosons, these
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corrections are mild, but for the Higgs boson, which is an elementary scalar field,
this is not the case. If new physics appears at a high-energy scale Λ, the radiative
corrections to the squared mass of a scalar field, δm2, are expected to be propor-
tional to Λ2. Hence, the most natural value for the mass of such a field is of the
same order of magnitude as Λ. For the SM, Λ is supposed to be no larger than the
Planck scale. The so-called hierarchy problem can be formulated as the question
of why the mass of the Higgs field is separated from the Planck scale by 17 orders
of magnitude. In technical terms, this would mean that its bare mass m2

B would
need to cancel the radiative correction δm2 to a precision of 38 significant digits.
Though not technically impossible, such a precise “fine-tuning” of the parameters
seems highly unnatural, and a fundamental reason for this cancellation would be
desirable. The most popular solution to this problem is provided by supersymmet-
ric extensions of the SM [14], where new degrees of freedom cancel the quadratic
contributions to scalar masses. Another possible solution is discussed in Sec. 6.1.

2.3.5 Fermion generations

As mentioned in the beginning of this chapter, the SM contains three generations
of fermions, which are identical except for their masses. Within each generation, all
particles are necessary in order to cancel quantum anomalies in the SM, but there
is no clear reason why there should be more than one generation. It is believed
by many physicists that this issue could be clarified in an extension of the SM. In
one version of the UED model, which is described in Ch. 5, the existence of three
generations is required by the cancellation of six-dimensional anomalies [27].

2.4 The Standard Model as an effective field

theory

As mentioned above, all the interactions in the SM are renormalizable. In practical
terms, this means that all the divergences appearing in the calculations of physical
observables can be absorbed into a finite number of counterterms. Hence, only
a finite number of measurements are needed in order to experimentally fix the
parameters of a renormalizable model, and any additional measurements serve as
tests of predictions of the model.

Historically, non-renormalizable theories have been considered as being unpre-
dictive and useless. However, from a more modern point of view, non-renormaliz-
ability is seen only as a sign that a theory cannot naively be extrapolated to arbi-
trarily high energies. Such a theory is called an effective field theory (EFT). From
this point of view, an EFT is perfectly acceptable within its range of validity. At
some energy scale, known as the cutoff scale of the EFT, the theory breaks down,
and has to be replaced by some more fundamental theory, known as the ultraviolet
(UV) completion of the EFT. Typically, the UV completion includes new degrees
of freedom.
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From the EFT point of view, the SM Lagrangian is actually expected to contain
higher-dimensional, non-renormalizable terms due to heavy degrees of freedom.
Formally, this statement can be expressed as

L = L(d=4) +
c(5)

Λ
L(d=5) +

c(6)

Λ2
L(d=6) + . . . , (2.23)

where Λ is a high-energy scale related to the fundamental theory, the constants
c(n) are numerical coefficients, and d denotes the dimensionality of each term. The
dimension-four term L(d=4) is the ordinary SM Lagrangian. Since the operators
of higher dimensions are suppressed by successively higher powers of the inverse
of Λ, the importance of these operators decreases with increasing dimensionality,
provided that the relevant coefficients are of a similar size. Although there are
infinitely many terms in the expansion (2.23), only a finite number of them are
relevant at a given energy scale, and hence, the theory can be renormalized order-
by-order.

An example of a dimension-five operator, which is important for models of
neutrino mass generation, is given in Ch. 3.



Chapter 3

Neutrino physics

Neutrino physics has emerged as one of the most interesting topics within the
subject of particle physics. In particular, neutrino oscillations imply that neutrinos
are massive, pointing to new physics beyond the SM. Considerable experimental
and theoretical effort has been put into finding the answers to questions such as
the origin of the light-neutrino masses, the Dirac or Majorana nature of neutrinos,
and the absolute neutrino mass scale.

In this chapter, we give a basic introduction to this subject. We begin with
a description of the phenomenon of neutrino oscillations, including experimental
evidence and implications for neutrino masses. Next, we discuss neutrino mass
terms and mechanisms that could generate small neutrino masses. Finally, we give
an introduction to so-called non-unitarity effects in neutrino oscillations.

3.1 Neutrino oscillations

The first evidence for neutrino oscillations, i.e., flavor transitions during propaga-
tion, was the so-called solar neutrino problem, the fact that measurements of the
electron neutrino flux from the Sun did not agree with predictions from the well-
established solar model [28]. Since the measured flux was smaller than expected, it
was proposed that the deficit could be due to part of the emitted electron neutrinos
oscillating into other flavors, which were not experimentally observed.

The first experiment providing strong evidence for neutrino oscillations was
the Super-Kamiokande experiment, which in 1998 reported a deficit in the flux
of atmospheric neutrinos which is in agreement with predictions taking neutrino
oscillations into account [10]. In 2001, the results from the SNO experiment pro-
vided conclusive evidence for neutrino oscillations as the source of the solar neutrino
problem [11]. Subsequently, a number of experiments, such as KamLAND [12,13],
MINOS [29], T2K [30], Daya Bay [31], and RENO [32] have confirmed these results
and constrained the oscillation parameters.

17
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Neutrinos are produced in weak interactions in the flavor eigenstates νe, νµ,
and ντ . Oscillations between these flavors occur if neutrinos are massive and the
mass eigenstates are rotated with respect to the flavor eigenstates, i.e., if there
is mixing in the lepton sector. Neutrino oscillations are described in terms of
transition probabilities, P (να → νβ , L), or simply Pαβ , which give the probability
for a neutrino initially measured in the flavor state α to be measured in the flavor
state β after traveling a distance L. In a simplified model, with two neutrino flavors,
e and µ, the transition probabilities are symmetric between the two flavors, and
are given by (see, for example, Refs. [33, 34])

P (νe → νµ, L) = P (νµ → νe, L) = sin2(2θ) sin2

(

∆m2L

4E

)

, (3.1)

P (νe → νe, L) = P (νµ → νµ, L) = 1− sin2(2θ) sin2
(

∆m2L

4E

)

. (3.2)

Here, E is the energy of the neutrino, θ is the leptonic mixing angle and ∆m2 ≡
m2

2 − m2
1, where m1 and m2 are the mass eigenvalues. From this expression, it

is clear that neutrino oscillations cannot occur if either the mixing angle or the
mass-squared difference vanishes. In particular, the mass-squared difference is zero
for massless neutrinos, and hence, the observation of neutrino oscillations implies
that neutrinos are massive.

In the SM, there are three lepton generations, and hence, corresponding to the
three mass eigenstates, there are two mass-squared differences, which are conven-
tionally taken to be ∆m2

21 and ∆m2
31. The full three-flavor mixing in the leptonic

sector is described by the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix, U ,
which defines the transformation from mass to flavor basis,

να =

3
∑

i=1

Uαiνi, α = e, µ, τ. (3.3)

In terms of U and the mass-squared differences, the neutrino transition probabilities
can be written as [35]

Pαβ = δαβ − 4
∑

i<j

Re(UβiU
∗
αiU

∗
βjUαj) sin

2

(

∆ij

2

)

+ 2
∑

i<j

Im(UβiU
∗
αiU

∗
βjUαj) sin (∆ij) , (3.4)

where ∆ij ≡ ∆m2
ijL/(2E). It is easy to show that Pαβ = δαβ if either ∆m2

ij = 0
or Uαi = δαi. Hence, the conclusion that the mass-squared differences must be
non-zero and the mixing non-trivial holds also in the three-flavor case.
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The PMNS matrix can be parametrized as

U =





1 0 0
0 c23 s23
0 −s23 c23









c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13





×





c12 s12 0
−s12 c12 0
0 0 1









1 0 0
0 eiρ 0
0 0 eiσ



 , (3.5)

where sij = sin θij and cij = cos θij . Here, there are three mixing angles, θ12, θ13,
and θ23, and in contrast to the two-flavor case, there is also a complex CP-violating
so-called Dirac phase, δ. In addition, in the case that neutrinos are Majorana
fermions (see Sec. 3.2.1), there are two Majorana phases, ρ and σ.

A global analysis of neutrino oscillation data gives the current best-fit values
for the three-flavor oscillation parameters ∆m2

21 = 7.59 · 10−5 eV2, |∆m2
31| =

2.50 ·10−3 eV2, sin2 θ23 = 0.52, sin2 θ12 = 0.312, and sin2 θ13 = 0.013 [36,37]. How-
ever, this analysis does not take into account recent data from the Daya Bay [31]
and RENO [32] experiments, which both indicate that θ13 ≃ 9◦. There is yet no
experimental value for the Dirac phase.

From a theoretical point of view, much effort has been put into building models
that describe the observed mixing parameters in the neutrino sector. The so-called
tri-bimaximal mixing pattern [38], where θ12 = sin−1(1/

√
3) ∼ 35.3◦, θ13 = 0, and

θ12 = 45◦, has until recently been compatible with all neutrino oscillation data.
However, the Daya Bay measurement of θ13 ≃ 9◦ [31] now seems to rule out tri-
bimaximal mixing, at least at low energies. On the other hand, predictions for
the mixing patterns are usually valid at some high-energy scale, such as a grand
unification scale. Hence, comparison to experimental data has to take into account
the renormalization group (RG) running of the physical neutrino parameters from
this high-energy scale to the low-energy scales at which the measurements are made.
In particular, the running effects could be significant in higher-dimensional models,
as discussed in Sec. 4.3 and in Paper 6.

Since the transition probabilities depend only on the mass-squared differences,
neutrino oscillation experiments are not sensitive to the absolute neutrino mass
scale. There are currently a number of running and planned experiments aiming to
determine this scale, e.g., the KATRIN experiment, which will attempt to measure
the neutrino mass scale by studying the energy spectrum of the electron in beta
decay processes [39].

Currently, the best upper bound on the neutrino masses comes from cosmolog-
ical considerations, giving

∑

imi < 0.58 eV at the 95 % CL [40]. However, this
upper limit is sensitive to assumptions regarding the cosmological model.
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3.2 Neutrino mass models

3.2.1 Dirac vs. Majorana neutrinos

In the SM, the charged fermions receive masses through the Higgs mechanism.
These are so-called Dirac masses, which are of the form

LDirac = mD(ψLψR + ψRψL). (3.6)

Dirac mass terms involve both the left- and right-handed components of the fermion,
and hence, it is not possible to construct such mass terms for neutrinos without
adding right-handed neutrinos to the SM. In such an extension of the SM, neutrino
masses could, in principle, be generated in the same way as the masses of the other
fermions, through their Yukawa couplings to the Higgs field. However, in order for
the neutrino masses to be of the order of 0.1 eV, which is a factor of about 106

smaller than the electron mass, the Yukawa couplings would have to be extremely
small in comparison to those of the other fermions. This problem has led to the
development of different mechanisms that could naturally generate small neutrino
masses.

Since neutrinos are electrically neutral, they could be their own antiparticles.
Spin 1/2-fermions that are their own antiparticles are known as Majorana fermions.
On the level of the chiral components, the condition that a fermion is its own
antiparticle can be written as ψR = (ψL)

c, where (ψL)
c denotes the conjugate of

ψL. This means that the left- and right-handed chiral components of a Majorana
fermion are not independent. Hence, while a Dirac fermion has two independent
chiral components, a Majorana fermion has only one.

The Majorana or Dirac nature of neutrinos is one of the most important issues
in neutrino physics, and it has important consequences for the possible ways of
generating neutrino masses. A Majorana fermion ψM can have a mass term of the
form

LMajorana = −1

2
(ψM)cMψM + h.c. (3.7)

This term breaks the conservation of all the charges of ψM by two units, and hence,
charged fermions cannot have Majorana masses, or electric charge conservation
would be violated. This also means that Majorana masses for neutrinos necessarily
break the conservation of lepton number. Note that the mass term in Eq. (3.7)
with ψM = νL would break the SM gauge invariance, and hence, it is not possible
to introduce Majorana mass terms in the SM using only the left-handed neutrinos.

Majorana neutrinos, but not Dirac neutrinos, allow for so-called neutrinoless
double beta decay, which makes it possible to experimentally test the Majorana /
Dirac nature of neutrinos. In this process, two unstable nuclei decay simultaneously,
while exchanging a neutrino. The rate for the process is proportional to the square
of the so-called effective neutrino mass

mee =

∣

∣

∣

∣

∣

3
∑

i=1

miU
2
ei

∣

∣

∣

∣

∣

, (3.8)
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and hence, it is suppressed by the smallness of the light-neutrino masses. On the
other hand, neutrinoless double beta decay experiments also give information on
the neutrino masses. The current bound on the effective mass is mee . 0.5 eV [41].
There is a number of experiments searching for neutrinoless double beta decay; see,
for example, the review [41].

3.2.2 Seesaw mechanisms and the Weinberg operator

A Majorana mass term for the left-handed neutrinos is not allowed by the SM
gauge invariance. Although such a term could be generated by a non-renormalizable
coupling to the Higgs field, the problem still remains that the coupling constants
would have to be unnaturally small. On the other hand, right-handed neutrinos
would be completely neutral with respect to the SM gauge group, and hence, they
could have a bare Majorana mass MR. If the neutrinos are also given a Dirac mass
mD, the neutrino mass matrix in {νL, νR} basis is given by

M =

(

0 mD

mT
D MR

)

, (3.9)

i.e., the Dirac mass induces a mixing between the left- and right-handed neutrinos.
In general, MR and mD are matrices in generation space. In the case of a single
generation, MR and mD are numbers, and the eigenvalues of the mass matrix M
are given by

m1,2 =
MR ±

√

M2
R + 4m2

D

2
. (3.10)

Since the Majorana mass MR is not related to the SM gauge interactions, it could
naturally be much larger than the electroweak scale. If the Dirac mass is generated
through the Higgs mechanism, in the same way as the other fermion masses, it is
expected to be of the order of mD ≃ 100 GeV. Then MR ≫ mD, and the masses
are approximately1

m1 ≃ −m2
D/MR, m2 ≃MR. (3.11)

Hence, the mass m1 is suppressed relative to the electroweak scale by the small
number mD/MR. In the general case, with an arbitrary number of fermion gener-
ations, the light-neutrino mass matrix is given by

mν ≃ −mDM
−1
R mT

D. (3.12)

The mechanism described above is not the only possible way of generating small
neutrino masses through the coupling to heavy degrees of freedom. Generally, one

1The minus sign in front of the small mass is removed by a rephasing of the corresponding
fermion field.
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can consider a Majorana mass term for the left-handed neutrinos given by the
dimension-five operator

LWeinberg = −1

2

(LLφ)(φ
TLcL)

Λ
, (3.13)

where Λ is the energy scale corresponding to the heavy degrees of freedom. When
the Higgs field obtains its VEV, a Majorana mass which is proportional to v2/Λ is
generated. The introduction of heavy right-handed neutrinos is the first example
of such a mechanism, and it is known as the type-I seesaw mechanism [42, 43]. In
addition, the operator (3.13) could be generated by an SU(2)L scalar triplet or an
SU(2)L fermion triplet. These two mechanisms are known as the type-II [44–47]
and type-III [48, 49] seesaw mechanisms, respectively.

Given the light-neutrino masses, the mass scale MR can be estimated, using
the expression (3.12). Taking mν = 0.1 eV and mD = 100 GeV, we obtain the
mass MR ≃ 1014 GeV. Hence, in order to generate the observed light-neutrino
masses, the right-handed neutrinos must be very heavy. This means that it is hard
to experimentally test the conventional seesaw models.

Recently, much attention has been directed to alterations of the conventional
seesaw models that could possibly be tested at the LHC, e.g., the so-called inverse
seesaw model [50]. In Sec. 6.2, we describe an observable seesaw model in the
context of extra dimensions.

3.3 Non-unitarity effects

If the light neutrinos mix only among themselves, the transition probabilities in
Eq. (3.4) should fulfill the relations

∑

α

Pαβ =
∑

β

Pαβ = 1 (3.14)

in order to conserve probability. On the level of the PMNS matrix U , these condi-
tions correspond to the unitarity condition U †U = 1.

However, in many models, it is the case that the light neutrinos mix also with
additional degrees of freedom, for example right-handed neutrinos or the scalar
triplet in the seesaw models. If this is the case, the matrix U (as defined in Eq. (3.3))
is not the matrix governing the neutrino oscillations. Instead, we have

να =

3
∑

i=1

Vαiνi +

n
∑

i=1

Xαiξi, (3.15)

where ξi, i = 1, . . . , n, are the additional degrees of freedom. Here, V is the
upper 3× 3 sub-matrix of the unitary matrix that diagonalizes the mass matrix for
the light neutrinos as well as the additional degrees of freedom. In general, V is
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non-unitarity, implying that probability is not conserved in transitions within the
subsystem consisting only of the light neutrinos.

General non-unitarity effects are conventionally parametrized as V = (1− ε)U ,
where ε is a Hermitian matrix [51]. Hence, V †V = 1− 2U †εU +O(ε2). In a given
model, ε can, at least in principle, be related to the parameters of the model. In
general, the elements of ε can be bounded by their contributions to processes such
as e→ µγ, giving

|ε| <





2.0× 10−3 6.0× 10−5 1.6× 10−3

∼ 8.0× 10−4 1.1× 10−3

∼ ∼ 2.7× 10−3



 (3.16)

at 90 % CL [52]. Hence, these limits can be used to constrain the parameters of
models inducing non-unitarity effects. In many models, such as the conventional
seesaw models, the mixing between the light neutrinos and the heavy degrees of
freedom is small, and hence, so are the non-unitarity effects. In Paper 5, we inves-
tigated a model where extra dimensions give rise to large non-unitarity effects (see
also Sec. 6.2).
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Chapter 4

Quantum field theory in

extra dimensions

In this chapter, we present the formalism of higher-dimensional quantum field the-
ories. We begin by describing a number of basic concepts that are of major impor-
tance for such theories. Then, we discuss the fact that higher-dimensional quantum
field theories are in general non-renormalizable and what their UV completions
could be. Next, we describe the features of RG running in extra dimensions. Fi-
nally, we summarize a number of TeV-scale higher-dimensional models that have
emerged in recent years.

4.1 Kaluza–Klein decomposition

4.1.1 Compactification

The most obvious question that any theory including extra spatial dimensions must
be able to answer is why the extra dimensions have not been observed. Clearly, any
additional dimensions have to differ from the ordinary three spatial dimensions in
some way. The most common solution to this problem was provided by Oskar Klein
in 1926 [16]. He suggested that the reason why the extra dimensions have not been
observed is that they are small. More specifically, the extra dimensions are compact,
having for example the geometry of a circle with a small radius. In order to probe
such compact dimensions, particles with small wavelengths would be needed, and
by quantum mechanics, the wavelength of a particle is inversely proportional to its
energy. Hence, in measurements performed at an energy scale smaller than that
corresponding to the size of the extra dimensions, these dimensions would effectively
be hidden.
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The space that is spanned by the compact extra dimensions is usually referred
to as the internal space, and the full higher-dimensional spacetime is called the
bulk.

4.1.2 Kaluza–Klein tower

These statements can be treated in a more precise way through the important
technique known as the Kaluza–Klein (KK) decomposition of a higher-dimensional
field. This idea provides a mathematical reformulation of a higher-dimensional field
theory as a four-dimensional theory, where the existence of the extra dimensions is
encoded in the structure of the particles and their interactions. The procedure is
most easily demonstrated in the simple setting of a complex scalar field in a single
extra dimension that is compactified on a circle with a radius R. The action for
this model is given by

S =

∫

d5x
(

∂Mφ
∗∂Mφ−m2φ∗φ

)

. (4.1)

Since the fifth dimension is a circle, φ must be periodic in the coordinate x5 along
this direction, i.e., φ(xµ, x5) = φ(xµ, x5 + 2πR). This means that, without loss of
generality, the field can be expanded in a Fourier series in x5, i.e.,

φ(xµ, x5) =
1√
2πR

∞
∑

n=−∞
φ(n)(xµ)e

inx5

R . (4.2)

Using this explicit x5-dependence, we can integrate out the fifth dimension in
Eq. (4.1). Then, we obtain the action

S =

∞
∑

n=−∞

∫

d4x

[

∂µφ
(n)∗∂µφ(n) −

(

m2 +
n2

R2

)

φ(n)∗φ(n)
]

, (4.3)

which describes a four-dimensional field theory with an infinite number of scalar
fields φ(n), which are known as the KK modes of the field φ. These fields are labeled
by the integer n, and the mass of the field φ(n) is mn =

√

m2 + n2/R2. The set
of these fields is known as the KK tower corresponding to the higher-dimensional
scalar field. Within the KK tower, the only difference between the modes is their
masses. The n = 0 mode, known as the zero mode, is the lightest mode in the tower,
and it corresponds to a field which has no momentum along the extra dimension.

The physics behind this so-called dimensional reduction can be understood in
a simple way by considering the relativistic energy-momentum relation,

E2 = p2 +m2 = (p21 + p22 + p23) + p25 +m2. (4.4)

Here, the squared momentum has been divided into two terms: the ordinary three-
dimensional part p21+p

2
2+p

2
3 and the extra contribution p25 from the fifth dimension.



4.1. Kaluza–Klein decomposition 27

From a five-dimensional point of view, these two parts of the momentum are on
an equal footing, at least locally. However, from a four-dimensional point of view,
where the possibility of motion along the fifth dimension is unknown, measurements
of the energy and momentum of a particle would lead us to interpret the five-
dimensional part of the momentum as part of the squared mass. This means that
a particle with mass m in a five-dimensional spacetime is considered to have a
four-dimensional mass equal to

√

m2 + p25. Since the internal space is compact, the
momentum along the extra dimension is quantized, i.e., it is only allowed to take
on a discrete set of specific values. In the case that we consider, the momentum

can take on the values p
(n)
5 = n/R, for n ∈ Z. Hence, the effective four-dimensional

mass is also quantized, as mn =
√

m2 + n2/R2. The momentum eigenstates are
interpreted as an infinite KK tower of distinct particles, as illustrated in Fig. 4.1

n or mn/R
−1

00

1

2

3

4

. . .

KK modes

zero mode

Figure 4.1. Illustration of the KK tower, for the case m = 0.

In the beginning of this section, it was stated that the existence of small extra
dimensions would be hidden at low energies. The example given above demonstrates
the general features of how this mechanism works in practice, from a particle physics
point of view. The quantization of the momentum along the extra dimension implies
that, in order for a particle to move along this dimension, its momentum must be
larger than R−1. Equivalently, from the four-dimensional viewpoint, R−1 is the
threshold energy for production of excited KK modes. Below this energy scale,
only the zero modes of the fields are observed. At energies of the order of R−1,
the effects of the extra dimension start to become important, and as the energy
increases, the higher-dimensional structure successively emerges through the higher-
level KK modes.

While the above discussion focused on the simple example of a scalar field in
a single extra dimension, the generalization to other fields and internal spaces is
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in principle straightforward. The KK spectrum, i.e., the set of particle masses
in each tower, depends on the geometry of the internal space. Mathematically,
the KK spectrum for the example given above is the spectrum of the Laplace
operator on the circle, i.e., the set of values m allowing for periodic solutions to the
equation ∆φ = ∂25φ = −m2φ. For other internal spaces, e.g., curved spaces, the
Laplace operator generalizes to a more complicated operator, and the KK spectrum
is modified accordingly. In general, the KK modes are not evenly distributed, in
the way that they are for a flat internal space. KK expansions for fermions and
gauge bosons are discussed in Secs. 5.1 and 5.2, respectively.

Higher-dimensional models are generally constrained by direct searches for ex-
cited KK modes at colliders as well as by their contributions to the EWPOs. The
constraints on R−1 depend on the specific model under consideration, but are typ-
ically of the order of several TeV (see, for example, Refs. [53,54]). The models that
we consider in Ch. 5 and 6 include different mechanisms that relax these general
constraints, enabling potential discoveries in the next generation of experiments.

4.1.3 Matching of parameters

Using the KK decomposition, we can relate the parameters of a higher-dimensional
field theory to the effective parameters of the low-energy theory. As an example,
we add a self-interaction term to the action (4.1),

Sint = −
∫

d5xλ5|φ|4. (4.5)

In the low-energy limit, E ≪ R−1, we can insert the KK expansion given in Eq. (4.2)
into Eq. (4.5), keep only the zero mode, and integrate over x5. Then, we obtain
the effective action

S(0)
int = −2πR

∫

d4xλ5
1

(2πR)2
|φ(0)|4 = −

∫

d4x
λ5
2πR

|φ(0)|4. (4.6)

Comparing this expression to the corresponding action for a four-dimensional the-
ory,

Sint = −
∫

d4xλ4|φ|4, (4.7)

and identifying the four-dimensional field φ with the zero mode φ(0), we obtain the
relation

λ5 = 2πRλ4 (4.8)

between the parameters. Hence, given the radius of the extra dimension, the value
of the five-dimensional coupling constant can be inferred from the effective four-
dimensional one. Since λ4 is a dimensionless quantity, this relation implies that
the five-dimensional coupling constant has mass dimension equal to −1. In general,
interacting quantum field theories where the coupling constants have negative mass
dimensions are non-renormalizable [20]. We will now show that this is a general
feature of higher-dimensional quantum field theories.
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4.2 Non-renormalizability

An important and general property of quantum field theories in more than four
spacetime dimensions is that they are non-renormalizable. A straightforward way
to observe this is to write down the action for an interacting field theory in D
spacetime dimensions,

S =

∫

dDx L, (4.9)

and analyze the mass dimensions of the coupling constants. We denote the mass
dimension of a quantity by square brackets, [. . .]. In natural units, the action is
dimensionless, and hence, the Lagrangian density must have the mass dimension D
in order to balance the integration measure, which has mass dimension −D. The
mass dimensions for the different fields in the SM are determined by the kinetic
terms given in Eqs. (2.1), (2.3), and (2.6). Using [∂] = 1, we obtain the result

[φ] = [A] =
D − 2

2
, (4.10)

[ψ] =
D − 1

2
. (4.11)

The interactions in the SM are gauge boson interactions, Yukawa interactions, and
scalar self-interactions, given in Eqs. (2.1), (2.5), and (2.6); Eq. (2.8); and Eq. (2.7),
respectively. The coupling constants appearing in these interactions have the mass
dimensions

[g] = [Y ] =
4−D

2
, (4.12)

[λ] = 4−D. (4.13)

While these coupling constants are all dimensionless for D = 4, they have negative
mass dimension for D > 4. This means that all the SM interactions are non-
renormalizable for D > 4. Notice that this property of higher-dimensional quantum
field theories depends only on the number of spacetime dimensions, and not on the
geometry of these dimensions.

In the higher-dimensional picture, the non-renormalizability of the theory is
manifest from the negative mass dimensions of the coupling constants. However,
in the four-dimensional picture, the coupling constants are dimensionless, and it
would seem that the theory is in fact renormalizable. However, the KK towers are
infinite and there is no upper bound on the masses of the KK modes. This is how
the non-renormalizability manifests in the four-dimensional picture, and hence, in
any renormalizable UV completion, the KK tower has to be truncated in some way
above a certain energy scale.

4.2.1 Ultraviolet completions

Since the non-renormalizability of higher-dimensional quantum field theories de-
pends only on the dimensionality of spacetime, it is hard to construct well-defined
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UV completions of such models. By far, the most common alternative is string
theory, which is not a QFT, but a theory of extended objects. In string theory,
the so-called string tension provides a natural cutoff close to the Planck scale, and
hence, the theory is well-defined for high energies. An alternative to string theory
in this context is provided by so-called dimensional deconstruction models [55,56].
In these models, spacetime is fundamentally four-dimensional, but appears higher-
dimensional in a certain energy range. This effect is due to a special structure of
the gauge group, which is a direct product of a number of copies of the same group.

4.3 Renormalization group running

The existence of extra dimensions would have a large impact on the RG running
of physical parameters. In general, the RG equations at a given energy scale µ
are sensitive to the particle mass spectrum below µ. This means that, below the
first-level KK scale, the beta function for any physical quantity is the same as in
the SM. This means that the beta function for an observable O can be divided into
two terms,

16π2 dO
d lnµ

= βSM
O + βED

O,tot, (4.14)

where βSM
O is the contribution from diagrams involving only SM particles and βED

O,tot
is the contributions from diagrams involving KK modes. Furthermore, the KK
mass spectrum is approximately degenerate at each KK level in comparison to the
mass difference between successive levels. This means that we can approximate the
contributions from all the particles within a given KK level to become relevant at
a common energy scale. Finally, it is often the case that the particle spectrum at
each excited KK level is identical, except for the particle masses. In the case of a
single extra dimension, we can write

βED
O,tot =

∑

n

βED
O,n = sβED

O , (4.15)

where s = ⌊µ/R−1⌋ and βED
O is the contribution from a single KK level. Here,

⌊x⌋ denotes the largest integer that is smaller than x. For energy scales that are
large in comparison to R−1, an approximate power-law behavior is obtained for the
RG running. Thus, the running could be significantly enhanced in comparison to
four-dimensional models, where it is often approximately logarithmic in the energy
scale.

In general, models with d extra dimensions give rise to an RG running which is
of the form

16π2 dO
d lnµ

= Xd

( µ

R−1

)d

βED
O , (4.16)

where Xd = 2πd/2/[δΓ(d/2)]. Hence, the power-law running is a general feature of
higher-dimensional theories, with the power-law exponent given by the dimension-
ality of the internal space.
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The non-renormalizability of higher-dimensional theories has important conse-
quences for the interpretation of the RG running in such theories. An effective
theory must have an explicit cutoff scale Λ, and hence, within the effective theory,
the physical quantities are finite, but depend on the value of Λ. This means that
the renormalized quantities cannot be considered to run with the energy scale µ,
but rather to depend on the fixed energy scale Λ. The problem is that it is in
general not clear whether or not it is possible to associate Λ with the mass scale for
the UV completion of the effective theory [57]. However, as was noted in Sec. 4.2,
the non-renormalizability of higher-dimensional theories manifests itself in the four-
dimensional picture through the infinite KK towers. Since the RG equations depend
only on the particle spectrum below the energy scale being considered, the theory
can, at any given energy scale, be replaced by a theory with finite, truncated KK
towers, while giving the same results as the higher-dimensional theory. Such a
truncated theory is renormalizable, and hence, from a practical point of view, the
normal interpretation of the RG equations is valid. Then, the cutoff scale can be
identified with the mass scale for the UV completion, without any ambiguity.

In Paper 6, the RG running of neutrino parameters in higher-dimensional models
was investigated. The large running could affect the high-energy mixing patterns,
giving connections to the mixing patterns that were discussed in Sec. 3.1. In Paper
7, we considered the impact of higher-dimensional RG running on the Higgs self-
coupling constant in light of recent LHC Higgs bounds.

4.4 Higher-dimensional models at the TeV scale

Inspired by string theory, several models of extra dimensions, which could poten-
tially solve some of the problems with the SM, have been suggested. A common
feature of many of these models is that their effects become relevant at energy
scales close to 1 TeV, which means that they could potentially be tested at the
LHC. The most important models include the UED model [58], which has received
much attention in connection to the field of DM, and the ADD model [59, 60] as
well as the Randall–Sundrum (RS) model [61, 62], which both aim to solve the hi-
erarchy problem of the SM. In Ch. 5, we will describe the UED model, which was
studied in Papers 1, 2, 3, 4, 6, and 7. Then, in Ch. 6, we will describe a number of
models, including the ADD model, where a subset of the particles are constrained
to a lower-dimensional brane. These models were studied in Papers 5, 6, and 8.
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Chapter 5

Universal extra dimensions

UEDs were first proposed by Appelquist, Cheng, and Dobrescu in the year 2000 [58].
In these models, all of the fields in the SM are promoted to higher-dimensional
fields. There are a number of versions of UED models, differing with respect to the
number of extra dimensions and the geometry of the internal space. The particle
content is usually chosen in the minimal way that reproduces the SM in the low-
energy limit. However, for reasons that will be made clear in this chapter, there
are necessarily additional degrees of freedom at the non-zero KK levels, compared
to the SM ones. The motivations for UED models include the existence of a DM
candidate particle [63,64], the need for three fermion generations in order to cancel
gauge anomalies [27], and proton stability [65].

We begin this chapter with a discussion on the properties of fermions and gauge
bosons in higher-dimensional models. In order to reproduce the phenomenology of
the SM at low energies, the models must be compactified on so-called orbifolds. We
discuss the consequences of the orbifolding, including the important concept of KK
parity conservation. Then, we discuss realistic UED models. Finally, we summarize
the experimental constraints on such models.

5.1 Fermions and orbifolding

Promoting fermions to higher-dimensional fields is not as straightforward as doing
so with scalars, since the properties of fermions depend drastically on the dimen-
sionality of spacetime. In the SM, the SU(2)L gauge interactions of the fermions
are chiral, i.e., their left- and right-handed parts have different gauge group trans-
formation properties. This structure is made possible by the fact that the Dirac
representation is reducible in four dimensions. A Dirac fermion can be decomposed
into two irreducible representations of definite chirality, so-called Weyl fermions.
This decomposition is not possible for an arbitrary space-time dimensionality. In
particular, the Dirac representation is irreducible in an odd number of dimensions,
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and in that case, there is no concept of chiral representations. This means that, on
the level of the five-dimensional Lagrangian, the fermions have non-chiral interac-
tions, and the same holds for the zero modes, which represent the SM fields. This
is known as the chirality problem.

In an odd number of dimensions D = 2k+ 1, spinors are 2k-component objects
[18], and hence, for D = 5, spinors have four components, as in four dimensions.
The key to resolving the chirality problem is to remove one of the chiral components
of the zero mode of each fermion. In this way, the zero modes behave as chiral
fermions, and the theory is effectively chiral for energies below R−1. In general,
the zero mode of a field can be removed by replacing the circle S1 by the orbifold1

S1/Z2, which is obtained from S1 by identifying the opposite points x5 and −x5,
as illustrated in Fig. 5.1. In order for the action to be invariant under the parity
transformation x5 → −x5, the five-dimensional fields have to be either even or odd
under this transformation. Writing the KK expansion given in Eq. (4.2) in terms
of trigonometric functions, the expansion of an even field is given by

φeven(x
µ, x5) =

1√
πR

[

φ(0)(xµ) +
√
2

∞
∑

n=1

φ(n)(xµ) cos

(

nx5

R

)

]

, (5.1)

while that of an odd field is given by

φodd(x
µ, x5) =

√

2

πR

∞
∑

n=1

φ(n)(xµ) sin

(

nx5

R

)

. (5.2)

The important property is that, whereas an even expansion series includes a zero
mode, an odd one does not.

x50πR

Figure 5.1. Illustration of the construction of the orbifold S1/Z2 from a circle with
radius R. The points x5 and −x5 are identified, giving an interval with length πR.

Alternatively, the orbifold can be seen as an interval with length πR. From this
point of view, the different KK expansions depend on the boundary conditions of
a field on this interval.

1Simply put, an orbifold is a generalization of a manifold that allows for the existence of
singular points.
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Fermions transform under x5 → −x5 as

Ψ(xµ, x5) → Ψ′(xµ, x5) = γ5Ψ(xµ,−x5), (5.3)

or, in terms of the would-be chiral components,
(

ψL(x
µ, x5)

ψR(x
µ, x5)

)

→
(

−ψL(x
µ,−x5)

ψR(x
µ,−x5)

)

. (5.4)

Thus,

Ψ even ⇔ ψL odd and ψR even,

Ψ odd ⇔ ψL even and ψR odd,

i.e., ψL and ψR necessarily have opposite transformation properties, so that fermions
on S1/Z2 are always effectively chiral at the level of the zero modes. Now, the chi-
rality problem can be solved by introducing two five-dimensional Dirac fermions
for each Dirac fermion Ψ in the SM. One of these, ΨD (D for doublet), has the
quantum numbers of ψL, while the other one, ΨS (S for singlet), has the quantum
numbers of ψR. In order to reproduce the SM correctly in the low-energy limit, ΨD

has to be odd and ΨS even, i.e.,

ΨD(x
µ, x5) =

1√
πR

[

PLΨ
(0)
D (xµ) +

√
2

∞
∑

n=1

PLΨ
(n)
D (xµ) cos

(

nx5

R

)

+
√
2

∞
∑

n=1

PRΨ
(n)
D (xµ) sin

(

nx5

R

)

]

, (5.5)

ΨS(x
µ, x5) =

1√
πR

[

PRΨ
(0)
S (xµ) +

√
2

∞
∑

n=1

PRΨ
(n)
S (xµ) cos

(

nx5

R

)

+
√
2

∞
∑

n=1

PLΨ
(n)
S (xµ) sin

(

nx5

R

)

]

. (5.6)

Here, PR/L = (1 ± γ5)/2 are the four-dimensional projection operators, and we

identify the chiral SM fermions as ψL = PLΨ
(0)
D and ψR = PRΨ

(0)
S .

At each non-zero KK level, the two Dirac spinors ΨD and ΨS receive contribu-
tions to their masses from the momentum along extra dimensions, as well as from
the Higgs mechanism. The contributions from the extra dimensions come from the
kinetic terms in the five-dimensional Lagrangian, and therefore, they are diagonal.
On the other hand, the contributions from the Higgs mechanism necessarily involve
a mixing of the two Dirac fermions. The fermion mass matrix at the nth KK level,

in {Ψ(n)
S ,Ψ

(n)
D } basis, is given by

M(n)
Ψ =

(

−n/R mΨ

mΨ n/R

)

, (5.7)
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where mΨ = YΨv/
√
2. The eigenvalues of this matrix are

M
(n)
Ψ = ±

√

n2

R2
+m2

Ψ. (5.8)

Since the mass matrix in flavor basis is not diagonal, the Dirac fermions ΨD and
ΨS generally mix with each other. The mixing angle α(n) at the nth KK level is
given by

tan 2α(n) =
mΨ

n/R
, (5.9)

i.e., it is suppressed at all KK levels if R−1 ≫ mΨ.
For an even number of dimensions, D = 2k, spinors are 2k-component ob-

jects [18]. Hence, spinors in six dimensions have eight components. A reduction
into states of definite chirality is possible, but this higher-dimensional chirality is
not the same as the one in four dimensions. The chiral representations, which are
referred to as states of +/− chirality, carry half of the degrees of freedom of the
Dirac representations, i.e., they are four-component objects. These fermion repre-
sentations are irreducible, and clearly, the chiral fermions cannot represent the SM
fermions in the low-energy limit. However, since they have four components, the
situation is similar to the five-dimensional case, and an analogous solution to the
problem is possible, provided only that the internal space is chosen in such a way
that the zero modes of fields can be projected out. Thus, for each Dirac fermion
in the SM, the model must include two six-dimensional fermions with definite six-
dimensional chirality and with quantum numbers corresponding to the left- and
right-handed parts of the SM fermion. The six-dimensional fermion chiralities are
constrained by the requirement of anomaly cancellation, and the structure is given
by Q+ = (u+, d+), u−, d−, L+ = (ν+, e+), e−, and ν− [27, 66]. It is interesting
to note that, in sharp contrast to the SM, the anomaly cancellations demand the
existence of a sterile fermion ν−.

In six dimensions, the number of possible internal spaces is increased. One of
the most studied cases is the so-called chiral square, T 2/Z4 [67, 68]. This orbifold
can be constructed from a square with side length L by identifying the sides (y, 0)
and (0, y) as well as (y, L) and (L, y), for 0 ≤ y ≤ L, i.e., folding the square along
the diagonal, as illustrated in Fig. 5.2. In contrast to the two possible choices for
the boundary conditions of a field on the orbifold S1/Z2, the chiral square admits
four different consistent choices. With n = 1, 2, 3, 4 denoting the choice of boundary
conditions, the expansion of a field on this orbifold is given by [67]

An(x
µ, x5, x6) =

1

L



δn,0A
(0,0)(xµ) +

∑

j≥1

∑

k≥0

f (j,k)
n (x5, x6)A(j,k)(xµ)



 , (5.10)

where

f (j,k)
n (x5, x6) = e−inπ/2 cos

(

jx5 + kx6

R
+
nπ

2

)

+ cos

(

kx5 − jx6

R
+
nπ

2

)

(5.11)
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and we have defined R = L/π. The squared mass for a KK mode with indices (j, k)
is m2

j,k = (j2 + k2)/R2. Note that only the n = 0 fields have zero modes, and that
there is no (0, 1) mode. This means that, for each field, there is a single lightest
KK mode, with indices (1, 0) and mass m1,0 = R−1. We call this mode the first
KK mode.

x5

x6

L

L

Figure 5.2. Illustration of the construction of the orbifold T 2/Z2 from a square with
side length L. The sides (y, 0) and (0, y) as well as (y, L) and (L, y), for 0 ≤ y ≤ L,
are identified.

5.2 Gauge bosons

Next, we turn to the properties of gauge bosons in higher-dimensional quantum
field theories. Since the number of components of any vector field is equal to the
dimensionality of spacetime, these gauge bosons will have additional components,
compared to the four-dimensional case. The correct choice of orbifold transforma-
tion properties of each of the components is an important issue, which affects the
phenomenology of the models.

In order to simplify the treatment, we consider in the following only Abelian
gauge bosons. The calculations can be straightforwardly extended to the case of
non-Abelian ones. The same conclusions hold for that case, with the addition of
self-interactions among the different components of the gauge field.



38 Chapter 5. Universal extra dimensions

In five dimensions, the kinetic term for an Abelian gauge boson is given by

L5D
YM = −1

4
FMNF

MN

= −1

4

(

FµνF
µν + 2Fµ5F

µ5
)

= −1

4
FµνF

µν − 1

2
∂µA5∂

µA5 − 1

2
∂5Aµ∂

5Aµ + ∂µA
5∂5A

µ

= −1

4
FµνF

µν +
1

2
∂µa∂

µa+
1

2
∂5Aµ∂5A

µ − ∂µa∂5A
µ, (5.12)

where we have defined a ≡ A5 = −A5. Since the partial derivatives transform
under the orbifold Z2 transformation x5 → −x5 as

∂µ → ∂µ, (5.13)

∂5 → −∂5, (5.14)

the first three terms of Eq. (5.12) are invariant under this transformation, irrespec-
tive of the transformation properties of the components of AM . The last term,
on the other hand, is invariant only if the fifth component A5 has transformation
properties opposite to those of the four-dimensional part Aµ. Requiring that the
four-dimensional part has a zero mode gives

Aµ(x
µ, x5) =

1√
πR

[

A(0)
µ +

√
2

∞
∑

n=1

A(n)
µ cos

(

nx5

R

)

]

, (5.15)

a(xµ, x5) =

√

2

πR

∞
∑

n=1

a(n) sin

(

nx5

R

)

. (5.16)

Using these KK expansions, it is easy to show that the four-dimensional Lagrangian
corresponding to Eq. (5.12) is given by

LYM =
∞
∑

n=0

[

− 1

4
F (n)
µν F

µν(n) +
1

2

( n

R

)2

A(n)
µ Aµ(n)

+
1

2
∂µa

(n)∂µa(n) +
n

R
Aµ(n)∂µa

(n)

]

. (5.17)

This form of the Lagrangian makes it clear that, from the four-dimensional point
of view, the KK modes a(n) of the fifth component a of the gauge field appear as

scalars. The last term in Eq. (5.17), which is a bilinear term mixing A
(n)
µ and a(n),

can be removed by adding to the Lagrangian the gauge-fixing term

Lgf =

∫ πR

0

dx5
[

− 1

2ξ

(

∂µA
µ − ξ

n

R
a
)2
]

=

∞
∑

n=0

[

− 1

2ξ
(∂µA

µ)
2
+
n

R
a(n)∂µA

µ(n) − 1

2

(

√

ξ
n

R

)2

(a(n))2
]

. (5.18)
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Note that this term is not five-dimensionally Lorentz invariant, since it contains
the four-dimensional Lorentz scalar ∂µA

µ, rather than ∂MA
M . However, five-

dimensional Lorentz invariance is already explicitly broken by the orbifolding pro-
cedure. Adding Eq. (5.18) to Eq. (5.17), we finally obtain

LYM + Lgf =

∞
∑

n=0

[

− 1

4
F (n)
µν F

µν(n) +
1

2
m2
A(n)A

(n)
µ Aµ(n) − 1

2ξ
(∂µA

µ)2

+
1

2
∂µa

(n)∂µa(n) − 1

2
(
√

ξmA(n))2(a(n))2
]

, (5.19)

where mA(n) ≡ n/R. Comparing this Lagrangian to Eq. (2.13), one observes that

the four-dimensional gauge fields A
(n)
µ , for n ≥ 1, obtain masses by eating the

fields a(n), which are interpreted as Goldstone bosons. Finally, note that if a was
not restricted to be odd by the orbifolding procedure, there would be a massless
scalar a(0) in the particle spectrum. Such a massless scalar, with gauge-strength
interactions, is ruled out by experiments, and this is a second potential problem of
the model that the orbifolding solves.

In the six-dimensional case, the situation concerning the gauge bosons is more
complicated than in the five-dimensional case. In five dimensions, the KK modes
of the fifth component of each gauge boson are eaten, in order to give masses to the
corresponding KK modes of the four-dimensional part of the gauge boson. In six
dimensions, there are two extra components for each gauge boson, and one linear
combination of these is eaten, in the same way as in five dimensions, while the
orthogonal combination appears as a physical scalar in the spectrum. This particle
is known as the adjoint scalar. The extra components of a gauge field have to be
assigned boundary conditions in such a way that the adjoint scalar has no zero
mode, which means that it appears only starting from the first excited KK level.

5.3 Boundary localized terms and Kaluza–Klein

parity

While resolving the chirality problem and removing the zero modes of the extra
components of the gauge bosons, the orbifolding procedure also complicates the
model. The orbifold S1/Z2 has two fixed points under the Z2 transformation,
y = 0 and y = πR, i.e., the boundary points of the interval. At such points,
the symmetries of the theory allow for localized terms in the Lagrangian, so-called
boundary localized terms (BLTs). These terms could modify the mass spectrum as
well as the interactions among the particles.

The BLTs are generated by radiative corrections [69], which means that it is
inconsistent not to include them. In contrast to the bulk parameters in the UED
Lagrangian, the BLTs are not determined by the SM parameters, and hence, they
are separate inputs to the theory. In the most general case, all the BLTs that are



40 Chapter 5. Universal extra dimensions

allowed by the SM gauge invariance should be included, and the coefficients of these
operators can only be constrained by experiments. In the literature, the ansatz is
often made that the BLTs vanish at the cutoff scale, Λ, of the higher-dimensional
theory.2 This ansatz defines the minimal UED (MUED) model. Although the BLTs
are assumed to vanish at the energy scale Λ, the running of the parameters induces
non-zero terms at lower energies.

In UED models, there are two different sources breaking translational invariance
in the fifth dimension, and hence, conservation of the fifth component of the mo-
mentum. The BLTs explicitly do so, and in addition, there are contributions to the
breaking from loop-processes wrapping around the compact dimension. The latter
are intrinsically loop-suppressed, and in the MUED model, the BLTs are generated
only by radiative corrections, so that those contributions are also loop-suppressed.
On the level of the four-dimensional theory, this means that KK number is not
conserved, but it is broken only at loop-level.

In the important case that the BLTs at the two fixed points are equal, the
Lagrangian is invariant under a translation by πR, which maps the fixed points
onto one another. This discrete translation defines a Z2 transformation on the
orbifold S1/Z2. Correspondingly, there should be a conserved quantity. Indeed,
under the translation x5 → x5 + πR, the KK wavefunctions transform as

cos

(

nx5

R

)

→ (−1)n cos

(

nx5

R

)

, (5.20)

sin

(

nx5

R

)

→ (−1)n sin

(

nx5

R

)

. (5.21)

If the Lagrangian is to be invariant under this transformation, the condition

(−1)
∑

i
ni = 1 (5.22)

has to hold for every vertex. Hence, the conservation of KK number is broken, but
the total KK number in each vertex has to be even. In other words, on the four-
dimensional level, there is a multiplicatively conserved quantum number, which
can be defined as (−1)n. The assumption that the BLTs appear symmetrically is
consistent, in the sense that they evolve in the same way with the energy scale.
This means that if they are equal at some energy scale, then this is true for all
energies.

KK parity is analogous to R-parity, which is a discrete symmetry that appears in
supersymmetric extensions of the SM. In such models, the supersymmetric partners
of the SM particles are charged under R-parity, which implies that all vertices
include an even number of such supersymmetric partners. The consequences of the
two symmetries are similar.

In the six-dimensional UED model on the chiral square, the situation is similar.
Like the S1/Z2 orbifold, the chiral square has fixed points, at (x5, x6) = (0, 0),

2The situation is analogous to the case of the minimal supersymmetric Standard Model, where
an ansatz for the supersymmetry breaking terms is made at the scale of grand unification [14].
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(L,L), and (0, L).3 These points induce BLTs and break the conservation of KK
number. If the BLTs at the points (0, 0) and (L,L) are identical4, the Lagrangian
is invariant under a rotation by π around the center of the square, i.e.,

x5 → L− x5, (5.23)

x6 → L− x6. (5.24)

Under this rotation, the KK wavefunctions given in in Eq. (5.11) transform as

f (j,k)
n (x5, x6) → f (j,k)

n (L− x5, L− x6)

= e−inπ/2 cos

(

− jx
5 + kx6

R
+ (j + k)π +

nπ

2

)

+ cos

(

−kx
5 − jx6

R
+ (k − j)π +

nπ

2

)

= e−inπ/2 cos

(

jx5 + kx6

R
+
nπ

2
− (j + k + n)π

)

+ cos

(

kx5 − jx6

R
+
nπ

2
− (k − j + n)π

)

= (−1)j+k+ne−inπ/2 cos

(

jx5 + kx6

R
+
nπ

2

)

+ (−1)−j+k+n cos

(

kx5 − jx6

R
+
nπ

2

)

= (−1)j+k+nf (j,k)
n (x5, x6). (5.25)

where we have used the fact that (−1)j = (−1)−j. It can be shown that there
are additional symmetries in the model that enforce the constraint (−1)n for each
vertex [67]. Hence, there is again a conserved KK parity, which is given by (−1)j+k.

To summarize, in the MUED models, KK parity is always conserved, while KK
number is conserved at tree-level, but broken at loop-level. These constraints on the
interactions of the KK particles have important consequences for the constraints
on and phenomenology of the model.

5.3.1 Stability of the lightest Kaluza–Klein particle

An important consequence of the conservation of KK parity is that the lightest
Kaluza–Klein particle (LKP), i.e., the lightest first-level KK mode, is completely
stable. By definition, the only particles that are lighter than the LKP are the
SM particles, and by conservation of energy, these are the only particles that the
LKP could decay into. Hence, any decay vertex of the LKP would have a net KK

3The fourth point, (L, 0), is identified with (0, L).
4The points at (0, L) and (L, 0) are identified on the orbifold, and hence, they have to be

identical.
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number n = 1, which is forbidden by KK parity. The fact that the LKP is stable
means that it could potentially be a DM candidate. This kind of DM is known
as Kaluza–Klein dark matter (KKDM), and was first proposed in Refs. [63, 64].
The situation is completely analogous to supersymmetric models where R-parity
is conserved. The viability of the LKP as a DM candidate, and the corresponding
phenomenology, is discussed in more detail in Sec. 7.5.

5.4 Mass corrections

At tree level, the mass for a given field with zero-mode mass m0 is given by

mn =

√

m2
0 +

n2

R2
(5.26)

in the five-dimensional case, and

mj,k =

√

m2
0 +

j2 + k2

R2
(5.27)

in the six-dimensional case. If the zero-mode contributions to the particle masses
are ignored, all of the KK modes at a given level are degenerate, and processes
such as e(2) → e(1)+γ(1) would marginally be kinematically allowed. Although the
issue would seem to be resolved by the zero-mode masses, these contributions could
be completely irrelevant in comparison to radiative corrections to the masses [70].
This means that radiative corrections play a major role in determining the decay
patterns of KK particles in UED models. Also, the identity of the LKP is sensitive
to radiative corrections, and could have a large impact on studies of KKDM, where
the LKP is the potential DM candidate.

Since the contributions to the masses of the KK modes coming from the extra
dimensions are really parts of the momenta, these parts would seem to be protected
by Lorentz invariance, and hence not obtain any corrections. However, due to the
compactification of the fifth dimension on a circle, Lorentz invariance is broken
at loop-level by virtual particles wrapping around this dimension. Since this is
a long-distance effect, it gives rise only to finite, well-defined corrections to the
mass spectrum. These corrections are present for any model of compactified extra
dimensions.

A second source of radiative corrections is the orbifolding of the internal space,
which induces BLTs that break Lorentz invariance locally. In MUED models, these
corrections can be uniquely determined. In this case, they evolve from zero at the
cutoff scale Λ, and are proportional to lnΛ.
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5.5 Minimal universal extra dimensions

We are now in a position to discuss the particle content and the phenomenology
of realistic MUED models. We begin with the five-dimensional model, followed by
the six-dimensional model on the chiral square.

5.5.1 Five dimensions

At each KK level, the electroweak gauge bosons B(n) and W 3(n) mix to form mass
eigenstates, in the same way as in the SM. The mass matrix at the nth KK level,
in {B(n),W 3(n)} basis, is given by [70]

M(n)
gauge =

(

n2

R2 + δm2
B(n) +

1
4g

′2v2 1
4g

′gv2

1
4g

′gv2 n2

R2 + δm2
W 3(n) +

1
4g

2v2

)

, (5.28)

where δm2
B(n) and δm2

W 3(n) are corrections to the tree-level masses. Due to the
difference between these corrections, the mixing is small for n > 0. For R−1 ≥
300 GeV, the first-level Weinberg angle is bounded as sin θ

(1)
W . 0.05, and for larger

values of n, it is even smaller. This means that we can make the approximation
B(n) ≃ A(n) and W 3(n) ≃ Z(n). In order to conform with the most commonly used
notation in the literature, we will call these fields B(n) and Z(n). In the context of
DM, we will use the simplified notation B1 and Z1 for the level-one KK excitations.

In the SM, each of the weak gauge bosons obtains a mass by eating a component
of the Higgs field. In a five-dimensional gauge theory, the masses of the non-zero
KK modes of a gauge boson can be understood as being due to the gauge boson
eating its fifth component at each KK level, in a completely analogous way. In the
case of the weak gauge bosons in the five-dimensional model, each KKmode receives
mass terms from both of these sources5, ad hence, the corresponding mechanism is
more complicated. The fifth component of the gauge boson and the corresponding
component of the Higgs field mix at each KK level to form two scalar particles.
One of these is eaten by the gauge boson in order to generate a mass, and the other
one appears as a physical scalar in the particle spectrum. The mixing angle β(n)

at the nth KK level is given by

tanβ(n) =

√

m2
A

(n/R)2 + δm2
A(n) +m2

A

, (5.29)

where A = W,Z. Since m2
A ≪ (n/R)2 + δm2

A(n) , the physical scalar is mainly
composed of the Higgs field. Since one of the four components of the Higgs field is
physical already in the SM, there are three new scalars at each KK level. Two of
these, H±(n), are charged and the third, A0(n), is a pseudoscalar.

5Since the excited KK modes of the Higgs field obtain large positive contributions to the mass
parameter −µ2, only the zero mode acquires a VEV.
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For simplicity, the effects of electroweak symmetry breaking (EWSB) are usu-
ally ignored in comparison to the mass scale R−1, i.e., terms of order (vR)2 are
neglected. Using this approximation, the particle content of the model is summa-
rized in Table 5.1.

The mass spectrum, including both sources of radiative corrections, was deter-
mined in Ref. [70]. In Fig. 5.3, the mass spectrum for the five-dimensional model
with these corrections is shown for R−1 = 500 GeV, ΛR = 20 and mH = 125 GeV.
The LKP is the first KK excitation of the B boson, the B1. In general, the iden-
tity of the LKP in the MUED model depends on the value of the compactification
scale as well as the Higgs mass [71]. In some parts of the parameter space, the
LKP could be the first-level KK mode of the graviton or the charged Higgs boson,
H±(1). However, taking the current constraints on the MUED model into account
(see Sec. 5.7), the H±(1) LKP is ruled out, and in most of the remaining parameter
space, the B1 is the LKP. Another important feature of the spectrum is that the
heaviest level-one modes are the strongly interacting ones, i.e., the KK quarks and
gluons. These are the particles that have the largest production rates in hadron
colliders such as the Tevatron and the LHC, and the fact that they have many
kinematically open decay channels is important for the resulting phenomenology.
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Figure 5.3. The mass spectrum of the five-dimensional MUED model, including
radiative corrections.

5.5.2 Six dimensions

In general, the two extra components of each of the weak gauge bosons are mixed
with the components of the Higgs field. In the limit that the inverse of the radius
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g
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Table 5.1. The particle content in the two UED models described in this chapter,
neglecting EWSB effects. For the six-dimensional model, the allowed values of the
KK indices are (j, k) = (0, 0) and j ≥ 1, k ≥ 0, i.e., there are no (0, 1) modes.
The non-zero KK modes of the fermions are Dirac particles, and S and D denotes
SU(2)L singlets and doublets, respectively. The subscript H on the scalars in the
six-dimensional model denotes adjoint scalars.
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of the internal space is much larger than the VEV of the Higgs field, one of the
physical combinations is mainly composed of the Higgs field, while the other is
mainly a combination of the extra components of the weak gauge boson. In total,
there are 15 new scalars at each KK level.

The particle content, neglecting EWSB effects, is summarized in Table 5.1. The
mass spectrum for the six-dimensional MUED model on the chiral square, which
was calculated in Refs. [72–74], is shown in Fig. 5.4. In this model, the LKP is the
adjoint scalar B1

H, rather than B
1. Hence, the phenomenology of the model is quite

different from the five-dimensional case. In addition, the relative mass splittings
among the first-level KK modes are larger than in the five-dimensional case.
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Figure 5.4. The mass spectrum of the six-dimensional MUED model on the chi-
ral square, including radiative corrections. The masses of the Higgs fields depend
quadratically on the cutoff scale, and hence, no reliable values can be given for those
masses.

5.5.3 Collider phenomenology

In colliders, conservation of KK parity implies that first-level KK modes can only
be produced in pairs. Once such a KK mode has been produced, it will decay in
a chain where KK parity is conserved, ending in the production of the LKP. At
each step in this decay chain, a SM particle is emitted, giving signals including
jets, leptons, photons, and missing energy. Since the first-level KK mass spectrum
is relatively degenerate, these SM particles will be soft, which means that it could
be difficult to separate them from the background. For jets, the background is
large at the LHC, and a better search strategy is to look for leptons [75]. The
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most promising channel is the four leptons plus missing energy, for which the LHC
should be able to probe to compactification radius up to about 1.5 TeV.

An alternative strategy, which could also be used to distinguish UED models
from supersymmetric models at the LHC, is to search for signals from the second-
level KK modes. The production of a single second-level KK particle is consistent
with conservation of KK parity, but not KK number. Hence, such a process can
occur at loop-level in MUED models. Since the masses of second-level particles are
about twice as large as those of the first-level modes, a second-level particle can
decay into SM particles or into a pair of first-level KK particles. In Ref. [76], it
was found that the second-level KK modes of the γ and Z gauge bosons provide
the best prospects for detection at the LHC. These particles can be detected as
resonances in the invariant mass distributions of electron and muon pairs.

In the six-dimensional UED model on the chiral square, the situation regarding
the second-level modes is different [73]. In this case, the second KK level consists
of the (1, 1) states, which have masses of about

√
2R−1. This has two important

consequences for the phenomenology of these modes. First, for a given value for
R−1, the second-level modes are much lighter than in the five-dimensional model,
enhancing their production cross sections. Second, decays into first-level modes,
which have masses of about R−1, are kinematically forbidden. This means that
the second-level modes can only decay into SM particles, enhancing the resonant
production of fermion pairs from decays of heavy gauge bosons.

5.6 Non-minimal universal extra dimensions

Going beyond the MUED models, i.e., dropping the assumption that the BLTs
vanish at the cutoff scale Λ, means that the parameters of the model are modified.
In particular, this is true for the mass spectrum. Thus, non-minimal models could
have a phenomenology differing quite significantly from the corresponding MUED
models. As the number of BLTs allowed by the gauge symmetries of the SM
is large, it is difficult to make a general analysis of the impact of BLTs on the
phenomenology of UED models. The studies that have been performed in the
literature have focused on a subset of the possible BLTs, or have taken a more
phenomenological approach by assuming that the mass spectrum is modified in
some specific way without considering the detailed mechanisms in terms of BLTs.

The BLTs give rise to modifications of precision observables already at tree-level,
and hence, they can be experimentally constrained. However, these constraints are
relatively weak, leaving significant room for phenomenologically relevant modifica-
tions in UED models. In Ref. [77], it was shown that experimentally allowed BLTs
in the electroweak sector could modify the mass spectrum in such a way that the
Z(1) or H(1) becomes the LKP. The consequences of this fact in the context of
KKDM is discussed in Sec. 7.5.

In addition to the identity of the LKP, BLTs would modify the rest of the param-
eter space. This means that the decay patterns of the first-level KK modes could
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change, modifying the collider phenomenology compared to the minimal models.
Studies of collider signals in non-minimal UED models are much more dependent
on the full first-level spectrum than DM studies, where the most important aspect
is the LKP. Hence, it is difficult to perform robust studies of such signals.

5.7 Constraints on the models

UED models can by constrained by direct searches for KK particles at colliders as
well as the contribution from the KK modes to different precision observables. At
present, the limits from the collider and indirect searches give similar lower limits on
the compactification scale. In addition, one of the strongest motivations for UED
models is the possibility to obtain a DM candidate. Hence, the models are also
indirectly constrained by the requirement of obtaining the correct relic abundance
for the DM particle. The DM constraints are reviewed in Sec. 7.5.

5.7.1 Collider constraints

So far, the only analysis related to UED models performed by the LHC experiments
treats a variation of the five-dimensional MUED model, which is embedded in an
even higher-dimensional spacetime, where the additional dimensions are of the ADD
type (see Sec. 6.1). In this model, the B1 can decay into a KK graviton and a SM
photon, giving rise to a diphoton plus large missing energy signal. The lower bound
on the compactification of this model is given by R−1 ≥ 1.23 TeV [78].

In Ref. [79], the results of the LHC searches for the SM Higgs boson were used to
constrain the five-dimensional MUED model, as well as a number of six-dimensional
models. The contributions from the KK modes to the production processes for the
Higgs boson were used to constrain the compactification scale. In particular, the
contributions from KK top quarks to the gluon fusion process are large in the UED
model. The resulting lower limits on R−1 depend on the Higgs mass, with the limit
increasing with mH . For the five-dimensional UED model, the bound ranges from
R−1 & 200 GeV at mH = 120 GeV to R−1 & 950 GeV at mH = 140 GeV. Below
mH = 120 GeV, no bound is obtained. For the six-dimensional UED model on
the chiral square, the bound ranges from R−1 & 250 GeV at mH = 115 GeV to
R−1 & 1300 GeV at mH = 140 GeV.

In Ref. [80], this idea was developed further, taking into account the UED
contributions to the processes gg → H → γγ and gg → H → W+W−. Combining
the LHC Higgs bounds with EWPO constraints and the requirement of having a
DM candidate with the correct abundance, the authors found that only a small
region of the MUED parameter space remains. However, this analysis is more
sensitive to the specific MUED assumptions.

The direct search for KK modes at the Tevatron has also been used to place
constraints on the compactification scale in the five-dimensional UED model. The
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analysis performed in Ref. [81] gives the lower limit R−1 & 300 GeV, using the
multilepton channel.

5.7.2 Constraints from precision observables

The UED model can also be constrained by the contributions from the KK modes
to the EWPOs, in particular to the self-energies of the gauge bosons. The leading
KK contributions to the most important EWPOs are opposite to those of a heavy
Higgs boson, and thus, the indirect EWPO bounds on the Higgs boson mass given
in Table 2.1 are not valid in the UED model. Instead, the bounds on R−1 and mH

are correlated, with the upper limit on R−1 becoming weaker with an increasing
Higgs mass.

The strongest constraint on the five-dimensional UED model from EWPOs was
obtained by the Gfitter group [82], using results from Refs. [83, 84]. The result is
shown in Fig. 5.5. For a low Higgs boson mass mH = 115 GeV, the lower bound
on the compactification scale is R−1 & 700 GeV, which is comparable to the limit
obtained from the LHC Higgs search described above, and for a heavy Higgs boson,
mH = 700 GeV, 300 GeV . R−1 . 450 GeV. The largest allowed value for the
Higgs boson mass in the five-dimensional MUED model is 800 GeV.
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Figure 5.5. Constraints on the five-dimensional UED model from fits to EWPOs.
The allowed 68 %, 95 %, and 99 % contours in the (mH , R−1) plane are shown.
Figure taken from Ref. [82].

By considering the contributions from the KK modes to the b → sγ vertex
in the five-dimensional MUED model, the authors of Ref. [85] obtained the lower
limit R−1 & 600 GeV at 95 % CL. This limit is independent of the Higgs mass,
but depends on the MUED assumptions. A similar analysis for the six-dimensional
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MUED model on the chiral square, which was carried out in Ref. [86], gives the
lower limit R−1 & 650 GeV at 95 % CL. However, in six-dimensional models, the
sums over internal KK particles diverge, and hence, this result depends explicitly
on the cutoff scale Λ.

In addition, constraints from the contributions of the KK modes to the Zbb
vertex give lower limits on the compactification scale of the order of 300 GeV.
[58, 87, 88].

5.7.3 Limits on the cutoff scale

An upper limit on the cutoff scale can be determined by considering the loop-
expansion parameters corresponding to the gauge coupling constants, which are
given by [89]

εi = Ni
αi(Λ)

4π
ΛR, i = 1, 2, 3, (5.30)

where αi(Λ) is the fine-structure constant corresponding to the coupling constant
gi and Ni is the number of colors of the gauge group i. The non-renormalizability
of the theory results in the linear Λ-dependence in this expression, and the upper
bound on Λ is given by the solution to the equation εi = 1, i.e., it is the energy
scale where the coupling becomes non-perturbative. The strongest limit is set by
the SU(3)c sector of the SM gauge group, giving an upper bound of the order of
ΛR ≃ 10.

In Paper 7, a similar method was applied to the Higgs sector of the five-
dimensional MUED model. The enhanced running induced by the extra dimen-
sions could cause the Higgs self-interaction coupling constant λ to either diverge
or become negative, in which case the Higgs potential would become unstable.
The fate of λ depends on the initial conditions, i.e., its low-energy value, which
has not been experimentally measured. However, λ is related to the Higgs boson
mass mH through the relation λ = m2

H/v
2, where v is the VEV of the Higgs field.

Thus, the running behavior of λ is affected by the LHC Higgs mass bounds (see
Sec. 2.2.2). For the allowed low-mass region, λ runs rapidly to negative values in
the five-dimensional MUED model. Hence, the bound ΛR < 6 could be imposed
for mH = 130 GeV and R−1 = 1 TeV, with an even more restrictive bound for a
smaller Higgs mass and/or a larger compactification scale.
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Brane models

An alternative way to avoid the problems related to fermions and gauge bosons
in extra dimensions is to postulate that only some of the particles in the model
propagate through the higher-dimensional spacetime. Typically, this is motivated
by restricting the remaining particles to a lower-dimensional brane residing in the
bulk. The particles that reside on the brane are effectively lower-dimensional, and
have no corresponding KK towers. Since it is the excited KK modes that give rise to
the constraints on higher-dimensional models, these constraints may be weakened
by assuming that some particles are confined to a brane.

In this chapter, we describe two models that are based on this idea. First,
we describe the so-called ADD model of large extra dimensions, where only gravity
propagates in the bulk. Then, we consider a model where sterile fermions propagate
in the bulk, giving rise to a mechanism for generating small neutrino masses.

6.1 Large extra dimensions—The ADD model

The standard example of a brane model is the ADD model, [59, 60], named after
its originators Arkani-Hamed, Dimopolous, and Dvali, who proposed the model
in 1998. In the ADD model, all the SM particles are confined to a brane. On
the other hand, gravity, which is not a part of the SM, probes the full higher-
dimensional spacetime. Because of the weakness of the gravitational interactions,
the constraints on this sector are far less stringent than those on the SM.

6.1.1 The model

In the ADD model, the extra dimensions are assumed to be flat and compactified
on the d-dimensional torus T d. For simplicity, the radii of the extra dimensions
are usually assumed to have a common value R. The number of extra dimensions
d is a free parameter; however, if the model is considered as a low-energy limit of
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string theory, where the total number of dimensions is ten or eleven, the maximum
possible value is d = 7.

There are a number of different possible origins for the brane and the confining
mechanism that restricts the SM to this subspace. One possible scenario was de-
scribed in the original ADD paper [59], and other possibilities have been suggested
in the literature, e.g., in Ref. [90]. At sufficiently low energies, the thickness and
dynamics of the brane can be neglected, which means that it has no other effect
than to localize the SM fields. This is most commonly assumed in the literature,
although studies of the effects of a dynamical brane have also been performed [91].

The existence of the brane breaks translational invariance along the extra di-
mensions, in the same way as the BLTs do in UED models. Therefore, momentum
conservation is broken along these dimensions, enabling the production of single ex-
cited KK modes. In a more fundamental model, where the dynamics of the brane
are taken into account, the recoiling momentum is provided by the brane itself. In
the ADD model, there is no KK parity.

The only dynamical degrees of freedom in the bulk are the fluctuations of the
metric tensor. According to the general theory of relativity, in the absence of matter
and a cosmological constant, its dynamics are given by the Einstein field equations,

Gµν ≡ Rµν −
1

2
gµνR = 0. (6.1)

Here, Rµν is the Ricci tensor, R is the Ricci scalar, and M̄Pl is the (reduced)
Planck scale. The Planck scale is defined as MPl ≡ 1/

√
GN, where GN is Newton’s

gravitational constant. It is the energy scale where the gravitational interaction
becomes strong. At this scale, quantum effects for gravity are expected to become
important, and general relativity has to be replaced by a full quantum theory of
gravity, which has not yet been found. The reduced Planck scale M̄Pl ≡MPl/

√
8π

is introduced in order to simplify equations by removing numerical constants.

Equation (6.1) can be obtained by applying the principle of stationarity to the
Einstein–Hilbert action

SEH = M̄2
Pl

∫

√

|g|d4xR. (6.2)

This formulation of the theory has the advantage that it is straightforward to gener-
alize it to an arbitrary number of dimensions. Notice that, since the mass dimension
of the Ricci scalar [R] = 2, the first term in the action must be multiplied by a
constant of mass dimension two in order to be dimensionless. The Planck scale
is the relevant energy scale for general relativity, and the overall numerical coeffi-
cient is determined by comparing the equations of motion to classical Newtonian
mechanics in the low-energy limit.

Generalizing the Einstein–Hilbert action to D dimensions, we obtain

S(D)
EH = M̄d+2

D

∫

√

|g|dDxR. (6.3)
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The quantity M̄D is analogous to M̄Pl and the factor M̄d+2
D makes the action

dimensionless.
The main motivation for the ADD model is to provide a solution to the hierarchy

problem, which was described in Sec. 2.3.4. In the ADD model, the quantity MD

replaces the Planck scale MPl as the fundamental mass scale for gravity. Hence,
the cutoff scale that appears in the hierarchy problem is MD, rather than MPl. If
the volume of the internal space is sufficiently large, this new fundamental scale
can be significantly closer to the electroweak scale.

At low energies, the higher-dimensional Einstein–Hilbert action (6.3) can be
approximated by the expression

S(D)
EH ≃ M̄d+2

D Vd

∫

√

|g|d4xR(0), (6.4)

which is obtained by neglecting the excited KK modes of the Ricci scalar and
integrating out the extra dimensions, giving the volume factor Vd = (2πR)d. Com-
paring Eq. (6.4) to the four-dimensional Einstein–Hilbert action (6.2) we obtain
the relation

M̄2
Pl = M̄d+2

D Vd = M̄d+2
D (2πR)d =Md+2

D Rd. (6.5)

In the last step, we have introduced the quantity MD = (2π)d/(2+d)M̄D, following
Ref. [92]. By appropriately choosing the size of the radius R, the new fundamental
Planck scale MD can be lowered down to the electroweak scale. Assuming MD =
1 TeV gives

R =M−1
D

(

M̄Pl

MD

)2/d

≃ 1032/d TeV−1 ≃ 2 · 10 32−19d
d m. (6.6)

Numerical values of R for d = 1, . . . , 7 are given in Table 6.1. From the point of
view of the higher-dimensional theory, the weakness of gravity can be understood as
the suppression of Newton’s gravitational constant by the large volume of the extra
dimensions. Although gravity could be of the same strength as the SM interactions,
it is spread out in a large internal space, and hence, it seems weak from the four-
dimensional point of view.

However, there is a problem with the solution to the hierarchy problem in the
ADD model. Although the fundamental Planck scale MD can be lowered to the
electroweak scale, a new energy scale is introduced through the radius R. For
MD = 1 TeV, the relation between R and MD is

R−1 = 10−32/dMD ≪MD. (6.7)

Hence, the hierarchy problem is simply reformulated as the question of why the
size of the extra dimensions is so large compared to the Planck scale. This problem
can possibly be resolved by considering an analogue of the ADD model, where the
extra dimensions are hyperbolic rather than flat [93]. The volume of a hyperbolic
space depends exponentially on its radius, and hence, a large volume suppression
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d R R−1

1 2 · 1013 m 10−20 eV
2 2 mm 0.1 meV
3 9 nm 20 eV
4 2 · 10−11 m 10 keV
5 5 · 10−13 m 400 keV
6 4 · 10−14 m 5 MeV
7 7 · 10−15 m 30 MeV

Table 6.1. The radii R of the extra dimensions and the mass splittings R−1 in the
ADD model, assuming MD = 1 TeV.

can possibly be obtained while keeping the size of the extra dimensions closer to
the fundamental Planck scale. The collider phenomenology of such a model was
considered in Paper 8.

6.1.2 The graviton

Like the SM, general relativity can be seen as a gauge theory. The gauge trans-
formations are the general coordinate transformations, and the gauge field is a
spin-2 boson known as the graviton. However, since the coupling constant M−1

Pl

has negative mass dimension, quantizing the general theory of relativity gives a
non-renormalizable theory. At energies lower than MPl, such a theory can be used
as an effective theory.

The graviton is treated as a perturbation around a background metric, i.e.,

gµν = ηµν +
hµν
MPl

. (6.8)

Here, gµν is the full metric, ηµν is the background metric, and hµν is the graviton
field. The normalization factor M−1

Pl gives the graviton the correct mass dimen-
sion. Since hµν is symmetric, it has ten degrees of freedom, which is twice the
number expected for a spin-2 particle. However, five of these degrees of freedom
are unphysical and can be removed by choosing a gauge.

The linearized equations of motion for the graviton are obtained by inserting
the expression given in Eq. (6.8) into the Einstein field equations, and expanding to
first order inM−1

Pl . In the case that the background metric ηµν is the flat Minkowski
metric, the resulting equations in the so-called harmonic gauge [94] are

�hµν = 0, (6.9)

where � ≡ ∂µ∂µ is the d’Alembert operator. Equation (6.9) is the wave equation
for a particle traveling at the speed of light.



6.1. Large extra dimensions—The ADD model 55

In the ADD model, the d’Alembert operator is generalized to � = ∂K∂K , and
with this replacement, the analogue of Eq. (6.9) is

∂K∂KhMN = (�4 + ∂m∂m)hMN = 0, (6.10)

where �4 is the four-dimensional d’Alembert operator. The field hMN can be
expanded in a Fourier series

hMN (xµ, y) =
1

(2πR)d/2

∞
∑

n=−∞
h
(n)
MN (xµ)e

in·y

R . (6.11)

The equation of motion for the nth KK mode is

(

�4 +
|n|2
R2

)

h
(n)
MN = 0, (6.12)

which is the Klein–Gordon equation for a field with mass mn = |n|/R.

6.1.3 Graviton interactions

In order to make predictions for processes involving KK gravitons, the interactions
between the graviton and the SM fields have to be determined. These interactions
are given by adding to the Einstein–Hilbert action the term

Sint =

∫

√

|g|d4xLmatter. (6.13)

Here, Lmatter is the SM Lagrangian, modified to include interactions with the gravi-
ton. Hence, the graviton couples to all SM fields through the factor

√

|g| in the
integration measure. In addition, there are gauge interactions between the SM fields
and the graviton, which are given by additional terms in the covariant derivatives,
in the same way as for the SM gauge bosons.

In order to determine the coupling of the graviton field hµν to the SM fields, we
use Eq. (6.8), and expand the Lagrangian to first order in M̄−1

Pl , which gives

√

|g|L = L+
1

M̄Pl
T µνhµν +O(M̄−2

Pl ), (6.14)

where we have introduced the energy-momentum tensor

T µν =
δ
(

√

|g|Lmatter

)

δgµν
. (6.15)

To lowest order, the graviton couples to the energy-momentum tensor T µν, with
the interaction suppressed by the factor M̄−1

Pl .
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It is straightforward to generalize these results to the ADD model, for which
the interaction is given by

Sint =
1

M
d+2
2

D

∫

dDx TMN (xµ, ya)hMN (xµ, ya). (6.16)

Since the SM fields are confined to the brane at y = y0, the energy-momentum
tensor has the form

TMN (xµ, y) = δMµ δ
N
ν T

µν(xµ)δ(d)(y − y0), (6.17)

where δ(d)(y) is the Dirac distribution in d dimensions and T µν is the ordinary four-
dimensional energy-momentum tensor. Using this result and the KK expansion of
the graviton field given in Eq. (6.11), we obtain the action

Sint =
1

M
d+2
2

D

∑

n

∫

d4x T µν(xµ)
1

(2πR)d/2
h(n)µν (x

µ)e
in·y0

R

=
1

M̄Pl

∑

n

∫

d4x T µν(xµ)h(n)µν (x
µ). (6.18)

In the last equality, we have used the relation M̄2
Pl = Md+2

D Rd to eliminate R.
We have also used the fact that the value of y0 only determines the phase of hµν ,
which does not affect any physical results, so that we can set y0 = 0 without loss of
generality. Hence, similarly to gravity in four dimensions, each KK mode couples to
the energy-momentum tensor with the coupling suppressed by M̄−1

Pl . The difference
induced by the extra dimensions is that there is a KK tower of gravitons.

6.1.4 Collider signatures

We can now turn to the possible collider signatures of the ADD model. The graviton
could be directly produced as a real particle, or indirectly studied by measuring
contributions to SM processes from gravitons in virtual intermediate states. Both
of these kinds of signatures of the ADD model have been studied in the literature
[92, 95–103].

Since cross sections involving a graviton are suppressed by the inverse square
of the Planck scale, the production rates for single graviton modes are very low.
However, in the ADD model, the mass splitting R−1 between the KK modes is
typically small, and hence, a large number EcmR of KK modes are available. By
searching for the production of any graviton mode together with a detectable SM
particle, a sufficiently large total cross section could potentially be obtained. From
the five-dimensional point of view, this corresponds to the production of a graviton
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with any momentum along the extra dimensions. The cross section for such a
process is given by

σtot =
∑

n

σm ≃
∫

dmρ(m)σm, (6.19)

where σm is the cross section for the production of a KK mode with mass m in
the given process. In the last step, we have used the fact that the mass splittings
between the states are small, compared to the experimental energy resolution, in
order to approximate the sum as an integral. The function ρ(m) is the density of
states, which is given by

ρ(m) = Sd−1
M̄2

Pl

M2+d
D

md−1, (6.20)

where Sd−1 is the area of the unit sphere in d dimensions.

Due to its very weak interaction with matter, a produced graviton will escape
detection, giving missing energy signals. The best detection prospects are given by
two-body processes, where the graviton is produced together with one additional
particle. In Ref. [92], it was concluded that, in direct production processes, gravi-
ton production together with a photon or a single jet gives the best prospects for
detection.

6.1.5 Constraints

There are a number of ways of constraining the parameter space of the ADD model.
In addition to collider searches, the model predicts modifications to Newton’s law
for sufficiently small distance scales, and the existence of a large number of light
gravitons could potentially be problematic in high-temperature astrophysical con-
texts. Which constraint is the most important depends heavily on the number of
extra dimensions. Below, we discuss each of the important constraints in turn.

Deviations from Newton’s law

In a theory where gravity propagates in d extra dimensions with radii R, the grav-
itational potential is given by

V (r) = −GN
m1m2

r1+d
(6.21)

for r . R, while the ordinary expression holds for r & R. Hence, the extra dimen-
sions give rise to deviations from this law at distance scales given by the size of the
extra dimensions. If the radius R is too large, the deviations could be in conflict
with experimental results. For d = 1, deviations would be observed already at the
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scale of the solar system, which is clearly ruled out. Constraints on deviations from
Newton’s law of the general form

V (r) = −GN
m1m2

r

(

1 + αe−r/λ
)

(6.22)

are shown in Fig. 6.1 [104]. Using these constraints, the upper limit on the radius of
the largest extra dimension is R ≤ 44 µm. Comparing this limit to the radii given
in Table 6.1 shows that d = 2 is also ruled out for MD = 1 TeV, but allowed for
MD > 3.2 TeV. For d ≥ 3, the deviations occur on small enough distances scales
to avoid detection.

Figure 6.1. Constraints on deviations from Newton’s law of the form given in
Eq. (6.22). Figure taken from Ref. [104].

Astrophysical constraints

Even stronger constraints can be placed on the model by considering its impact
on astrophysical systems. In particular, as pointed out in Ref. [105], KK gravitons
which are produced in supernovae and subsequently bound to neutron stars would
give rise to photons through G(n) → γγ decays. Using data from the EGRET
satellite, the authors were able to obtain bounds on MD. Recently, the Fermi-
LAT collaboration performed a more detailed analysis along the same lines [106],
obtaining the bounds MD & 230 TeV, 16 TeV, and 2.5 TeV for d = 2, 3, and 4.
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For d = 2 and 3, these are currently the strongest bounds available on the ADD
model, whereas for d = 4, the result is comparable to collider limits. However, it
should be noted that these results rely on all the extra dimensions having the same
size, and could be much less restrictive in more general cases. For example, in the
model of hyperbolic large extra dimensions that is studied in Paper 8, there is a
mass gap at the lower end of the spectrum. If this gap is larger than the supernova
temperature, these bounds will be evaded completely.

In addition, weaker constraints on the model are obtained by considering the
accelerated cooling of supernovae due to the emission of light KK gravitons. The
strongest constraints of this kind come from the supernova SN1987A. For d = 2, 3,
and 4, the lower bound on MD obtained in this way is 50 TeV, 4 TeV, and 1 TeV,
respectively [107].

Collider constraints

The ATLAS and CMS collaborations have searched for signals of the ADD model
in the diphoton, dilepton, and monojet plus large missing energy channels. The
constraints on the fundamental mass scaleMD obtained through these searches are
summarized in Table. 6.2, for the number of extra dimensions d = 2, . . . , 7. The
signal in the monojet plus missing energy channel is due to the direct production
of KK gravitons, which is sensitive to MD. On the other hand, the diphoton and
dilepton channels receive contributions from virtual KK gravitons. Since the sums
over KK modes for d ≥ 2 diverge, these results are sensitive to the cutoff scale Λ,
rather than MD. It is not clear what the exact relation between Λ and MD is. The
limits quoted in Table. 6.2 are obtained using the relation given in Ref. [95].

Analysis d = 2 3 4 5 6 7
Monojet + missing energy

ATLAS 1 fb−1 [108]† 3.2 2.6 2.3 2.1 2.0
ATLAS 33 pb−1 [109] 2.3 2.0 1.8
CMS 1.1 fb−1 [110]† 4.0 3.2 2.8 2.6 2.4
CMS 36 pb−1 [111] 2.6 2.1 1.9 1.7 1.7

Diphotons

ATLAS 2.12 fb−1 [112] 3.1 2.9 2.7 2.6 2.4
CMS 2.2 fb−1 [113] 2.6 3.3 3.1 2.9 2.8 2.6

Dileptons

CMS 2 fb−1 [114] 2.7 3.3 3.1 2.9 2.8 2.6
† Preliminary results

Table 6.2. The ATLAS and CMS 95 % CL lower bounds on the fundamental mass
scale MD (measured in TeV) in the ADD model.
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Constraints from precision observables

The virtual exchange of KK gravitons contributes to EWPOs as well as the muon
anomalous magnetic moment. Using the results from Ref. [115], the Gfitter group
[82] has used the experimental bounds on these parameters to put constraints on
the ADD model. As for the collider processes, the results depend explicitly on
the cutoff scale Λ, and the results are given as functions of Λ/MD. The resulting
allowed regions are shown in Fig. 6.2.
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Figure 6.2. Constraints on the ADD model from a combination of electroweak
precision data and the muon anomalous magnetic moment. The allowed 68 %,
95 %, and 99 % contours in the (MD ,Λ/MD) plane are shown for a number of extra
dimensions δ = 2, 3, 4, and 6. Figure taken from Ref. [82].

6.1.6 Limits on the cutoff scale

The cutoff scale of the model can be estimated in the same way as for the UED
model, by considering the loop-expansion parameter. For the ADD model, it is
given by [92]

ε =
SD−1

2(2π)D

(

Λ

MD

)D−2

. (6.23)

The upper limit thus obtained for Λ is

Λ = [Γ(2 + d/2)]
1

2+d (4π)
4+d
d+2dMD. (6.24)

However, since MD is the fundamental energy scale for gravity, unknown quantum
gravitational effects are expected to become important at this scale, making any
predictions above MD uncertain.
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6.2 Higher-dimensional neutrino mass models

In the spirit of the ADD model, it is natural to consider the possibility of only
SM singlet particles probing the bulk. In particular, if right-handed neutrinos
were added to the SM following the patterns of the other fermions, they would
be SM singlets. As discussed in Sec. 5.1, two-component chiral fermions do not
exist in higher-dimensional models, and instead, the right-handed neutrinos would
be replaced by SM singlet Dirac fermions with right-handed zero modes. In order
for the theory to be effectively chiral at the level of the zero modes, it has to
be compactified on a properly chosen orbifold. Here, we consider the simplest
possibility, S1/Z2. The model resembles the type-I seesaw model (see Ch. 3), except
that the zero modes of the sterile fermions are accompanied by towers of massive
KK modes, which could be responsible for the suppression of the light-neutrino
masses.

The KK expansions of the sterile fermions Ψ = (ξ ηc)T are given in Eq. (5.6).
The relevant parts of the action are given by

S =

∫

d5x

[

iΨΓMDMΨ− 1

2

(

ΨcMRΨ+ h.c.
)

]

+

∫

y=0

d4x

(

− 1√
MS

νLm̂
cΨ− 1√

MS

νcLm̂Ψ+ h.c.

)

, (6.25)

where MS is the higher-dimensional mass scale. The five-dimensional mass term
MR leads to Majorana mass terms for the KK modes of Ψ, and there are also two
four-dimensional Dirac mass terms, m̂ and m̂c, localized on the brane where the
left-handed neutrinos live. It is useful to introduce the linear combinations

X(n) =
1√
2
(ξ(n) − η(n)), (6.26)

Y (n) =
1√
2
(ξ(n) + η(n)). (6.27)
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In the basis {νL, ξ(0), X(1), Y (1), . . .}, the action (6.25) gives rise to the infinite-
dimensional mass matrix

M =






















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









0 mD mD mD · · · mD mD . . .
mT

D MR 0 0 · · · 0 0 . . .

mT
D 0 MR − 1

R
0 · · · 0 0 . . .

mT
D 0 0 MR +

1

R
· · · 0 0 . . .

...
...

...
...

. . . 0 0 . . .

mT
D 0 0 0 0 MR − n

R
0 . . .

mT
D 0 0 0 0 0 MR +

n

R
. . .

...
...

...
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...

...
. . .




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
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





















.

(6.28)

An approximate solution to the eigenvalue equation for this mass matrix with re-
spect to the small ratio mD/MR gives the light-neutrino mass matrix

mν ≃ mD

(

M−1
R +

∞
∑

n=1

2MR

M2
R − n2/R2

)

mT
D = mD

πR

tan (πRMR)
mT

D. (6.29)

In the case that the Majorana mass MR takes on one of the values (n+ 1/2)R−1,
where n is an integer, this mass vanishes identically. Although such an apparent
fine-tuning seems unnatural, it is motivated in the context of string theory by
the Scherk–Schwartz decomposition, which requires MR = (n + 1/2)R−1, due to
topological constraints [116]. If this relation would hold exactly, the light-neutrino
masses would vanish. However, small perturbations could result in neutrino masses
which are naturally light.

In Paper 5, we have investigated an alternative seesaw mechanism in the con-
text of extra dimensions. Since higher-dimensional theories are generally non-
renormalizable, the KK tower must be cut off at some energy scale Λ. In the
case that the tower is cut at some maximal KK number N , the massive eigenstates
pair to form Dirac neutrinos, except for the top of the KK tower, where a single
Majorana neutrino with mass N/R remains. This heavy mode is responsible for the
generation of the light-neutrino masses. In the case N ≫ RMR, the light-neutrino
masses are given by

mν ≃ (R/N)mDm
T
D. (6.30)

Mixing among the left-handed neutrinos and the sterile fermions induces non-
unitarity effects in the neutrino mixing matrix, as discussed in Sec. 3.3. Due to the
tower of sterile fermions, we have

νL ≃ V νmL +K(0)ξ(0) +

N
∑

n=1

[

K(−n)X(n) +K(n)Y (n)
]

, (6.31)
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where the coefficients K(n) = mD(MR + n/R)−1 and V is the upper-left 3 × 3
sub-matrix of the unitary matrix diagonalizing the complete mass matrix including
the sterile fermions. The non-unitarity matrix ε is related to the parameters of the
model through the expression

ε ≃ 1

2
π2R2mDm

†
D, (6.32)

and hence, the non-unitarity bounds can be used to constrain the parameter space of
the model. As an example, for R−1 = 1 TeV and mD = 100 GeV, the non-unitarity
matrix is of the order of 10−2, which is larger than allowed by the constraints given
in Eq. (3.16).

6.2.1 Collider signatures

The production of KK modes of the sterile fermions, followed by their decays into
the final states ℓαW

+, ναZ, and ναH , gives rise to possible collider signatures.
In general, multi-lepton final states at the LHC are promising channels for seesaw
models [117]. Also, a particularly striking feature of seesaw models is the breaking
of lepton number. However, in the higher-dimensional models described here, the
lepton number breaking occurs only at a high-energy scale, and hence, it is not
relevant for collider searches. Instead, lepton number conserving multi-lepton and
missing energy searches provide the best prospects. In Ref. [118], where the LHC
signals of the higher-dimensional seesaw model without a cutoff were considered,
the most promising channel was found to be three leptons and large missing energy.
It was found that the LHC would be able to probe the parameter space up to R−1

of the order of a few hundred GeV.
In Paper 5, we considered the three leptons and large missing energy channel

for the truncated model that is described above. From the collider signal point of
view, this model is very similar to the model studied in Ref. [118]. However, in
contrast to the result of that work, we found that the constraints imposed on the
model from contributions to the non-unitarity parameters are sufficiently strong to
rule out the part of the parameter space of the model that could possibly be probed
at the LHC.
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Chapter 7

Dark matter

The subject of DM was born in 1933 with the observation by Zwicky that the mea-
sured light emitted from the Coma galaxy cluster did not correspond to the inferred
total mass of the cluster [119]. Since then, an increasing amount of observations
giving further support to the DM hypothesis has been obtained, and today, the
concept of a DM sector of the Universe is well-established. Although the need for
DM is realized through cosmological observations, it has strong implications for
particle physics, in particular for models beyond the SM. The fact that DM has
not been directly observed provides one of the major challenges for particle physics
today. The subject is one of the strongest links between the descriptions of Nature
on the smallest and largest scales. It is currently one of the most active areas of
research in particle physics, astrophysics, and cosmology.

We begin the chapter with a short overview of the standard model of cosmology
and the need for a DM sector in the Universe. This is followed by a discussion on
the general properties of DM candidate particles. Then, we consider KKDM, which
is the most important class of DM candidates for this thesis. Finally, we discuss
the issue of detection of DM, focusing in particular on the detection prospects for
KKDM candidates.

7.1 Standard cosmology

The standard model of cosmology, the Hot big bang model, is based on the cos-
mological principle, stating that the Universe is homogeneous and isotropic on
large-distance scales. An immediate consequence of this assumption is that the
metric in such a Universe has the form

ds2 = dt2 − a(t)2
[

1

1− kr2
dr2 + r2

(

dθ2 + sin2 θdφ2
)

]

, (7.1)

known as the Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric. The func-
tion a(t) is known as the scale factor, and the constant k takes one of the values 0,
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+1, or −1, corresponding to a flat, positively curved, or negatively curved Universe,
respectively.

In a flat and homogeneous Universe, the energy-momentum tensor in the right-
hand side of Einstein’s equations (6.1) takes the form of a perfect fluid,

(T µν) = diag(ρ, p, p, p), (7.2)

in a comoving reference frame, i.e., a frame where r, θ, and φ are constant. The
energy density ρ and the pressure p are related by an equation of state, p = wρ, for
some constant w, which depends on the specific type of energy. For example, for
non-relativistic matter, w = 0, while for radiation, w = 1/3.

Inserting the metric (7.1) and the energy-momentum tensor (7.2) into Einstein’s
equations gives the so-called Friedmann equation,

H2 ≡
(

ȧ

a

)2

=
8πGNρ+ Λ

3
− k

a2
, (7.3)

where we have the defined the Hubble rate H . The Hubble rate governs the expan-
sion of the Universe through Hubble’s law, v = Hd, where v is the relative velocity
of two spacetime points separated by the distance d. It is useful to introduce the
dimensionless constant h = H/(100 km s−1 Mpc−1). Current observations give
h = 0.702± 0.014 at 68 % CL [40].

By defining the critical density

ρc =
3H2

8πGN
, (7.4)

the Friedmann equation can be written as

Ω + ΩΛ +Ωk = 1, (7.5)

where Ω = ρ/ρc, ΩΛ = Λ/(8πGNρc), and Ωk = −k/ȧ2. Furthermore, the density Ω
can be divided into contributions from radiation, baryonic matter, and other forms
of matter. Due to redshifting, radiation energy density decreases faster than matter
density as the Universe expands. Today, the radiation energy density is negligible
compared to the matter density. Also, observations indicate that the Universe is
very close to being flat, i.e., Ωk ≃ 0.

The Hot big bang model makes a number of predictions that have been suc-
cessfully tested with observational data. One such example is nucleosynthesis, the
creation of light elements at t ≃ 100 s. The observed abundances of 4He, 3He, D,
and 7Li agree well with the predictions of nucleosynthesis. Even more important
is the observation of the cosmic microwave background radiation (CMBR), which
is a relic from the time of recombination at t ≃ 300 000 years, when atoms were
formed and the Universe became transparent to photons. Since that time, the
CMBR has propagated essentially freely, providing an image of the Universe at the
time of recombination. The anisotropies in the CMBR are of the order of 10−5,
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in good agreement with the cosmological principle, and the correlations of these
anisotropies provide a large amount of information regarding the energy content of
the Universe.

Nucleosynthesis as well as the power spectrum of the CMBR depend sensitively
on the relative contributions to the energy density Ω in the Universe. In particular,
observations give information on the energy density from baryons as well as DM,
to which we turn next.

7.2 The need for dark matter

There is a large body of experimental evidence for the existence of a dark component
of the energy in the Universe, including observations of mass-to-light ratios [119],
galaxy rotation curves [120], gravitational lensing effects [121], models of structure
formation [122], and measurements of the anisotropy of the CMBR [40]. In princi-
ple, the DM sector could be made up of composite baryonic objects, such as black
holes. However, it has been shown that such so-called massive compact halo objects
(MACHOs) can make up at most a small fraction of the total DM density [123]. It
has also been suggested that the observations that are interpreted as being due to
DM could instead be results of deviations from Newton’s gravitational law at large
distance scales. Theories of this kind are known as modified Newtonian dynamics
(MOND) [124]. However, it is hard to construct such theories that can account
for all of the observations that the DM hypothesis can. In particular, the so-called
Bullet cluster [125], which was observed in 2006 and consists of two colliding clus-
ters of galaxies, displays a separation of the visible matter from the DM which is
hard to describe using MOND theories [126]. Using the principle of Occam’s razor,
a DM sector seems to be the most plausible solution to the problem.

Simulations of structure formation indicate that the DM was non-relativistic
at freeze-out, so-called cold DM (CDM)1. Dividing the matter part of the energy
density in Eq. (7.5) into a baryonic part and a CDM part, Ω = Ωb+ΩCDM gives the
ΛCDM model, which is the currently most widely accepted model of cosmology. A
combined analysis of the WMAP seven-year data, baryon acoustic oscillations, and
supernovae observations [40] applied to this model gives the best-fit values Ωb ≃
0.05, ΩCDM ≃ 0.23, and ΩΛ ≃ 0.73. Hence, DM dominates the matter density, while
the visible matter, i.e., the stars and the interstellar medium, accounts for about
20 % only. The dark energy Λ, which is responsible for the observed acceleration of
the expansion of the Universe [128], accounts for 73 % of the total energy density.

To date, all evidence for DM comes from gravitational observations, and there-
fore, the particle nature of the DM remains unknown. Establishing the nature of
the DM is one of the major challenges of particle physics today. In order not to be
in conflict with observations, the DM sector should mainly consist of non-baryonic

1There are still some potential problems with CDM, related to the structure formation, which
have led to investigations of so-called warm DM [127]. The question of whether cold or warm DM
gives the best description of structure formation is not yet resolved.
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particles which do not interact electromagnetically. Also, any DM particle has to
be able to reproduce the observed relic density. An important conclusion of these
constraints is that none of the particles in the SM could constitute the DM.2 Thus,
the DM problem points to new physics beyond the SM.

7.3 Thermal production of dark matter

Given a particle species that satisfies the basic constraints on a DM candidate, i.e.,
being stable, electrically neutral, and non-baryonic, the most important question is
if there is some mechanism for producing it in the amount given by experimental
data. A natural way to generate an abundance of a stable particle species is through
thermal production in the early Universe.

In the thermal production picture, the particle species is in equilibrium with the
thermal bath in the early Universe. Hence, the particle number density follows the
Boltzmann distribution, n ∼ e−m/T . In order for the equilibrium to be maintained,
the interaction rate of the particle with the thermal bath has to be larger than
the expansion rate of the Universe, i.e., the Hubble rate. The interaction rate as
well as the expansion rate are functions of the temperature of the thermal bath,
which in turn is a function of time. At some point, the interaction rate falls below
the expansion rate, and the particle drops out of thermal equilibrium and is frozen
out at a constant density per comoving volume. From that point on, the number
density of the particle is affected only by the expansion of the Universe. The value
of the freeze-out density depends on the particle annihilation cross section σann as
well as its mass.

The process of thermal production can be more complicated in the case of
coannihilations with other particles [130]. Typically, models for DM include a
single stable DM particle and a number of heavier particles that interact with and
can decay into the DM particle. Coannihilations occur when these heavier particles
have masses close to the DM particle mass. Then, the thermal energy of the DM
particles is large enough to convert them to the more massive particles, which would
affect the abundance. In the general picture, the abundance does not depend on
the DM pair annihilation rate only, but on all the coannihilation cross sections
σann(XiXj) = σij , for i, j = 1, . . . , n.

The effects of coannihilations differ qualitatively depending on the relative sizes
of these cross sections. For example, in the case that there is a single coannihilating
particle with σ12 ≫ σ11, the second particle will annihilate with the DM particle,
decreasing the DM abundance. On the other hand, if σ12 is very small, the two
particle species act and freeze out essentially independently. Typically, the second
particle species then decays into the DM particle, thus increasing the abundance.

2Although neutrinos interact only weakly, they are too light to make up more than a small
fraction of the total DM density [129].
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7.4 Weakly interacting massive particles

An important class of particle DM is constituted by weakly interacting massive
particles (WIMPs). These are particles with an interaction strength typical for the
weak interactions and masses that lie roughly in the GeV to TeV range. The reason
for the importance of WIMPs is that they naturally reproduce the correct thermal
relic density with only a few assumptions. The particular features of WIMPs are
such that the relic DM density that is measured today can be reproduced without
the need for unnatural fine-tunings of the parameters. This effect has been termed
the “WIMP miracle”.

Another reason for the popularity of WIMPs is that the most well-studied DM
candidate, the neutralino, falls into this category. The neutralino appears in su-
persymmetric models, and is a combination of the neutral higgsinos and gauginos,
which are fermionic superpartners of the Higgs scalars and gauge bosons, respec-
tively. The stability of the neutralino is guaranteed if conservation of R-parity (see
Ch. 5) is assumed, which is also motivated from other aspects of supersymmetric
models [14].

In this thesis, we are mainly interested in DM candidates arising in UED models.
These DM candidates fall into the WIMP category. Other WIMP candidates arise
in different models of physics beyond the SM, e.g., little Higgs models [131–134].
There are also DM candidates that are not WIMPs, such as axions [135], which
appear in the Peccei–Quinn theory that attempts to solve the so-called strong CP
problem [136], asymmetric DM, which connects the DM to the baryon asymmetry
in the Universe [137], and keV sterile neutrinos, which would be warm DM candi-
dates [127]. For a more comprehensive overview of particle DM candidates, see for
example Ref. [9].

7.5 Kaluza–Klein dark matter

7.5.1 The lightest Kaluza–Klein particle

As discussed in Ch. 5, the conservation of KK parity in UED models guarantees the
stability of the LKP. The mass of this particle is approximately R−1 = O(1) TeV,
and in the case that it is a good DM candidate, it is typically a weakly interacting
particle. This means that KKDM candidates are typically WIMPs.

The identity of the LKP is determined by the mass spectrum (see Sec. 5.4). In
the MUED version of the five-dimensional model that is described in Sec. 5.5.1,
the LKP is the first KK mode of the hypercharge gauge boson, the B1 [70]. In the
corresponding six-dimensional model, which is described in Sec. 5.5.2, the LKP is
instead the first KK mode of the adjoint scalar corresponding to the hypercharge
gauge boson, the B1

H [72]. If the MUED assumption that the BLTs vanish at the
cutoff scale is relaxed, the mass spectrum, and hence, the identity of the LKP,
generally changes.
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In general, the LKP could be any of the first-level KK modes. In the context of
KKDM, we can restrict our attention to electrically neutral, non-baryonic particles.
In the five-dimensional model, these are the first KK modes of the U(1)Y gauge
boson, B1, the SU(2)L gauge boson, Z1, the neutral components of the Higgs boson,
H1 and A0,1, the lightest neutrino ν1, and the graviton, G1. In the six-dimensional
model, the adjoint scalars B1

H and Z1
H and the right-handed neutrino ν1R are also

possible candidates.
It has been shown that the ν1 direct detection cross section is in conflict with

experimental limits, unless the mass of the ν1 is very large [138]. However, it would
then be far above the region favored by the relic density calculations. Thus, KK
neutrinos as DM candidates have been ruled out by direct detection experiments.

KK gravitons could potentially be DM candidates, but are too weakly interact-
ing to be considered as WIMPs. Therefore, a non-thermal production mechanism
would be needed, and the phenomenology would be drastically different from that
of WIMPs. As discussed in Sec. 5.5.1, the first KK excitation of the graviton is
the LKP in some parts of the MUED parameter space. Then, the next-to-lightest
KK particle would be unstable, but have very weak interactions with the LKP, and
hence, a long lifetime. For a more thorough discussion on this topic, see for example
the review in Ref. [89].

The KKDM candidates Z1
H and ν1R in the six-dimensional model have not been

discussed in the literature and we will not elaborate more upon them in this thesis.
Finally, the H1 and A0,1 particles have exactly the same DM properties regard-

ing the relic abundance and the detection prospects. Therefore, we will only discuss
the H1, but all results can be directly carried over to the A0,1.

7.5.2 The relic abundance

A common feature of different KKDM candidates is that coannihilations tend to
play an important role for the relic abundance, since the first-level KK spectrum
is quite degenerate. Hence, the abundance depends sensitively on the mass spec-
trum. It is usually calculated using either the MUED assumptions or a simplified
parametrization, e.g., varying a single common mass for all first-level particles in
the range 1 %− 10 % above the LKP mass.

The relic abundance of B1 DM has been calculated in Refs. [139, 140], taking
all coannihilation processes involving first-level KK particles into account in the
MUED model. The result is that the B1 with a mass mB1 ≃ 500 GeV − 600 GeV
could account for the observed DM. If the MUED assumptions are relaxed, the
effects of coannihilations widen this range to mB1 ≃ 500 GeV − 1600 GeV.

In Ref. [141], it was pointed out that second-level KK particles could have
important effects on the abundance. For example, the second-level Higgs boson,
having roughly twice the mass of the LKP, could be resonantly produced in the
process B1B1 → H2. TheH2 preferentially decays into SM particles, and therefore,
this process contributes to a depletion of the DM density. These ideas were further
investigated in Refs. [142, 143]. In Ref. [144], a complete calculation involving
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KKDM candidate Mass range

Five-dimensional UED, S1/Z2

B1, MUED 500 GeV . mB1 . 600 GeV
B1 500 GeV . mB1 . 1600 GeV
Z1 1800 GeV . mZ1 . 2500 GeV
H1 2000 GeV . mZ1 . 2700 GeV

Six-dimensional UED, T 2/Z4

B1
H, MUED 100 GeV . mB1

H
. 500 GeV

Table 7.1. Preferred mass regions according to the WMAP data for the KKDM
candidates considered in this chapter.

second-level KK modes in intermediate as well as final states was performed. The
result was that, in the MUED model, the preferred B1 mass is pushed up to about
1.3 TeV. However, these results depend strongly on the KK mass spectrum, through
the coannihilations as well as the resonance effects.

The relic density of a Z1 LKP has been calculated in Ref. [145], taking coan-
nihilations into account. It was found that the correct abundance is obtained for
1800 GeV . mZ1 . 2500 GeV, depending on the mass splittings to other first-level
KK particles. Thus, the Z1 LKP should have roughly twice the mass preferred for
a B1 LKP.

The relic density for the third and last possible candidate in five-dimensional
UED models, the H1, was calculated in Paper 4. Without coannihilations, the
preferred mass is approximately mH1 ≃ 2 TeV. In the case of a universal mass
splitting for the first-level KK particles, coannihilations result in a higher value.
For a relative mass splitting of 1 %, the preferred mass is instead mH1 ≃ 2.7 TeV.

Finally, for the B1
H in the six-dimensional MUED model, the calculation per-

formed in Ref. [146] gives the preferred mass range 100 GeV . mB1
H
. 500 GeV,

depending on the value of the Higgs mass. For a low Higgs mass, mH ≃ 120 GeV,
the favored mass is mB1

H
≃ 200 GeV, which corresponds to a slightly larger value

for R−1. Hence, for the B1
H DM, the abundance constraints are in conflict with

the general bounds on the six-dimensional MUED model that were summarized in
Sec. 5.7.

In Table 7.1, we summarize the preferred mass regions for the different KKDM
candidates.

7.6 Dark matter detection

There are currently a large number of running and planned experiments aiming
to detect WIMPs and establish their properties. These experiments are generally
divided into direct and indirect detection experiments. In this chapter, we only treat
the detection of WIMPs in an astrophysical context. However, the production of
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DM particles in high-energy colliders, such as the LHC, also plays an important
and complementary role in the search for the particle identity of the DM. For a
more comprehensive overview of DM detection methods, see one of the reviews on
the subject, e.g., Ref. [9].

The realistic DM detection prospects depend not only on the particle physics
of a particular DM candidate, but also on astrophysical assumptions, in particular
regarding the DM distribution. The currently available information on this distri-
bution mainly comes from N -body computer simulations [122]. In the standard
picture, the DM density follows a spherically symmetric distribution in the Milky
way and other galaxies. The local DM density in the solar system is given by
ρ0 ≃ 0.3 GeV/cm3. One of the most common choices for the parametrization of
the profile, which fits simulation data well over large regions, is the Navarro–Frenk–
White (NFW) profile [147], which is given by

ρ(r) =
ρs

(r/rs)γ(1 + r/rs)3−γ
, (7.6)

where γ = 1, the scale radius rs is a free parameter, and ρs = ρ(rs). The largest
uncertainty is related to the behavior of the profile close to the galactic center, due
to the finite resolution of the N -body simulations. The standard NFW profile has
a r−1 behavior at this point, but simulations indicate that the density is in fact
somewhat higher in this region. Other possibilities for the halo profile, which might
fit the data in this region better, include a generalized NFW profile where γ is kept
as a free parameter and the Einasto profile [148],

ρ(r) = ρse
− 2

α
[(r/rs)

α−1], (7.7)

where α is an additional free parameter. In this thesis, we have assumed a standard
NFW profile with a scale radius rS = 20 kpc in the Milky way.

7.6.1 Direct detection

The thermal WIMP production mechanism relies on WIMPs interacting with or-
dinary matter, and this fact can be used in order to search for them. The Earth
moves through the DM halo with a speed of 230 km/s, and hence, WIMPs con-
stantly traverse the Earth at this speed. Some of these WIMPs will scatter on
nuclei, and such interactions can potentially be detected in laboratories by measur-
ing the energy deposits in the target from the scattering WIMPs. This method is
known as direct detection.

Due to the different kinds of possible interactions between WIMPs and quarks in
nucleons, the direct detection prospects vary drastically with the particular WIMP
candidate considered. On the WIMP-nucleus level, the interactions can be charac-
terized as spin-dependent or spin-independent. Spin-independent interactions take
place coherently between the WIMP and the whole nucleus, and the correspond-
ing cross section is proportional to the square of the atomic number, A2. This
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means that, for a WIMP candidate having mainly spin-independent interactions,
the interaction rate can be increased by using heavy target nuclei. Spin-dependent
interactions, on the other hand, arise from the coupling of the WIMP to the spin of
the nucleus, and the cross section is instead proportional to J(J+1), where J is the
angular momentum quantum number. For such interactions, it is not possible to
enhance the cross section by using heavy target nuclei, and hence, spin-dependent
scattering cross sections are harder to constrain than spin-independent ones. The
constraints on spin-dependent cross sections are weaker than the constraints on
spin-independent ones by several orders of magnitude.

The current strongest limits on the WIMP-proton spin-independent scattering
cross section σWIMP,p are shown in Fig. 7.1, as exclusion regions in the mWIMP-
σWIMP,p plane. The strongest limits are set by the XENON100 [149] and CDMS
II [150] experiments. Also shown are a number of claimed signals in different direct
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Figure 7.1. The strongest constraints on the spin-independent WIMP-proton in-
teraction cross section as a function of the WIMP mass. Generated using the Dark
matter limit plot generator [151].

detection experiments that could possibly be signals of DM. The oldest of these
claims is made by the DAMA/NaI and the succeeding DAMA/LIBRA experiments,
which have reported annual modulations in their event rates that are interpreted as
signals from DM interactions [152]. An annual modulation in the signal is expected,
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due to the orbit of the Earth around the Sun, which means that the speed of the
Earth relative to the DM halo varies during the year. Later, in 2009, two events
were observed in the CDMS II experiment [150]. According to the analysis made by
the collaboration, the probability that two or more background events are observed
in the signal region is 23 %. More recently, the CRESST-II [153] and CoGeNT [154]
experiments have observed signals that could be due to a WIMP DM particle with
a mass of the order of 10 GeV. Since these possible observations of DM are in
conflict with other experimental limits, the issue of the validity of the results is still
an open question.

The scattering of B1 [138] and Z1 [145] particles on nuclei is dominated by spin-
dependent interactions, which means that their scattering cross sections are weakly
constrained by direct detection experiments. For the B1, the scattering cross section
is more strongly constrained by indirect neutrino detection experiments, which are
discussed in Sec. 7.6.2. For the Z1, which has a higher preferred mass range, the
direct detection rate as well as the indirect neutrino signal are suppressed, and no
relevant bounds exist on the scattering cross section.

Since the H1 is a scalar particle, it interacts only spin-independently. The Higgs
boson interacts with quarks through Yukawa interactions and the couplings are pro-
portional to the corresponding quark masses. Therefore, the H1-quark scattering
is negligible for all quark flavors except from the top quark. The heavy quarks
contribute to the scattering only through loop-level interactions involving gluons in
the nucleon, and the resulting H1-nucleon scattering rate turns out to be several
orders of magnitude below the sensitivities of current experiments.

Similar conclusions hold for the B1
H scalar DM candidate. In Ref. [146], it was

found that, due to suppressed couplings to quarks, the scattering rate is too low
for current experiments.

7.6.2 Indirect detection

Another way to search for WIMPs is through their annihilations into SM particles.
The annihilation products propagate away from the interaction point, and could
potentially be detected in Earth- or space-based telescopes. Only a few particle
species are stable over galactic scales, and the particles produced in WIMP annihi-
lations will decay into these stable states. The most important particles that could
be observed are photons, neutrinos, and different kinds of antimatter. Searching
for DM through the detection of such particles is generally referred to as indirect
detection.

Since the WIMPs annihilate in pairs, the annihilation rate in a given region of
the Universe is proportional to the square of the local DM density. The fluxes of
annihilation products is proportional to this rate, and thus, it is favorable to search
for signals in the directions of regions where a high WIMP density is expected. Such
regions include the galactic center, dwarf galaxies, and massive celestial bodies,
such as the Sun and the Earth. However, these sources are generally plagued by
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Final state B1 Z1 H1 B1
H

uu 0.125 0.017 0 0

dd 0.008 0.017 0 0
νν 0.011 0.005 0 0
ℓ+ℓ− 0.183 0.005 0 0
HH 0.004 0.002 0.543 0.25
ZZ 0.004 0.002 0.237 0.25
W+W− 0.010 0.866 0.220 0.50

Table 7.2. Branching ratios into all final state channels for different KKDM par-
ticles. The branching ratios are computed in the limit of degenerate first-level KK
masses. The branching ratios into fermions are not summed over generations.

large uncertainties due to other astrophysical processes, making it hard to properly
estimate the background fluxes of particles.

The model-dependent quantities that determine the prospects for indirect de-
tection searches are the WIMP pair annihilation cross section and the branching
ratios into different final states. The branching ratios for the B1, Z1, H1, and B1

H

are given in Table 7.2, computed in the limit of degenerate first-level KK masses
and neglecting EWSB effects. The B1 couples to the hypercharge of fermions, and
hence, it has large branching ratios into charged leptons. The annihilation of the
Z1, which is a non-Abelian gauge boson, is dominated by the W+W− final state.
For the H1 and the B1

H, annihilations into fermion-antifermion pairs are helicity
suppressed, and therefore, these particles annihilate only into bosons.

Neutrinos from dark matter annihilations in the Sun

As WIMPs travel through the solar system, a fraction of them will scatter elastically
on nuclei in the Sun, and thereby lose energy. If the energy loss for such a WIMP
is sufficiently large, its velocity will drop below the escape velocity of the Sun, and
the WIMP will become gravitationally bound. This could lead to a DM density
in the core of the Sun that is far higher than the average density. Hence, WIMP
annihilation could be expected to be greatly enhanced in the solar core.

Since the Sun is a very hot and dense object, the only annihilation products
that could escape its interior are neutrinos. In general, DM annihilations in the
Sun produce neutrinos directly as well as indirectly, through decays or interactions
of other annihilation products. Neutrinos from DM annihilations in the Sun can
be searched for with Earth-based neutrino telescopes, such as AMANDA/IceCube
[155], ANTARES [156], and Super-Kamiokande [157].

The capture rate of WIMPs in the Sun is proportional to the WIMP-proton
cross section, which is the same quantity that is constrained by direct detection
experiments. This means that the expected results in neutrino telescopes are corre-
lated with the limits from direct detection experiments. An important consequence
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of this is that, in the case that a DM candidate mainly has spin-independent inter-
actions with nuclei, the constraints from direct detection experiments are already
strong enough to rule out an observation of neutrinos from DM annihilations in
the Sun [158]. Thus, in this context, only DM candidates which mainly interact
spin-dependently are interesting. In particular, scalar DM candidates, such as the
H1 and adjoint scalars, only interact spin-independently.

On the other hand, for WIMPs that have mainly spin-dependent interactions,
the constraints are sufficiently weak to allow for detection of neutrinos from DM
annihilations in the Sun. This is true for the B1, which has quite good prospects
for indirect neutrino detection [1,159,160]. In fact, the strongest constraints on the
spin-dependent cross section in the five-dimensional MUED model are placed by
the IceCube collaboration [161].

In Paper 1, we found that the neutrino signals from the Z1 are lower than those
from the B1, due to a lower scattering cross section on nuclei and the different
distribution of final states shown in Table 7.2. Also, since the favored mass for the
relic density is higher for the Z1, and the WIMP-proton scattering cross section falls
off rapidly with the WIMP mass, the prospects for this DM candidate in indirect
neutrino detection experiments are not very good. Also, for the B1 and the Z1

in the six-dimensional model, the model-dependent quantities that are relevant for
direct detection as well as neutrino detection experiments are approximately equal
to the five-dimensional case.

Gamma ray astronomy

Another interesting annihilation product is photons, which have the advantage of
not being affected by the galactic magnetic fields, so that they travel in straight lines
and would point straight back at their sources. Since the DM particle is necessarily
electrically neutral, it does not couple directly to the electromagnetic field, and
therefore, photons are only emitted through radiative processes or the decays of
other annihilation products, or through loop-level processes. The resulting photon
energy spectrum can be divided into a monoenergetic line signal and a continuous
part.

At loop-level, DM particles could pair-annihilate into the final states γγ, γZ,
and γH . In all three cases, the final-state particles are monoenergetic, with the
photon energy given by

Eγ = mDM

(

1− m2
X

4m2
DM

)

, (7.8)

where X = γ, Z,H . The corresponding signals would be lines in the energy spec-
trum. The lines for γZ and γH annihilation would be slightly shifted towards a
lower energy, but in practice, the relative shift is typically too small to be resolved
in detectors, which have a finite resolution. Thus, all three signals would effectively
contribute to a single line signal at Eγ ≃ mDM, giving a smoking-gun signature for
DM self-annihilations.
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The continuous component of the photon energy spectrum can be divided into
primary and secondary photons. The primary photons are emitted as final state ra-
diation from electrically charged annihilation products and could give an important
contribution to the hard part of the spectrum. In contrast, the secondary photons,
which are produced in the decays of other particles, contribute mainly to the soft
end of the spectrum. The continuous spectrum extends up to the maximal energy
Eγ = mDM. Hence, the detectability of the monoenergetic peak depends heavily on
the relative contributions from the continuous and the monoenergetic components
at this maximum energy.

Gamma rays from DM annihilations are being searched for in a number of
experiments, the foremost being the Fermi satellite [162] and the Earth-based air
Cherenkov telescopes (ACTs) H.E.S.S. [163], MAGIC [164], VERITAS [165], and
CANGAROO-III [166]. For the DM candidates considered in this thesis, the energy
range of Fermi, Eγ . 300 GeV, is typically too low, and hence, ACTs provide better
prospects for detection of the gamma ray flux. ACTs search for high-energy gamma
rays through the Cherenkov radiation that is emitted as the photons enter Earth’s
atmosphere.

The gamma ray spectrum from B1 annihilations has some interesting features.
Since the B1 has a branching fraction of about 20 % into each charged lepton, the
continuum spectrum is relatively large and features a sharp cutoff at Eγ = mB1

[167]. The monoenergetic peak from γγ annihilations can also be quite pronounced
[168], whereas the additional contributions from the γZ and γH channels are rela-
tively small [169].

In Paper 2 and 3, we calculated the gamma ray signals from Z1 DM annihila-
tions. For this candidate, the continuum spectrum is suppressed, whereas the peak
signal can be quite large, even comparable to that from B1, despite the larger mass
preferred for the Z1. This is due to the large number of diagrams coming from the
gauge self-interactions of the non-Abelian Z1 gauge boson.

Finally, the gamma ray spectrum for the H1 was found in Paper 4 to be sup-
pressed in the continuous as well as the monoenergetic part. Since the annihilation
into leptons is helicity suppressed, the continuum spectrum is mainly due to sec-
ondary photons coming from the decays of other particles, which mainly contribute
to the soft end of the spectrum.

Antimatter searches

A third important annihilation product is antimatter, such as positrons, antipro-
tons, and antideuterium. Here, we focus on positrons. In contrast to gamma rays,
positrons can possibly be directly produced in WIMP self-annihilation processes.
On the other hand, being electrically charged, the propagation of the positrons from
the source to the detector are affected by the galactic magnetic fields, introducing
a strong dependence on the modeling of this propagation. For positrons, the most
important effects are space diffusion and energy loss due to synchrotron radiation
and inverse Compton scattering [170].
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The space-based satellite PAMELA [171], as well as the balloon-borne experi-
ment ATIC [172], have reported excesses in their measured electron-positron spec-
tra, which have been suggested to be due to DM annihilations. However, the
validity of this interpretation is far from clear. The ATIC excess is not observed
by the more recent Fermi experiment. The DM interpretation of the PAMELA
results has the problem that, although there are DM models that can be made
to fit the shape of the measured spectrum, the magnitude of the excess is larger
than expected for DM annihilation products. This could possibly be due to local
variations in the DM density, giving rise to a “boost factor” that would increase
the fluxes. However, it is not clear whether or not such a mechanism could give
rise to a boost factor which is large enough, and the origin of the PAMELA excess
is still an unresolved matter.

Among the KKDM candidates, the B1 has the most interesting features in
relation to the positron signal. Since it annihilates directly into e+e− pairs (see
Table 7.2), the corresponding positron flux has interesting spectral features, with
a sharp cutoff at the compactification scale R−1 [64]. This shape of the spectrum
has been shown to be possible to fit to the PAMELA data, although the predicted
magnitude is too small [173]. The PAMELA data display no sharp cutoff, but the
energy reach of the experiment extends only to about 300 GeV, below the preferred
B1 mass given in Table 7.1.

The Z1, H1, and B1
H mainly annihilate into bosons, and have less interesting

features from the point of view of the positron detection prospects.
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Summary and conclusions

In this first part of the thesis, we have described the SM of particle physics and
the important fields of neutrino physics and dark matter. The general formalism
of higher-dimensional quantum field theories has been introduced, as well as a
number of specific models extending the SM through extra dimensions. Each of
these models aims to resolve one or more of the problems with the SM. For the
models of the UED type, we have focused on the possibility that the LKP could
constitute the observed DM in the Universe. The ADD model, where the SM fields
are confined to a brane, and only gravity can probe the extra dimensions, aims to
solve the hierarchy problem between the electroweak scale and the Planck scale.
Finally, in models where only sterile neutrinos propagate in the extra dimensions,
there is a mechanism for generating small masses for the left-handed neutrinos. We
have discussed existing limits on the models, as well as the potential to search for
signals of them in the next generation of high-energy colliders, in particular at the
LHC.

In Part II of the thesis, we present eight scientific papers, that investigate the
models described in Part I, or generalizations of them. Below, we summarize the
contents of each paper, stating the most important conclusions. More detailed
results and discussions are found in the papers.

Paper 1 We studied KKDM in the context of non-minimal UED models with five
and six dimensions. For both models, we studied the B1 as well as the Z1 as
DM particles. We calculated the indirect signals from neutrinos coming from
KKDM annihilations in the Sun, using numerical simulations of the neutrino
propagation from the interior of the Sun to an Earth-based detector, properly
taking interactions and flavor oscillations into account.

The main conclusions of this paper are:

• For the standard LKP candidate, the B1, we approximately reproduced
the results previously obtained in the literature, which imply that this
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DM candidate could be indirectly observed in neutrino telescopes such as
IceCube. Hence, the difference due to the proper three-flavor treatment
of neutrino oscillations compared to previous approximative treatments
is small.

• For the Z1, on the other hand, the prospects are not so good.

• The corresponding LKP candidates give the same signals in the five- and
the six-dimensional model.

Paper 2 We calculated the monoenergetic flux of gamma rays from annihilations
of Z1 particles, which are viable non-minimal KKDM candidates.

The main conclusions of this paper are:

• Due to the non-Abelian nature of the Z1, there is a large number of
diagrams in the bosonic sector contributing to the process, enhancing
the cross section.

• Even though relic density calculations indicate that the mass of the Z1

LKP should be larger than for the B1 LKP, the fluxes at Earth are of
the same order of magnitude.

• With a moderately large boost factor, the Z1 LKP could possibly be
detected in near-future ACT experiments.

Paper 3 We calculated the continuous component of the gamma ray energy spec-
trum from Z1 annihilations.

The main conclusions of this paper are:

• Due to the large branching fraction of annihilations into W+W− pairs,
the continuum spectrum is suppressed, especially close to the spectral
endpoint at Eγ = mZ1 .

• Due to this large suppression, the monoenergetic peak studied in Paper
2 has better prospects of being observable, and the combination of a
non-observable continuum spectrum and an observable peak provide a
signature for the Z1 LKP.

Paper 4 We investigated the first-level KK Higgs boson in the non-minimal five-
dimensional UED model as a DM candidate. We calculated the relic density
and investigated the detection prospects for direct as well as indirect detection
experiments.

The main conclusions of this paper are:

• The first-level Higgs boson could make up the DM if its mass mH1 ≃
2 TeV. Coannihilations with other first-level KK particles could shift
this value up to about 2.7 TeV.



81

• The direct detection rate of H1 DM is several orders of magnitude be-
low the sensitivities of current experiments, due to Yukawa-suppressed
couplings to all quarks except for the top quark.

• The indirect detection rates are also suppressed, mainly due to the
small Yukawa couplings and helicity suppression of H1 annihilation into
fermion-antifermion pairs.

• The same conclusions hold for the first KK mode of the pseudo-scalar
Higgs component, A0.

Paper 5 We investigated the generation of light-neutrino masses in a higher-
dimensional model with only sterile fermions in the bulk. In particular, we
considered the effects of introducing a high-energy cut on KK number, giving
a renormalizable theory. Motivated by the Scherk–Schwarz mechanism, we
employed a specific structure for the effective neutrino Majorana masses. We
studied non-unitarity effects and possible LHC signatures of the model.

The main conclusions of this paper are:

• The only lepton-number violation in the model is due to a number of
right-handed Majorana neutrinos at the top of the KK towers. These
Majorana neutrinos could generate the small masses for the left-handed
neutrinos.

• Due to the strong constraints on the non-unitarity parameters, an ob-
servation at the LHC seems to be ruled out.

• Mixing between the light neutrinos and the lower KK modes induces
large non-unitarity effects. These effects could be observable in a future
neutrino factory, demonstrating that such an experiment could provide
complementary information on the existence of extra dimensions.

Paper 6 We analyzed the RG running behavior of neutrino parameters in extra
dimensions. We studied two higher-dimensional models, the five-dimensional
UED model and a model where the fermions are confined to a brane. In both
cases, neutrino masses were described by the effective Weinberg operator,
i.e., the generation of the light-neutrino masses was assumed to occur at
some high-energy scale.

The main conclusions of this paper are:

• As expected in higher-dimensional models, the running neutrino param-
eters follow a power-law behavior.

• Among the neutrino mixing angles, only θ12 displays a significant run-
ning. It only runs to larger values at higher energies, constraining the
possible high-energy mixing patterns.

• The running is larger in the UED model than in the model where the
fermions are confined to a brane.
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• The possible high-energy values for the mixing parameters allowed for
tri-bimaximal mixing.

• In both models, the running of the neutrino masses is universal, again
with a significantly larger running in the UED model.

It should be noted that the recent results from the Daya Bay [31], and
RENO [32] experiments, which indicate that θ13 ≃ 9◦, rule out tri-bimaximal
mixing at low energies. Since θ13 does not display any significant running in
the two models that we consider, the same conclusion is true for those models.

Paper 7 We investigated the impact that recent LHC Higgs mass bounds have
on the five-dimensional UED model, through the running of the Higgs self-
coupling constant λ. In the small-mass region that remains, the enhanced
running tends to drive λ to negative values, making the Higgs potential un-
stable.

The main conclusions of this paper are:

• The five-dimensional UED model can be valid at most up to the fifth
KK level if the vacuum instability limit is to be avoided.

• This bound implies that it is not possible to achieve even approximate
gauge coupling unification in the model.

• The regions of large power-law running for the fermion masses are also
excluded.

Paper 8 We studied a generalization of the ADD model, where the internal space
is hyperbolic rather than flat. This model could provide a more satisfactory
solution to the hierarchy problem than the ADD model, where there is a large
hierarchy between the fundamental Planck scale and the radius of the extra
dimensions. Also, the model avoids the strong bounds on the size of the extra
dimensions from astrophysics. We have investigated the LHC signals of the
model in the jet +G and γ +G channels, where G denotes any KK mode of
the graviton.

The main conclusions of this paper are:

• In the jet channel, some regions of the parameter space, where the cross
sections are typically of the order of 100 fb, could be probed by the LHC.

• The photon channel, on the other hand, is less promising.

• In general, the signals are similar to, and in some cases indistinguishable
from, the signals of the ADD model.

There are a number of possible extensions and developments of these results.
Regarding the investigations of KKDM in non-minimal UED models, it would be
interesting to perform a more thorough study of the effects of the BLTs. Specifically,
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it would be interesting to study how the coupling constants are affected by the
BLTs and how they are correlated with the changes in the mass spectrum. For the
studies of the effects of renormalization group running, it would be interesting to
extend the work to higher-dimensional models. In particular, one could study the
implications that the LHC Higgs bounds have on the six-dimensional UED model.
Since the running is even more enhanced in six-dimensional models, the constraints
on this model would probably be even stronger than on the five-dimensional one.
In addition, with more data from the LHC, stronger bounds will be obtained also
for the five-dimensional model. Finally, the recent LHC constraints on the ADD
model could be carried over to the hyperbolic model. Since the signatures of the
two models are similar, it should be possible to use the analyzes to rule out parts
of the parameter space of this model as well.
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